用户名: 密码: 验证码:
土工结构的有限元分析方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土的应力应变问题和固结沉降问题是土工分析中的传统课题,但是鉴于土工问题的复杂性,只有在极少数情况下可以得到问题的解析解。随着计算机和计算科学的发展,目前已有很多数值方法应用于土工领域,其中有限单元法是一种十分有效的土工数值分析方法。本文正是就有限单元法在土工中的应用方面做了一些初步的研究,主要完成了以下工作:
     (1) 对目前应用较为广泛的一些土工数值分析方法进行了综述,着重介绍了有限单元法的基本原理及其在土工结构分析中的思路,对本文采用的单元形式进行了详细的分析和推导;
     (2) 介绍了土工结构分析中常用的几种本构模型,说明了它们各自的优缺点及适用范围,重点阐述了本文所采用的几种本构模型的基本理论及推导,并讨论了土工结构非线性问题的求解方法;
     (3) 对Biot固结理论的基本方程进行了详细的论述,推导了八结点等参单元耦合四结点等参单元的有限元计算公式,并构造了六结点等厚度接触面单元耦合四结点等参单元的新型接触面单元来模拟排水井地基中的涂抹层,使得对采用排水井预压法处理软土地基的模拟更接近于实际;
     (4) 研究了固结时步自适应误差估计方法,比通常采用的限定时间步长的做法具有更高的精度和更小的计算量;
     (5) 介绍了本文研制的有限元程序RIFEM的基本结构、主要功能和程序编制过程中的有关技术问题,并对程序进行了考证;
     (6) 利用本文所研制的有限元程序对杭州湾油罐地基处理工程和深圳宝安区西海堤加高加固工程进行了分析研究,得到了满意的效果,为工程单位进行设计和施工提供了依据。
In soil engineering, there are some traditional problems such as stress-strain and consolidation-settlement to be studied. Because of their complexity, only a few problems can get accurate solutions. With the development of computer and numerical modeling techniques, many numerical methods have been established and applied to this field. FEM (Finite Element Method) is one of the most effectives. The application of FEM to soil engineering is studied in this thesis. The main contents are listed as follows:
    (1) Some widely used numerical methods are summarized. The principles of FEM and the ways of analysis are dissertated in detail. The elements adopted in this study are analyzed and the practical expressions are formulated completely.
    (2) Some famous constitutive models are introduced. The advantages and disadvantages of these models and their applicable conditions are described generally. Especially, several constitutive models adopted here are also expatiated thoroughly. The nonlinear analysis of soil structure is discussed.
    (3) The governing equations based on Biot theory are fully expatiated. The method of 8-node iso-parametric element coupled with 4-node iso-parametric element is deduced. And then, 6-node constant thickness contact interface element coupled with 4-node iso-parametric element is developed to simulate the smear layer of drain wells. The new kind of element has made a better simulation of PVD/sand drains-improved ground with surcharge preloading.
    (4) The error estimation of adaptive time-step in consolidation are studied. Compared with the traditional methods, which usually give limitations to the time step, a better precision and less computation quantity can be obtained.
    (5) According to the theories and methods mentioned above, the program RIFEM is developed. The basic structure and the main functions of this program are introduced briefly. Some key techniques in programming are also presented. The program has been verified by some examples.
    (6) Two practical projects are taken as the examples by this program. The results are quite good and can be used in the design and the construction of soil engineering.
引文
[1] [苏]C.C.维亚洛夫.土力学的流变原理[M].北京:科学出版社,1987.
    [2] 陈促颐,叶书鳞.基础工程学[M].北京:中国建筑工业出版社,1990.
    [3] 陈晓平,白世伟.软粘土地基粘弹塑性比奥固结的数值分析[J].岩土工程学报,2001,23(4):481-484.
    [4] 陈慧远.摩擦接触单元及其分析方法[J].水利学报,1985,(4):44-49.
    [5] 陈慧远 编著.土石坝有限元分析[M].南京:河海大学出版社,1988.
    [6] 陈建锋,石振明 等.一种优化估计土性参数的新方法[J].岩土工程技术,2000,:187-190.
    [7] 陈建锋,石振明,陈竹昌.砂井地基平面问题转换及其应用[J].岩土工程技术,2001,1:23-26.
    [8] 陈开旭,安关峰.采用有厚度接触单元对桩基沉降的研究[J].岩土力学,2000,21(2):92-96.
    [9] [美]C.S.德赛,J.T克里斯琴主编.岩土工程数值方法[M].北京:中国建筑工业出版社,1981.
    [10] 陈愈炯.岩土工程中有限单元法的功能和局限性[J].地基处理,2000,3:102~103.
    [11] 陈仲颐,周景星.土力学[M].北京:清华大学出版社,1994.
    [12] 冯国栋主编.土力学[M].北京:水利电力出版社,1986.
    [13] 高长胜,汪肇京,魏汝龙.井阻和涂抹作用在排水板地基设计中的应用[J].水利水运科学研究,1999,9:213-222.
    [14] [西德]G.哥德赫编.有限元法在岩土力学中的应用[M].北京:中国铁道出版社,1983.
    [15] 龚晓南.高等土力学[M].杭州:浙江大学出版社,1996.
    [16] 龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000.
    [17] 龚晓南 等 编著.工程材料本构方程[M].北京:中国建筑工业出版社,1995.
    [18] 桂良进,王军 等 编著.Fortran Powerstation 4.0使用与编程[M].北京:北京航空航天大学出版社,1999.
    [19] 何发祥,刘浩吾.有限元法前处理技术的发展[J].水利水电科技进展,2000,20(6):15-18.
    [20] 何广纳 编著.土工的若干新理论研究与应用[M].北京:水利电力出版社,1994.
    [21] 侯建国,李传才.有限单元法程序设计.(武汉大学讲义,1999)
    [22] 侯学渊 等主编.软土工程施工新技术[M].合肥:安徽科学技术出版社,1999.
    [23] 侯瑜京,徐泽平.砂井地基的简化计算及应用[J].岩土工程师,1994,6(3):1-5.
    [24] 胡黎明,濮家骝.土与结构物接触面特性研究[J].工程力学(增刊),1998:358-363.
    
    
    [25] 黄克智,黄永刚 编著.固体本构关系[M].北京:清华大学出版社,1999.
    [26] 黄文熙.土的工程性质[M].北京:水利电力出版社,1983,139-148.
    [27] 黄文熙.土的弹塑性应力应变模型理论,清华大学学报,1979,19-1.
    [28] 黄文熙.硬化规律对土的弹塑性应力—应变模型影响的研究,岩土工程学报,1980,2.
    [29] 姜道弘 等著.水工结构工程与岩土工程的现代计算方法及程序[M].南京:河海大学出版社,1992.
    [30] 雷晓燕著.岩土工程数值计算[M].北京:中国铁道出版社,1999.
    [31] 李豪,高玉峰,刘汉龙 等.真空—堆载联合预压加固软基简化计算方法[J].岩土工程学报,2003,25(1):58-62.
    [32] 李国琛,M.耶纳著.塑性大应变结构力学[M].北京:科学出版社,1998.
    [33] 凌道盛,陈云敏 等.任意基础板的有限元分析[J].岩土工程学报,2000,22(4):450-455.
    [34] 刘毓氙,朱长歧 等.单桩承载性能的三维有限元无限元藕合分析[J].岩土力学,2000,21(3):275-277.
    [35] 刘学增,丁文其.接触元初始刚度系数对软土深基坑变形的影响分析[J].岩石力学与工程学报,2001,20(1):118-122.
    [36] 刘元雪.岩土本构理论的几个基本问题研究[J].岩土工程学报,2001,23(1):45-48.
    [37] 陆述远主编.高等水工结构[M].北京:中国电力出版社,1999.
    [38] 南京水利科学研究院主编.土工试验规程[M].北京:中国水利水电出版社,1999.
    [39] 潘别桐,黄润秋.工程地质数值法[M].北京:地质出版社,1994.
    [40] 潘家铮主编,水工结构分析与计算机应用,北京:北京科学技术出版社,1995.
    [41] 钱家欢,殷宗泽.上工原理与计算[M].北京:中国水利水电出版社,1996.
    [42] 钱家欢,殷宗泽主编.土工数值分析[M].北京:中国铁道出版社,1992.
    [43] 邱金营,陆士强.土的本构关系[讲义].武汉:武汉水利电力大学,1997.
    [44] 屈智炯.土的塑性力学[M].成都:成都科技大学出版社,1987.
    [45] 佴磊,薄景山,王世梅.岩上工程数值法[M].长春:吉林大学出版社,1994.
    [46] 邵龙潭,唐洪祥 等.有限元边坡稳定分析方法及其应用[J].计算力学学报,2001,18(1):81-87.
    [47] 邵松桂,向大润,土石坝空间非线性和弹性应力应变分析,河海大学学报,1987,15-5.
    [48] 沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [49] 石根华.数值流形方法与非连续变形分析.北京:清华大学出版社,1993.
    [50] 孙均,侯学渊.地下结构[M].北京:科学出版社,1987.
    [51] 孙君实,条分法的数值分析,岩土学报,1983,2.
    [52] 孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [53] 唐益群,叶卫民主编.土木工程测试技术手册[M].上海:同济大学出版社,1999.
    [54] 唐章宏,薛赛男 等 编著.Visual Fortran程序设计[M].北京:人民邮电出版社,2000.
    [55] 王秉愚著,有限元法程序设计,北京:北京理工大学出版社,1991.
    [56] 王国强主编.实用工程数值模拟技术极其在ANSYS上的实践[M].西安:西北工业大
    
    学出版社,2000.
    [57] 王宏硕主编.武汉水利电力学院 水工建筑物(专题部分)[M].北京:水利电力出版社,1991.
    [58] 王焕定,吴德伦主编,有限单元法及计算程序,北京:中国建筑工业出版社,1997.
    [59] 王仁 等著.塑性力学引论[M].北京:北京大学出版社,1992.
    [60] 王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [61] 王衍森,吴振业.基于有限元模型的三维地应力求解方法[J].岩土工程学报,2000,22(4):426-429.
    [62] 王贻荪.考虑砂井阻力的折减井径法[J].岩土工程学报,1982,4(3):43-52.
    [63] 王有成编.工程中的边界元方法[M].北京:中国水利水电出版社,1996.
    [64] 项阳,平扬 等.面向对象有限元方法在岩土工程中的应用[J].岩土力学,2000,21(4):346-349.
    [65] 谢定义.岩土工程与岩土工程学—关于岩土工程学基本框架体系的思考[J].地基处理,2000,3:22-30.
    [66] 谢康和,曾国熙.等应变条件下的砂井地基固结解析理论[J].岩土工程学报,1989,11(2):3-17.
    [67] 谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2002.
    [68] 谢永利著.大变形固结理论及其有限元法[M].北京人民交通出版社,1998.
    [69] 徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995.
    [70] 徐书平,刘祖德.比奥固结理论在堆载预压加固工程场地中运用[J].岩土力学,2003,24(2):307-310.
    [71] 应隆安著.无限元方法[M].北京:北京大学出版社,1992.
    [72] 殷宗泽,龚晓南.地基处理工程实例[M].北京:中国水利水电出版社,2000.
    [73] 殷宗泽.土体沉降与固结[M].北京:中国电力出版社,1998.
    [74] 殷宗泽,朱泓,许国华.土与结构材料接触面的变形及其数学模拟[J].岩土工程学报,1994,16(3):14-22.
    [75] 曾国熙,龚晓南.软土地基固结有限元法分析[J].浙江大学学报,1983,17(1).
    [76] 曾国熙,谢康和.井阻作用对砂井地基固结的影响[A].第一届全国地基处理学术讨论会论文集[C].上海,1986.
    [77] 曾国熙,杨锡龄.砂井地基沉陷分析[J].浙江大学学报,1959,3.
    [78] 章根德著.土的本构模型及其工程应用[M].北京:科学技术出版社,1995.
    [79] 张吉园,安危,张志勇.软土固结中孔压消散的有限元法[J].岩土工程技术,1999,4:31-38.
    [80] 赵维炳,施健勇.软土固结与流变[M].南京:河海大学出版社,1996.
    [81] 赵维炳,陈永辉,龚友平.平面应变有限元分析中砂井的处理方法[J].水利学报,1998,6:53-57.
    [82] 赵维炳,施健勇,艾英钵 等.砂井地基预压加固的粘弹塑性分析[J].河海大学学报,1995,23(6):34-38.
    
    
    [83] 赵维炳.砂井地基固结分析半解析方法的改进[J].岩土工程学报,1991,13(4):51-58.
    [84] 郑颖人 等.广义塑性力学的加卸载准则与土的本构模型[J].岩土力学,2000,21(4):426-429.
    [85] 郑颖人 等.广义塑性力学中的屈服面与应力.应变关系[J].岩土力学,2000,21(3):305-308.
    [86] 郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989.
    [87] 折学森.软土地基沉降计算[M].北京:人民交通出版社,1998.
    [88] 周刚,傅少君,侯建国.软粘土地基弹-粘塑性比奥固结理论的有限元分析[J].长江科学院院报,2004,21(1):18-21.
    [89] 朱百里,沈珠江,高大钊等.计算土力学[M].上海:上海科学技术出版社,1990.
    [90] 朱伯芳.有厚度带键槽接缝单元及接缝对混凝土坝应力的影响[J].水利学报,2001,2:1-7.
    [91] 朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [92] 朱泓,殷宗泽.土与结构材料接触面性能研究综述[J].河海科技进展,1994,12,14(4):1-8.
    [93] 朱梅生.软土地基[M].北京:中国铁道出版社,1989.
    [94] 卓家寿,章青著.不连续介质力学问题的界面元法[M].北京:科学出版社,2000.
    [95] 中国土木工程学会港口工程学会,塑料排水学术委员会编.塑料板排水法加固软基工程实际工作集[M].北京:人民交通出版社,1999.
    [96] Bathe K. J., E. L. Wilson. Numerical Method in Finite Element Analysis. Prentice-Hall, 1976.
    [97] Barron R. A.. Consolidation of fine-grained soils by drain wells. Trans ASCE, 1948, 113: 718-733.
    [98] Bettess P. Infinite Elements. Int. J. Numer. Meth. Eng. 1977, 11(1): 53-64.
    [99] Belytschko T., Y. Y. Lu, L. Gu. Element Free Galerkin Methods[J]. Int. J. Numer. Meth. Eng. 1994, (37): 229-256.
    [100] Brand E. W., R. P. Brenner. Soft clay engineering. Elserier Scientific Publishing Company, Amsterdam, 1981.
    [101] Brebbia C. A.. Recent advances in boundary element methods. Pentech Press, 1976.
    [102] Brebbia C. A., J. C. F. Telles, L. C. Wrobel. Boundary element techniques. Springer-Verlag, 1984:79-81.
    [103] Britto A. M., M. J. Gunn. Critical state soil mechanics via finite elements[M]. Ellis Horwood Limited, 1987.
    [104] Chai J. C., N. Miura. Investigation of factors affecting vertical drain behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125(3): 216-226.
    [105] Chen W. F. , E. Mizuno. Nonlinear Analysis In Soil Mechanics [M]. Elsevier Science Publisher B. V., 1990
    [106] Cheung Y. K. Finite strip method in structural analysis. Pergamon Press, 1976.
    
    
    [107] Chowdhury R. N.. Slope Analysis[M]. Elsevier Scientific Publishing Company, 1978.
    [108] Clough R. W., Chopra. Earthquake stress analysis in earth dams. JEMD, ASCE, EM2, 1966.
    [109] Clough R. W., R. J. Woodward. Analysis of embankment stresses and deformations, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM4(529~545), 1967.
    [110] εiough R. W. The Finite Element Method in Plane Stress Analysis. Proc. 2nd ASME Conference on Electronic Computation, Pittsburgh, Pa., 1960.
    [111] Coetzee M. J., et al. FLAC basics. Itasca Consulting Group Inc., 1993.
    [112] Coulomb C. A. L. Application des regles des maximis et minimis a quelques problems de statique. Relatifs al' architecture. Mem. d. L' Acad. des, Sc., Paris: 1773. (译文见:岩土工程学,1993,15(6))
    [113] Domaschuk L., P. Valliappan. Nonlinear Settlement Analysis by Finite Element. Proc. ASCE, JGTD, Vol. 101, NO. GT. 7, 1975.
    [114] Duncan J. M., C. Y. Chang. Nonlinear Analysis of Stress and Strain in soils. Proc. ASCE, JSMFD, Vol. 96, No. SM5, 1970.
    [115] Duncan J. M.. State of the art: Limit equilibrium and Finite Element analysis of slopes[J]. J. of Geotechnical Engineering,1996, 122(7): 577-595.
    [116] Dungar R., J. A. Studer. Geomechanical modelling in engineering practice. Rotterdam: Balkema, 1986.
    [117] Goodman R. E., R. L. Taylor, T. Brekke. A Model for the Mechanics of Jointed Rock. Proc. ASCE, 1968, 94, SM3.
    [118] Hansbo S.. Consolidation of Fine-Grained Soils by Prefabricated Drains[A]. Proc of 10th ICSMFE Vol 3[C]. Netherlands:A. A. Balkema, 1981: 677-682.
    [119] He G. Q., Y. K. Cheung. Proceedings of the International Conference on Finite Element Method [A]. Beijing: China Science Press, 1982.
    [120] Hinton E., D. R. J. Owen. Finite Element Programming, Academic Press, 1977.
    [121] Horrie D. H.. Finite Element Handbook, McGraw-Hill Inc., 1984.
    [122] ITASCA Consulting Group, Inc. FLAC(Version 3.0), 1991.
    [123] Lade P. V., J. M. Duncan. Elastoplastic Stress-Strain Theory for Cohesionless Soil, Proc. ASCE, JGTD, Vol. 101, No. GT10, 1975.
    [124] Lade P. V.. Elastoplastic Stress-Strain Theory for Cohesionless Soil with Curved Yield Surfaces. Intern. J. Solids Structures, Vol. 13, 1977.
    [125] Mitchell A. R., D. F. Griffiths. The Finite Difference Method in Partial Differential Equations. John Wiley & Sons, 1980.
    [126] Neumann S. P.. Saturated-unsaturated seepage by finite element. Hydraulic Div., ASCE, 1973, 99(12).
    [127] Nayroles B., G. Touzot, P. Villon. Generalizing the finite element method: Diffuse
    
    approximation and Diffuse elements. ComputMech, 1992, 10: 307-308.
    [128] Owen D. R. J., E. Hinton. Finite elements in plasticity: theory and practice, Swansea(U. K.): Pineridge Press Ltd., 1980.
    [129] Roscoe K. H., J. B. Burland. On then Generalized Stress-Strain Behavior of 'Wet Clay'. Engineering Plasticity (Ed. Heyman, J. and Leckie, F. A. ), Cambridge Univ. Press, 1968.
    [130] Roscoe K. H. , A. N. Schofield, A. Thurairajah. Yielding of Clays in States Wetter than Critical. Geotechnique, Vol. 13, No. 3, 1963.
    [131] Rowe P. W.. Theoretical Meaning and Observed Values of Deformation Parameters for Soil, Stress-Strain Behavior of Soils(Ed. R. H. G. Parry), Roscoe Memorial Symposium, Cambridge Univ., 1972.
    [132] Schofield A. N., P. Wroth. Critical State Soil Mechanics. McGraw-Hill, 1968.
    [133] Sukumar N. , Moran, T. Belytschko. The Nature Element Method in Solid Mechanics[J]. Int. J. Numer. Meth. Eng. 1998, (43): 839-887.
    [134] Surana K. S.. Transition Finite Elements for Three-dimensional Stress Analysis. Int. J. Numer. Meth. Eng., Vol. 15, 1980.
    [135] Yoshikuni H., H. Nakanodo. Consolidation of Soils by Vertical Drain Wells with Finite Permeability. Soils and Foundations, Vol. 14, No. 2, 1974, 35-46.
    [136] Zienkiewicz O. C.. The Finite Element Method (third edition), McGraw-Hill,1977
    [137] Zienkiewicz O. C., Y. K. Cheung. Finite Element Methods in Structural and Continuum Mechanics. McGraw-Hill Co., New York, 1967.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700