用户名: 密码: 验证码:
分置式耕播机“三点悬挂”连接机构的设计、仿真和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着经济发展,我国农机化发展进入新的时期,它的目的不再是单纯的提高劳动生产率,而是要同时保证节能降耗、蓄水保墒、保护土和增产增收。吉林省是重要的粮食生产基地,但该省土黑土层退化严重,粮食生产受干旱影响很大,传统的耕作方式对土扰动极大。留茬少耕可有效增加土中有机质的含量,并减少对土结构的破坏。耕播联合作业机和免耕播种机都能满足留茬地表少耕的作业要求,但是当前市场上耕播联合作业机较少,免耕播种机的价格相对较贵。因此,设计一种新型实用的连接机构连接现有的旋耕机(或碎茬机)和播种机进行联合作业是非常有必要的。连接机构可有效降低购机成本,主要作用是保证整机联合使用,单机独立作业,满足两个单机在不同起伏程度的地面上串接使用的作业要求,实现一机三用。
     本文主要内容是设计“三点悬挂”连接机构和分置式耕播机。对连接机构的工作原理、仿形性能进行理论分析和仿真模拟,进行田间试验验证该机构的仿形性能和整机蓄水保墒的作业效果。
     分置式耕播机旋耕(碎茬)模块选择1GFZ-4耕整机,播种模块选择2BJ-4播种机。连接机构需保证两个单机间距适中,且自身结构简单,能够仿形,保证工作中播种机地与地面的有效接触和施肥开沟深度的稳定性。连接机构的尺寸设计与两个单机的结构和参数密切相关。单机最长有效间距由耕播机组纵向稳定性决定的,通过对整机纵向稳定性储备利用系数和爬坡稳定性指数的分析得出两个单机间最长间距为40cm;单机最短有效间距由旋耕或碎茬时的抛土距离决定,经计算为19cm。通过对连接机构的仿形理论分析得出:在地形坡角变化时,“三点悬挂”连接机构可保证播种机地与地面的有效接触和施肥铲开沟深度的稳定性,保证整机相对地面仿形;该机构上仿形极限偏角为4.02°,下仿形极限偏角为6.42°,总仿形量大小为73.4mm。
     通过对东北地区坡耕地的考察,建立坡角变化分别为±4°和±8°、±12°和±16°模拟地形。通过对播种机地和施肥开沟器的运动分析,得出评价连接机构仿形性能的三条标准。即地中心在竖直方向的运动轨迹与地面起伏走势的差异性、地边缘一点在机组前进方向的运动轨迹和施肥开沟器尖端在竖直方向的运动轨迹与合理施肥上下限的位置关系。经Pro/E与ADAMS联合仿真得出:刚性机构只能保证分置式耕播机在坡角变化为±4°地形上稳定工作,“三点悬挂”连接机构可保证分置式耕播机在坡角变化为±12°地形上平稳有效的工作;
     根据播种机的行业标准和技术指标,试验分别验证了播种机施肥、播种深度的一致性和播种均匀性,经测试地的滑移率、施肥和播种的深度、播种的合格率、重播率和漏播率等均达到行业标准。
     与传统作业方式相比,耕播联合作业可有效减少土中水分的蒸发,有利于水分在土中传导,提高土含水量和蓄水量,对土增温有很大的作用,能为种子萌发提供更为有利的条件。
Accompany with the economic development in our country, agricultural mechanizationdevelopment has come to a new period. The aim is not only raising labor productivity, butalso energy conservation and cost reduction, moisture conservation, soil protection,increasing production and incomes. Jilin province is one of the most important grainproduction areas. However, Jilin black soil is decreasing seriously. It has a significant impactof drought on food production. And traditional tillage methods damage the soil structureseverely. Non-tillage with stubble can increase the organic matter content of soil and reducethe destruction of soil struction. Both till-planter and no-till planter can meet the operationalrequirements of non-tillage with stubble lands. However, not only is till-planter less, but alsono-till planter is more expensive in the current market. Therefore, it is necessary to design anew and practical linkage making the existing rotary tiller, stubble crushing machine andplanter work together. The linkage can reduce the purchase cost effectively. The mainfunctions are to ensure joint use and stand-alone operation of the two independent machine,to meet the operational requirments of till-planter on the land surface with roughness degree,to ensure the machine with three functions.
     The main contents of this paper are to design three-point hitch linkage, to analyzeworking principle, to simulate working process, to test in farmland and verify the operationaleffectiveness of moisture conservation.
     Rotary tiller module of the separated till-planter choose1GFZ-4tillage machine, sowingmodule choose2BJ-4planter. The three-point hitch linkage need to ensure the moderatedistance between the two stand–alone machines, need to have copying function, need to havesimple structure, need to ensure the effective contact between land wheel and ground and thestable depth of fertilizer opening. Dimension design of the linkage is related to the structureof the stand-alone machines. The maximum effective distance is determined by the unitlongitudinal stability reserve coefficient and climbing stability coefficient. The maximumeffective distance is40cm. The minimum effective distance is determined by the distance ofsoil throwing when rotary tillaging or stubble breaking. The minimum effective distance is19cm. It can be concluded that the lingkage ensure the stability of depth of the fertilizer opener and the effective contact between land wheel and ground by analyzing the profilingtheory of the three-point hitch linkage. The upper profiling liminted angle is4.02°. Thelower profiling limited angle is6.42°. The total profiling amount is73.4mm.
     Establish the ground model with different changes in slope angle after investigating thesloping land of the Northeast, which are±4°and±8°,±12°and±16°separately. Gain threestandards about evaluating the linkage by analyzing the movements of land wheel andfertilizer opener. Firstly, difference between land wheel center trajectory path in the verticaldirection and the ground undulating. Secondly, the trajectory path in the forward direction ofa point at the edge of land wheel round. Thirdly, the positional relationship betweentrajectory of the cutting-edge of fertilizer opener and upper and lower limits of fertilization.We get some conclusions by simulating with Pro/E and ADAMS. The rigid mechanism canonly ensure the separated till-planter work stably on the ground model with±4°changes inslope angle. The three-point hitch linkage can ensure the separated till-planter work stably onthe ground model with±12°changes in slope angle.
     According to industry standards and technical specifications of the planter, theexperiments verified the consistency of the planter fertilization and seeding depth andseeding uniformity. According to the test, the slide rate of land wheel, the depth offertilization and seeding, the qualified rate, the reseeding rate and leakage seeding ratereached industry standards.
     Compared with traditional cultivation, combined operation can reduce the soil moistureevaporation effectively, be favor of the conduction of water in the soil and be of great help toimprove soil moisture, water storage capacity and soil temperature. The combined operationcan provide more favorable conditions for seed germination.
引文
[1]戎婷婷,胡瑞芝.我国耕地中存在的问题与思考[J].山西大同大学学报,2010,26(4):93-96.
    [2]周小萍,卢艳霞,陈百明.中国近期粮食安全与耕地资源变化的相关分析[J].北京师范大学学报,2005,5:122-127.
    [3]龚子同,陈鸿昭,张甘霖,赵玉国.中国土资源特点与粮食安全问题[J].生态环境,2005,14(5):783-788.
    [4] YU Z G,HU X P.Research on the relation of food security and cultivated land’squantity and quality in China[J].Geography and Geo-information Science,2003,19(3):45-49.
    [5] http://www.cngrain.com/Publish/produce/201111/508127.shtml.
    [6]曹东勃.东北干旱地区发展现代高水效农业的路径[J].财经科学,2010,264:95-102.
    [7]金千瑜,欧阳由南,禹盛苗,许德海.中国农业可持续发展中的是危机及其对策[J].农业现代化研究,2003,24(1):21-23.
    [8] LIU Bu-chun,MEI Xu-rong,LI Yu-zhong,YANG You-lu.The Connotation andExtension of Agricultural Water Resources Security.Agricultural Sciences in China,2007,6(1):11-16.
    [9] Sun Yonggang,Bai Renhai,Xie An.Interdecadal Variations of Droughts inNortheastern China.Acta Scientiarum Naturalium Universitatis Pekinensis,2004,40(5):806-813.
    [10]孙永罡,白人海,谢安.中国东北地区干旱趋势的年代变化[J].北京大学学报(自然科学版),2004,40(5):806-813.
    [11]谢安,孙永罡,白人海.中国东北区近50年干旱的发展及对全球气候变暖的响应[J].地理学报,2003,58(增):75-82.
    [12]魏凤英,张婷.东北地区干旱强度频率分布特征及其环流背景[J].自然灾害报,2009,18(3):1-7.
    [13]王洋.国家粮食安全的影响因素分析及政策建议[D].郑州:郑州大学,2009.
    [14]徐长青,曹铁华,蒋春姬.吉林省旱灾对粮食产量的影响及抗旱减灾的对策[J].安徽农业科学,2011,39(9):5265-5266.
    [15]陈同峰,刘晓利.吉林省农村保险需求现状与结构[J].当代生态农业,2011,(1-2):86-89.
    [16] X. M. Yang,X. P. Zhang,W. Deng.Black soil degradation by rainfall erosion inJilin[J].China Land Degrad Development,2003,14:409-420.
    [17]刘兴土,阎百兴.东北黑土区水土流失与粮食安全[J].中国水土保持,2009,1:17-19.
    [18]李发鹏,李景玉,徐宗学.东北黑土区土退化及水土流失研究现状[J].水土保持研究,2006,13(3):50-54.
    [19]刘宝元,阎百兴,沈波,王志强,魏欣.东北黑土区农地水土流失现状与综合治理对策[J].中国水土保持科学,2008,6(1):1-8.
    [20] Patrick Gicheru,Charles Gachene,Joseph Mbuvi.Effects of soil managementpractices and tillage systems on surface soil water conservation and crust formation ona sandy loam in semi-arid Kenya[J].Soil and Tillage Research,2004,75(2):173-184.
    [21]刘红霞,刘彬,刘宏.长春市耕地质量现状分析及改良对策[J].农业与技术,2009,29(2):71-72.
    [22]石明山,张兆军.东北黑土层变薄问题不容忽视[N].科技日报,2006-4-1(8).
    [23]李立科,王兆华,赵二龙.“留茬少耕或免耕秸秆全程覆盖”技术的地位和作用
    [C].2001年生态农业与可持续发展国际研讨会论文集.北京,2001
    [24] http://www.jlnj.gov.cn/class.asp?classid=9.
    [25] Zheng Chengyan,Cui Shiming,Wang Dong.effects of soil tillage on dry matterproduction and water use efficience in wheat[J].ACTA. AGRONOMICA SINCE,2011,37(8):1432-1440.
    [26]赵永满,王维新.国外农业机械化的现状及发展状态[J].农机化研究,2005,4:10-12.
    [27]张德文.国内外耕种联合作业机的发展概况[J].
    [28] John W. Inman.Conservation/Minimum Tillage in California[J].Resource Magazine,2008,15(3):22-23.
    [29] Martin,Steven W. Hanks,James.Economic analysis of no tillage and minimum tillagecotton-corn rotations in the Mississippi Delta[J].Soil and Tillage Research,2009,102(1):135-137.
    [30] C. H. Sijtsma,A. J. Campbell,N. B. McLaughlin,M. R.Carter. Comparative tillagecosts for crop rotations utilizing minimum tillage on a farm scale[J].Soil and TillageResearch,1998,49(3):223-231.
    [31] Jacobs,Anna,Helfrich,Mirjam,Hanisch,Susan.Effect of conventional and minimumtillage on physical and biochemical stabilization of soil organic matter[J].Biology andFertility of Soils,2010,46(7):671-680.
    [32]王祺,栗震霄,田斌.国内外农业机械化新技术的现状与发展[J].农机化研究,2006,5:7-9.
    [33] One-pass rigs We make it easier to find the right combination of cultivator and seederwhich is the key to a perfect one-pass rig[J].Power Farming-north Melbourne,2003,113(1):36-41.
    [34] Agricultural Machine Stations in Norway [J].Journal of Farm Economics,1952,34(1):111-119.
    [35] Zhao Manquan,Zhao Shijie,Wang Chunguang.The Performance Test and Extensionof The2BM Model Series No-till Seeder[C].Conservation Tillage&SustainableFarming. Beijing:China Agricultural Science And Technology Press,2004,149-152.
    [36]谢宇峰,许剑平,李存斌,刑璐露.国内外耕作机械的现状及发展趋势[J].农机化研究[J],2009,11:238-246.
    [37] Kathirvel K,Shivaji K. P,Manian R.Development And Evaluation of a Till Planterfor Cotton.AMA-Agricultural Mechanization in Asia Africa and Latin America,2001,32:23-27.
    [38] Dhalin.D,Kumar.V.J.F,Durairai.C,Divaker.Development of a Check ValveMechanism as an Attachment to a Power Tiller Operated Seeder.AMA AgriculturalMechanization in Asia Africa and Latin America,2005,36(1):18-23.
    [39]石宏,李达.目前国内外播种机械发展走向Ⅰ[J].农业机械化与电气化,2000,1:47.
    [40] Opara L V.Engineering principles of agricultural machines[J].Computers andElectronics in Agriculture,2002,18(1):55-57.
    [41]李宝筏,刘安东,包文育.东北垄作滚动圆盘式耕播机[J].农业机械学报,2006,37(5):57-59.
    [42] Elbert C D,Paul J,Robert N K,etal.Ridge plant systems: equipment,G88876A
    [R].Cooperative Extension,Institute of Agriculture and Natural Resources,Universityof Nebraska,Lincoln,1996.
    [43] Jia Honglei,Ma Chenglin,Sun Yujing.Study and Design of theRototilling-tillage-Planting Combine[C].2004.CIGR International Conference. Beijing:China Agricultural Science and Technology Press,2004. V-156.
    [44]李广宇,齐瑞锋,贾洪雷,于洪斌、张丁佟.耕播机联合作业机关键部件的研究与试验[J].农业机械,2005,11:106-108.
    [45]马永财,张伟,李玉清,车刚.播种机单体两种仿形机构的研究[J].农机化研究,2011,33(8):101-106.
    [46] Khoury Junior,Joseph Kalil,Dias.Modeling the stability of wheeled agriculturaltractors[J].PESQUISA AGROPECUARIA BRASILEIRA,2004,39(5):459-468.
    [47]刘姝岑,施昆.第二次全国土地调查中耕地坡度级提取的应用研究[J].科学技术与工程,2011,11(22):5386-5393.
    [48]丁为民,王耀华,彭嵩植.正、反转旋耕刀性能分析及切土扭矩比较试验[J].南京农业大学学报,2001,24(1):113-117.
    [49]刘保玲.基于高速摄像提取被抛土体运动信息的研究[D].镇江:江苏大学.2005,6.
    [50] Shibusawa S.Reverse-rotational rotary tiller for reduced power requirement in deeptillage [J].Journal of Terramechanics,1993,30(3):205-217.
    [51]孔令德,王国林.旋耕抛土模型研究综述[J].江苏理工大学学报,1997,18(5):32-36.
    [52]陈钧,近江谷和彦,寺尾日出男.高速摄影法研究旋耕刀抛土特性[J].农业机械学报,1994,25(3):56-60.
    [53]丁为民,王耀华,彭嵩植.正、反转旋耕不同耕作性能的比较[J].南京农业大学学报,2003,26(3):106-109.
    [54] Salokhe VM,Ramalingam N.Effects of direction of rotation of a rotary tiller onproperties of Bangkok clay soil [J].Soil and Tillage Research,2001,63(12):65-74.
    [55]宋建民,李自华.反转旋耕理论分析[J].北京农业工程学报,1990(3).
    [56]陈翠英,石耀东.潜土逆转旋耕向后抛土率的计算[J].农业机械学报,1999,30(3):25-29.
    [57] LI Bo-quan,CHEN Cui-ying.Estimating the parameter of the clod’s movement basedon time arrayed image processing[J].Journal of Jiangsu University (NaturalScienceEdition),2002,23(2):1-3.
    [58]李伯全,陈翠英.抛土率估算的模糊动态聚类分析方法[J].农业机械学报,2002,33(6):38-41.
    [59]刘孝民.潜土逆转旋耕抛土性能研究[D].镇江:江苏大学,1995.
    [60]第二次全国农业普查主要数据公报(第六号)[R].
    [61]董丽.双辽市坡耕地调查的技术方法及成果分析[J].吉林农业,2011,9:12.
    [62]高玉路.免耕播种机地滑移现象的研究[D].北京:中国农业大学,2001.
    [63]王凯湛,马瑞峻,胡建锋.虚拟样机技术在农业机械设计上的应用和发展[J].中国农机化,2008:62-66.
    [64]马斌强,顿文涛,郭延廷.虚拟样机技术及其在农业机械设计系统中的应用[J].科技信息,2011,1:38-42.
    [65]熊光楞,王克明,郭斌.数字化设计与虚拟样机技术[J].CAD/CAM与制造业信息化,2004(Z1):33-34.
    [66] Randal H,Visintainer.CAE methods and their application to truck design
    [M].Warrendate, PA:society of automotive engineers,1997.
    [67]郑建荣.ADAMS—虚拟样机技术入门与提高[M].机械工业出版社[M].2001.
    [68]王翔宇,张进虎,丁国栋,孙保平.沙地土水分特征及水分时空动态分析[J].水土保持学报,2008,22(6):222-227.
    [69]钱立彬.基于离散元法的开沟器的数字化设计与研究[D].长春:吉林大学,2008,5.
    [70]周健,池永,徐建平等.砂土双轴试验的颗粒流模拟[J].岩土工程报,2000,(6):701-705.
    [71]范华林.车辆—路面器材相互作用机理研究[J].兵工学报,2007,28(1):28-32.
    [72]左艳蕊,宋志坚,刘忠途.基于多体接触碰撞的松软路面车沉陷的仿真[J].农业机械学报,2009,40(10):33-39.
    [73] Bekker M G.Introduction of terrain-vehicle systems[M].Michigan:University ofMichigan Press,1969.
    [74]蒋斌,张琦,韦忠瑄.一种简易轻质软路面力学模型的分析研究[J].中国制造业信息化,2007,36(9):66-70.
    [75] Scholfield A,Wroth P.Critical State Soil Mechanics[J]. Mc Graw-Hill.1968:11-20.
    [76] C. H. Liu,J. Y. Wong.Numerical simulation of tire-soil interaction based on criticalstate soil mechanics[J].Journal of Terramechanics,1996,33(5):209-221.
    [77] H Nakashima,Oida A.Algorithm and implementation of soil-tire contact analysis codebased on dynamic FE-DE method[J].Journal of Terramechanics,2004,(4):127-137.
    [78]陈黎卿,王启瑞.基于ADAMS的脉冲路面输入平顺性仿真分析[J].计算机仿真,2006,23(12):212-215.
    [79]王国强.虚拟样机技术及其在ADAMS上的实践[M].西北工业大学出版社,2002.
    [80] Harnisch C,Lach B.“Off Road Vehicles in a Dynamic Three~Dimensional RealtimeSimulation”[C].Proceedings of the14th International Conference of the InternationalSociety for Terrain-Vehicle Systems,Vicksburg,MS USA,2002,(10):20-24.
    [81] Robert Bauer,Winnie Leung.Experimental and Simulation Results of Wheel-SoilInteraction for Planetary Rovers.Proceedings IROS,2005:2-6.
    [82]任茂文,张晓阳.胎-地面接触模型研究与展望[J].中国重型装备,2010,3:40-42.
    [83] Guo K.Tire roller contact models for simulation of vehicle vibrationinput[C].SAE2008:932.
    [84] JB/T10293-2001单粒播种机技术条件.
    [85] JB/T6274.1-2001谷物条播机技术条件.
    [86] GB/T6973-1986单粒(精密)播种机试验方法.
    [87] NY/T503-2002中耕作物单粒(精密)播种机作业质量标准.
    [88] Peng wenying.effects of no-tillage on soil water regime and water useefficiency[J].Chin J Sci,2007,38(2):379-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700