用户名: 密码: 验证码:
星载天线动态指向精度动力学分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间侦察技术的发展,对星载天线的跟踪和搜索能力提出了越来越高的要求。针对空间作业的无根树系统,卫星本体是空间漂浮基,其运动过程有很强的非线性、时变性及耦合性,且天线在指向过程中不可避免受到柔性关节动态误差、关节铰间隙、反射面挠性及空间热环境等因素影响,对星载天线动态指向精度造成了很大的影响,使得星载天线动态指向精度研究成为空间侦察领域中的难题之一。本文主要针对星载天线动态指向精度动力学分析和控制问题开展研究。
     星载天线是典型的空间多体系统,在轨工作时,其非线性特性使得动力学分析与计算较为复杂。为了提高动力学计算效率,本文针对链式拓扑结构的星载天线多体系统,描述其运动学关系,建立了系统动力学模型;在此基础上,进一步考虑反射面为柔性体,通过天线转轴末端与反射面交界面的协调关系,采用固定界面模态综合法和Lagrange方程,推导了大范围运动星载天线刚柔耦合动力学模型,实现了星载天线系统动力学计算程序,并与商业软件对比,验证了所建立模型的正确性。
     为了研究柔性关节动态误差的非线性因素对星载天线指向精度的影响,深入了分析柔性关节动态误差引起的动力学响应行为,并提出应用多尺度法求解不同频率谐波的强迫激励下动态误差的近似方法;仿真分析了柔性关节动态误差引起的振动响应,即可能产生强烈的力矩和速度波动。进一步设计了星载天线定位指向与轨迹跟踪非线性控制器,并利用Lyapunov理论证明所设计的控制算法是渐近稳定的。通过合理选取控制器参数可抑制其扰动,较好地补偿柔性关节动态误差,为星载天线指向控制提供有效的参考依据。
     关节铰间隙的存在不可避免破坏了星载天线多体系统的理想约束模型,为了研究关节铰间隙对星载天线扰动的影响,本文建立了铰间隙矢量矩模型,采用非线性弹簧阻尼及修正库仑摩擦描述了铰间隙碰撞力和摩擦力模型;进一步建立了含间隙铰变拓扑结构的星载天线多体系统动力学模型,通过接触碰撞判别准则,并采用Newmark法进行数值递推计算,由计算结果可知铰间隙极大增加关节的碰撞力,加剧了反射面振动,恶化了天线动态指向精度。最后引入挤压油膜润滑被动控制技术,消除了铰间隙运动副碰撞的可能,有效地提高天线的指向精度。
     针对柔性反射面的弹性振动与星载天线耦合,其动力学分析与计算较为复杂的情况,本文采用惯性完备性准则选取模态降低模型阶数,保证所建立动力学模型具有较高的计算效率和足够的精度。分析了反射面不同安装布局约束工况时柔性反射面弹性变形对星载天线的扰动。进一步利用PD+振动力反馈控制算法抑制系统振动,并基于Lyapunov方法证明了控制系统的渐近稳定性,通过仿真算例表明该控制策略能快速抑制系统振动。
     由于经受太阳辐射、深冷空间周期性作用,会引起温度剧烈变化,产生较大的热变形或热振动,为了研究空间热载荷对星载天线刚柔耦合多体系统的扰动,根据抛物反射面几何特征,利用壳体单元进行有限元离散化,并考虑了壳体厚度方向上的温度变化,建立了有限元列式热传导方程;引入与应变能有关的耦合项,推导了含空间热效应的星载天线系统刚柔耦合动力学模型,通过分析结果表明空间热效应因素加剧了柔性反射面的弹性振动,严重降低了天线指向精度。为此,本文根据热载荷对星载天线系统的不确定扰动,建立惯性空间下不确定扰动力的动力学模型,推导了自适应控制器模型,设计了参数自适应更新律,并利用Lyapunov证明其稳定性,为进一步提高卫星天线的指向精度和实现振动抑制提供了理论基础。
With the development of space reconnaissance, the requirement of antenna pointing accuracy becomes more important. Satellite antenna system is the free-floating, and its movement has strong non-linearity. Further, satellite antenna system possess nonlinear attribute (such as dynamic errors, joint clearance, reflector flexibility and space environmental effects) that is responsible for performance degradation and present special challenges to modeling and control. Thus, this thesis focuses on research of the analysis of dynamic pointing accuracy of the satellite antenna and its control.
     Satellite antenna system is typical multibody flexible system. The dynamic coupling characteristics make the dynamic analysis complicated. In order to improve the computational efficiency, Lagrange and Newton-Euler method are used for establishing the forward and inverse dynamic model with characterization of its chain topology. Further, the fixed-interface component-mode synthesis is used to achieve a lower order dynamic model, and the rigid-flexible coupling dynamics model of satellite antenna is realized through compatibility relations at the interface between antenna shaft and flexible reflector under the large motions. Both the dynamic models are compared to the commercial dynamic software for validation.
     The flexible joint introduces dynamic error that is harmful for antenna pointing accuracy and satellite attitude. Under forcing excitations of different frequencies, the equation of approximate solution and frequency response are deduced by multi-scale method. Then, disturbance effects of satellite antenna are analyzed considering the dynamic error. Finally, the nonlinear control algorithm for compensation of antenna pointing accuracy is proposed for trajectory tracking. The asymptotic stability is established using Lyapunov stability theory. The nonlinear controller algorithm can completely compensate for the dynamic error and suppress its disturbance with reasonable controller parameters.
     The presence of clearances degrades the performance of the satellite antenna system. A methodology for modeling and analysis is presented considering the effects of the joint clearance and reflector flexibility in the system. The joint clearance model is established based on a thorough geometric description of eccentricity vector. The contact-impact forces are evaluated based on a Hertz contact theory and a modified Coulomb’s friction law. Further, through the contact-impact criterion, the multi-body dynamics of satellite antenna is analyzed based on Newmark method. Finally, the porous squeeze film-lubricated is introduced into joints which can control the clearance effects. The joint impact effects can be greatly reduced and steady-state performance is improved.
     The dynamic analysis is quite complicated due to flexible vibration of reflector for satellite antenna system. Thus, dimensions of dynamic model are reduced by means of modal reduction based on the criterion of inertia completeness. The disturbance of flexible antenna reflector elastic deformation to satellite antenna system is analyzed under the layout constraints. Further, the PD vibration force feedback control law is used to eliminate the system vibration, and the asymptotic stability of the system is proved based on Lyapunov method. The results show that the proposed control strategy can quickly suppress system vibration.
     According to the geometric characteristics of parabolic antenna reflector, the temperature function in one element along its thickness direction is built for shell structures, and the finite element equations for heat conduction equations are derived. The coupling terms of strain energy relations are introduced. And the rigid-flexible dynamics of satellite antenna system considering thermal load is studied under space environment. The result shows that, the temperature gradient induced vibration of flexible reflector to produce elastic deformation. Furthermore it excites to aggravation its own elastic vibration which can make the system vibrated and deviations of satellite base attitude and antenna pointing become larger. The proposed adaptive controller is proposed to improve the antenna pointing considering time varying parameters and external disturbances, and the asymptotic stability of the controller algorithm is proved based on Lyapunov method.
引文
1赵阳,白争锋,王兴贵.含间隙卫星天线双轴定位机构动力学仿真分析.宇航学报, 2010, 31(6): 1533~1539
    2孙京,马兴瑞,于登云.星载天线双轴定位机构指向精度分析.宇航学报, 2007, 28(3): 545~550
    3田浩,赵阳,孙京.双轴定位点波束天线波束指向计算.宇航学报, 2007, 28(5): 1215~1218
    4 H. G. Kistosturian. The On-Orbit Antenna Pointing Calibration of Milstar Satellite Gimbaled Parabolic Antennas. IEEE Military Communications Conference, Atlantic City. 1999, 1: 608~611
    5翟政安,唐朝京.星间天线捕获与跟踪策略.宇航学报, 2009, 30(5): 1947~1952
    6刘相秋,王聪,邹振祝.失谐弱耦合卫星天线结构振动分析及预测控制.力学学报, 2009, 41(6): 967~973
    7刘相秋,王聪,邹振祝.考虑失谐的星载天线结构振动预测控制.哈尔滨工业大学, 2010, 31(4): 434~437
    8李婷,潘存云,李强,张立杰.安装误差对球齿轮姿态调整机构指向精度的影响分析.兵工学报, 2009, 30(7): 962~966
    9夏克强,周凤岐,周军.基于卫星姿态敏感器和星载天线信息的联合姿态确定方法.西北工业大学学报, 2008, 26(6): 727~731
    10程岳云,王宏建,易敏,等.风云三号星载天线的准光学分析与设计.空间科学学报, 2010, 30(6): 596~600
    11 A. Das, M. W. Obal. Revolutionary Satellite Structural Systems Technology: A Vision for the Future, IEEE Aerospace Conference, Aspen Snowmass. 1998, 5: 57~67
    12 A. S. K. Kwan, Z. You, S. Pellegrino. Active and Passive Cable Elements in Deployable Retractable Masts, Internet Journal of Space Structures, 1993, 8(1): 29~40
    13 J. Mitugi, T. Yasaka. Deployable Modular Mesh Antenna and its Surface Adjustment. International Journal of Space Structures, 1993, 8(1): 53~61
    14 S. Das. Solar Array Mechanisms for Indian Satellites, Apple, IRS andINSAT-IITS. Acta Astronautica, 1988, 17(9): 978~986
    15邱扬,刘明治.大型星载可展开天线的展开动力学问题.中国空间科学技术, 1992, (1): 1~7
    16邱扬,刘明治.航天器天线的展开动力学分析.宇航学报, 1993, (2): 42~49
    17冯达武,赵人杰.空间大型网状展开天线展开机构的研究.中国空间科学技术, 1997, (2): 64~69
    18齐春子,吕振铎.挠性卫星天线跟踪指向系统的复合控制研究.中国空间科学与技术, 1999, (2): 1~7
    19 Y. Rahmat-Samii, A. I. Zaghloul, A. E. Williams. Large Deployable Antennas for Satellite Communications. IEEE Antenna and Propagation Society International Symposium, Salt Lake City. 2000, 2: 528~529
    20 E. C. Hudson. The Milstar Paylosds. The 15th International Communications Satellite Systems Conference, San Diego. 1994: 1~8
    21 Y. Kawakami, H. Kumazawa, I. Ohtomo, et al. On-Board Ka-Band Multibeam Antenna System with High Pointing Accuracy for ETS-VI. IEEE/IEICE Globel Telecommunications Conference, New York. 1987: 952~956
    22 A. Tsujihata, M. Homma, M. Ikeda, et al. The 13 Meter Deployable Antenna Aboard ETS-VIII. The 48th International Astronautical Congress, Torino. 1997: 22~25
    23 W. Gawronski, F. Baner, O. Quintero. Azimuth-track Level Compensation to Reduce Blind-Pointing Errors of the Deep Space Network Antennas. IEEE Antenna and Propagation Magazine. 2000, 42(2): 28~38
    24 L. Robert, Fusaro. Space Mechanisms Needs for Future NASA Long Duration Space Missions, NASA Conference on Advanced Space Exploration Initiative Technologies, Washington. 1991: 1~10
    25 R. Stephen, Jones. Topex High-Gain Antenna System Deployment Actuator Mechanism. The 25th Aerospace Mechanisms Symposium, Washington, 1991: 205~206
    26 B. Arkwright, P. Buchele, P. D. Leonardo. Development of a Modular Two-Axis Gimbal Mechanism for Spacecraft Antenna and Thruster Pointing. Proceedings of the 8th European Symposium, Toulouse. 1999, 438: 213~216
    27 E. Lorigny, G. Pont, V. Albouys. High Dynamic Range Pointing Mechanism. Space Mechanisms and Tribology and Proceedings of the 8th European Symposium, Toulouse. 1999, 438: 217~222
    28 K. Ueura. R. Slatter. Development of the Harmonic Drive Gear for Space Applications. Space Mechanisms and Tribology and Proceedings of the 8th European Symposium, Toulouse. 1999, 438: 259~264
    29 J. Stevenson, Y. Katsuyama, A. Fukatsu, et al. Development of the Jem Ics Antenna Pointing System. Space Mechanisms and Tribology and Proceedings of the 8th European Symposium, Toulouse. 1999, 438: 341~345
    30 J. P. Hermier. Spot's Pointing Mechanisms Experience Feedback. Space Mechanisms and Tribology and Proceedings of the 8th European Symposium, Toulouse. 1999, 438: 207~211
    31马兴瑞,于登云,孙京,胡成威.空间飞行器展开与驱动机构研究进展.宇航学报, 2006, 27(6): 1123~1131
    32刘明治,高桂芳.空间可展开天线结构研究进展.宇航学报, 2003, 24(1): 82~87
    33覃正.星载大型可展开天线柔性多体系统动力学研究,西安电子科技大学博士论文, 1994: 5~30
    34 J. F. Imbert, A. Girard, M Geradin. Modal Analysis of a Satellite Primary Structure Using a Finite Element Procedure. Journal of the British Interplanetary Society, 1974, 27(2): 107~128
    35林霄映,刘莉.抛物线旋转面天线在轴向过载下的应力分析.弹箭与制导学报, 1999, (4): 45~48
    36 W. H. Theunissen, H. T. Yoon, W. D. Burnside, G. N. Washington. Reconfigurable Contour Beam-reflector Antenna Synthesis Using a Mechanical Finite-element Description of the Adjustable Surface. IEEE Transactions on Antennas and Propagation, 2002, 49(2): 272~279
    37蒋尔进.一种圆抛物面天线的有限元分析.雷达与对抗, 2004, (4): 61~64
    38刘宇,贾建援.某型号天线座壳体强度刚度有限元分析.雷达与对抗, 2005, (3): 45~47
    39 T. Sreekantamurthy, J. L. Gaspar, et al. Nonlinear Structural Analysis Methodology and Dynamics Scaling of Inflatable Parabolic Reflector Antenna Concepts. The 48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference, Hawaii. 2007: 1~15
    40张立华.有限元法在空间飞行器天线反射器热分析中的应用.中国空间科学技术, 1999, (1): 32~37
    41 S. Tizzi. Numerical Procedures for Thermal Problems of Space Antennae Shells. Acta Astronautica, 2003, 54(2): 103~114
    42朱敏波,曹峰云,刘明治,何恩.星载大型可展开天线太空辐射热变形计算.西安电子科技大学学报, 2004, 31(1): 28~31
    43陈志华,关富玲.星载抛物面天线反射器瞬态热分析.固体力学学报, 2008, 29(3): 272~276
    44陈志华,关富玲,蒋沧如.基于超参数壳元卫星天线反射面稳态热分析.武汉理工大学学报, 2008, 30(4): 99~102
    45 A. Meguro, J. Mitsugi. Ground Verification of Deployment Dynamics of Large Deployable Space Structures. Journal of Spacecraft and Rockets, 1992, 29(6): 835~841
    46 A. Meguro. In-Orbit Deployment Performance of Large Satellite Antennas. Journal of Spacecraft and Rockets, 1996, 33(2): 222~227
    47 A. Meguro, H. Ishikawa, A. Tsujihata. A Study on Ground Verification for Large Deployable Modular Structures. Journal of Spacecraft and Rockets. 2006, 43(4): 780~787
    48 A. Meguro, K. Shintate, M. Usui, A. Tsujihata. In-orbit Deployment Characteristics of Large Deployable Antenna Reflector Onboard Engineering Test Satellite VIII. Acta Astronautica, 2009, 65(9): 1306~1316
    49 P. W. Likins, G. E. Fleischer. Results of Flexible Spacecraft Attitude Control Studies Utilizing Hybrid Coordinates. Journal of Spacecraft and Rockets, 1971, 8(3): 264~273
    50 A. H. Gale, P. W. Likins. Influence of Flexible Appendages on Dual-Spin Spacecraft Dynamics and Control. Journal of Spacecraft and Rockets, 1970, 7(9): 1049~1056
    51 P. W. Likins. Finite Element Appendage Equations for Hybrid Coordinate Dynamics Analysis. International Journal of Solids and Structures, 1972, 8(5): 709~731
    52 P. W. Likins. Dynamic Analysis of a System of Hinge-connected Rigid Bodies with Nonrigid Appendage. International Journal of Solids andStructures, 1973, 9(12): 1473~1487
    53 V. J. Modi. Attitude Dynamics of Satellites with Flexible Appendages. Journal of Spacecraft and Rockets, 1974, 11(11): 746~751
    54 J. Y. L. Ho. The Direct Path Method for Deriving the Dynamic Equations of Motion of a Multibody Flexible Spacecraft with Topological Tree Configuration. AIAA Mechanics and Control of Flight Conference, Anaheim. 1974: 774~786
    55 P. Boland, P. Y. Willems, J. C. Samin. Stability Analysis of Interconnected Deformable Bodies in a Topological Tree. AIAA Journal, 1974, 12(8): 1025~1030
    56 J. Y. L. Ho. Direct Path Method for Flexible Muitibody Spacecraft Dynamics. Journal of Spacecraft and Rockets, 1977, 14(2): 102~110
    57 J. Y. L. Ho, D. R. Herber. Development of Dynamics and Control Simulation of Large Flexible Space Systems. Journal of Guidance, Control, and Dynamics, 1985, 8(3): 374~383
    58 L. Meirovitch. Equations of Motion for Maneuvering Flexible Spacecraft. Journal of Guidance, Control and Dynamics, 1987, 10(5): 453~465
    59 L. Meirovitch, M. K. Kwak. State Equations for a Spacecraft with Maneuvering Flexible Appendages in Terms of Quasi-Coordinates. Applied Mechanics Reviews. 1989, 42(11): 161~170
    60 L. Meirovitch, M. K. Kwak. Dynamics and Control of Spacecraft with Retargeting Flexible Antenna. Journal of Guidance, Control and Dynamics, 1990, l3(2): 241~248
    61 P. C. Hughes. Dynamics of a Chain of Flexible Bodies. Journal of the Astronautical Science, 1979, 27(4): 359~380
    62 R. L. Huston. Multibody Dynamics Including the Effect of Flexible and Compliance. Computer and Structure, 1981, 14(5): 443~451
    63 R. L. Huston. Multibody Dynamics Modeling and Analysis Methods. Applied Mechanics Review, 1991, 44(3): 109~117
    64 A. A. Shabana. Viscoelestic Analysis of Multibody Systems Using the Finite Element Method. Journal of Sound and Vibration, 1985, 100(2): 271~284
    65 A. A. Shabana. Transient Analysis of Flexible Multibody Systems, Part I: Dynamics of Flexible Bodies. Computer Methods in Applied Mechanics andEngineering, 1986, 54(1): 75~91
    66 A. A. Shabana, C. W. Chang. Connection Forces in Deformable Multibody Dynamics. Computers and Structures, 1989, 33(1): 307~318
    67 T. R. Kane, D. A. Levinson. Formulation of Equations of Motion for Complex Spacecraft. Journal of Guidance, Control, and Dynamics. 1980, 3(2): 99~112
    68 T. R. Kane, R. R. Ryan, A. K. Banerjee. Dynamics of a Cantilever Beam Attached to a Moving Base. Journal of Guidance, Control, and Dynamics. 1987, 10(2):139~150
    69 L. M. Silverberg, S. Park. Interactions between Rigid-Body and Flexible-Body Motions in Maneuvering Spacecraft. Journal of Guidance, Control, and Dynamics, 1990, 13(1): 73~81
    70 R. R. Ryan. Simulation of Actively Controlled Spacecraft with Flexible Appendages. Journal of Guidance, Control, and Dynamics, 1990, 13(4): 691~702
    71 V. J. Modia, A. Nga, A. Sulemana. An Approach to System Modes and Dynamics of the Evolving Space Station Freedom. Acta Astronautica, 1991, 25(8): 473~485
    72 K. B. Arun. Multibody Dynamics of Systems with Flexible Components. Proceeding International Symposium Advances in Aerospace Sciences and Engineering, 1992, 53~65
    73 A. G. Kelkar. Mathematical Modeling of a Class of Multibody Flexible Space Structures. NASA-TM-109166, 1994
    74 A. A. Shabana. Flexible Multibody Dynamics: Review of Past and Recent Developments. Multibody System Dynamics, 1997, 1(2): 189~222
    75 J. A. C. Ambrosio, M. Kleiber. Efficient and Robust Computational Algorithms for the Solution of Nonlinear Flexible Multibody Systems, In Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion. PoLand: IOS Press, 2001: 141~153
    76 A. Ibrahimbegovic, L. R. Taylor, H. Limb. Non-linear Dynamics of Flexible Multibody Systems. Computers and Structures, 2003, 81(12): 1113~1132
    77黄文虎,邵成勋.多柔体系统动力学.北京:科学出版社, 1996: 74~100
    78陆佑方.柔性多体系统动力学.北京:高等教育出版社, 1996: 181~325
    79洪嘉振,潘振宽.柔性多体航天器动力学.宇航学报, 1992, (4): 59~68
    80洪嘉振著.计算多体系统动力学.北京:高等教育出版社, 1999: 329~363
    81覃正,叶尚辉,刘明治.柔性多体系统动力学研究及存在的问题.力学进展, 1994, 24(2): 248~256
    82覃正著.多体系统动力学压缩建模.北京:科学出版社, 2000: 33~42
    83曲广吉.柔性航天器动力学分析.航天器工程, 1997, 6(1): 1~9
    84匡金炉.带挠性附件的航天器系统动力学特性研究.宇航学报, 1998, 19(2): 73~80
    85齐春子,吕振铎.卫星大型挠性天线弹性振动抑制的研究.宇航学报, 1998, 19(4): 61~64
    86曲广吉,程道生.复合柔性结构航天器动力学建模研究.中国工程科学, 1999, 1(2): 52~56
    87蒋丽忠,洪嘉振.带柔性部件卫星耦合动力学建模理论及仿真.宇航学报, 2000, 21(3): 39~44
    88 G. S. Nurre, R. S. Ryan. Dynamics and Control of Large Space Structures. Journal of Guidance, Control, and Dynamics, 1984, 7(5): 514~526
    89 C. N. Guiar, F. L. Lansing, R. Riggs. Antenna Pointing Systematic Error Model Derivations. Jet Propulsion Laboratory, 1987, 36~46
    90 H. G. Kistonsturian. On-Orbit Calibration of Satellite Antenna-Pointing Errors. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(1): 88~112
    91郭文嘉.天线指向误差引起的对地球服务区覆盖影响.空间电子技术, 1994, (3): 79~84
    92谢凌.影响天线指向误差的因素和误差分析方法.空间电子技术, 1999, (1): 42~45
    93张秋玲,郑卫平,王岩飞.分布式卫星INSAR系统中天线指向误差分析.测试技术学报, 2004, 18(2): 150~155
    94 D. Giudici, D. DAria, A. M. Guarnieri, et al. Analysis of Antenna Pointing Errors on SAR Image Quality. IEEE Radar Conference, 2008, 1: 1506~1511
    95 T. D. Tuttle, W. P. Seering. A Nonlinear Model of a Harmonic Drive Gear Transmission. IEEE Transactions on Robotics and Automation, 1996, 12(3): 368~374
    96 T. D. Tuttle. Understanding and Modeling the Behavior of a Harmonic DriveGear Transmission. MIT Master's Thesis, 1992: 1~93
    97 A. Emel’Yanov. Calculation of the Kinematic Error of a Harmonic Gear Transmission Taking into Account the Compliance of Elements. Sov. Eng. Res., 1983, 3(7): 7~10
    98 R. T. Ramson. Positional Error Analysis of Harmonic Drive Gearing. Clemson University, Masters Thesis, 1988, 1~63
    99 V. G. Vasilenko. Analysis of the Kinematic Error of Gear Drives. Measurement Techniques, 1988, 31(10): 952~555
    100 T. Nye, R. Kraml. Harmonic Drive Gear Error: Characterization and Compensation for Precision Pointing and Tracking. Proc of the 25th Aerospace Mechanics Symposium, Washington. 1991, 237~252
    101 T. Tuttle, W. Seering. Kinematic Error, Compliance, and Friction in a Harmonic Drive Gear Transmission. Proc of the 19th Design Automation Conference, Anaheim. 1993, 65(1): 319~324
    102 N. M. Kircanski, A. A. Goldenberg. An Experimental Study of Nonlinear Stiffness, Hysteresis, and Friction Effects in Robot Joints with Harmonic Drives and Torque Sensors. International Journal of Robotics Research, 1997, 16(2): 214~239
    103 P. S. Gandhi, F. H. Ghorbel. High-Speed Precision Tracking with Harmonic Drive Systems Using Integral Manifold Control Design. International Journal of Control, 2005, 78(2): 112~121
    104 T. Hidaka, et al. Theoretical Analysis of the Vibration in a Robot Due to a Stain Wave Gearing. Transactions of the Japan Society of Mechanical Engineers, 1989, 55(516): 1864~1871
    105辛洪兵,赵罘,秦宇辉.谐波齿轮传动系统非线性扭转振动分析.机械科学与技术, 2005, 24(9): 1040~1044
    106 F. H. Ghorbel, P. S. Gandhi. On the Kinematic Error in Harmonic Drive Gears. Transactions of the ASME, Journal of Mechanical Design, 2001, 123(1): 90~97
    107陈滨,潘寒荫.含铰接间隙与杆件柔性的空间伸展机构单元的动力学建模与计算模拟,第一部分:动力学建模.导弹与航天运载技术, 1997, (1): 27~37
    108陈滨,潘寒荫.含铰接间隙与杆件柔性的空间伸展机构单元的动力学建模与计算模拟,第二部分:系统动态特性的计算模拟结果.导弹与航天运载技术, 1997, (3): 33~40
    109尉立肖,刘才山.含间隙的太阳能帆板展开动力学分析.动力学与控制学报, 2004, 2(2): 19~22
    110 G. S. Nurre, J. P. Sharkey, J. D. Nelson, A. J. Bradley. Preserving Mission, On-Orbit Modifications to Hubble Space Telescope Pointing Control System. Journal of Guidance Control and Dynamics, 1995, 18(2): 222~229
    111 C. L. Foster, M. L. Tinker, G. S. Nurre, W. A. Till. Solar-Array-Induced Disturbance of Hubble Space Telescope Pointing System. Journal of Spacecraft and Rockets, 1995, 32(4): 634~644
    112阎绍泽,陈鹿民,季林红,等.含间隙铰的机械多体系统动力学模型.振动工程学报, 2003, 16(3): 290~294
    113阎绍泽.航天器中含间隙机构非线性动力学问题及其研究进展.动力学与控制学报, 2004, 2(2): 48~52
    114王天舒,孔宪仁,王本利.含铰间间隙的航天器附件展开过程分析.哈尔滨工业大学学报, 2001, 33(3): 283~286
    115 S. Dubowsky, F. Freudenstein. Dynamic Analysis of Mechanical Systems with Clearances, Part 1: Formulation of Dynamic Model. Journal of Engineering for Industry, 1971, 93(1): 305~309
    116 S. Dubowsky, F. Freudenstein. Dynamic Analysis of Mechanical Systems with Clearances, Part 2: Dynamic Response. Journal of Engineering for Industry, 1971, 93(1): 310~316
    117 S. Dubowsky. On Predicting the Dynamic Effects of Clearances in Planar Mechanisms. Journal of Engineering for Industry, 1974, 96(1): 317~323
    118 S. Dubowsky, T. N. Gardner. Design and Analysis of Multilink Flexible Mechanism with Multiple Clearance Connections. Journal of Engineering for Industry, 1977, 99(1): 88~96
    119 S. Dubowsky, J. F. Deck, H. Costello. The Dynamic Modeling of Flexible Spatial Machine Systems with Clearance Connections. Journal of Mechanisms, Transmissions, and Automation in Design, 1987, 109: 87~94
    120 H. M. Lankarani, P. E. Nikravesh. A Contact Force Model with Hysteresis Damping for Impact Analysis of Multibody Systems. Journal of Mechanical Design, 1990, 112: 369~76
    121 F. C. Moon, G. X. Li. Experimental Study of Chaotic Vibrations in a Pin-Jointed Space Truss Structure. AIAA Journal, 1990, 28(5): 915~921
    122 M. R. Hachkowski, L. D. Peterson, M. S. Lake. Friction Model of a Revolute Joint for a Precision Deployable Spacecraft Structure. Journal of Spacecraft and Rockets, 1999, 36(4): 591~598
    123 S. J. Bullock, L. D. Peterson. Nanometer Regularity in the Mechanics of a Precision Deployable Spacecraft Structure Joint. Journal of Spacecraft and Rockets, 1999, 36(5): 758~764
    124 P. Flores, J. Ambrosio. Revolute Joints with Clearance in Multibody Systems. Computers and Structures, 2004, 82(17): 1359~1369
    125 P. Flores, J. Ambrosio, J. C. P. Claro, et al. A Study on Dynamics of Mechanical Systems Including Joints with Clearance and Lubrication. Mechanism and Machine Theory, 2006, 41(3): 247~261
    126 P. Flores, J. Ambrosio, J. C. P. Claro, et al. Influence of the Contact-Impact Force Model on the Dynamic Response of Multibody System. Journal of Multibody Dynamics. 2006, 220(1): 21~34
    127 P. Flores, J. Ambrosio, J. C. P. Claro. Dynamic Analysis for Planar Multibody Mechanical Systems with Lubricated Joints. Multibody System Dynamics, 2004, 12(1): 47~74
    128吴德隆,李海阳,彭伟斌.空间站大型伸展机构的运动稳定性分析.宇航学报, 2002, 23(6): 98~102
    129陈鹿民,阎绍泽,金德闻,吴德隆.含间隙铰空间可展桁架结构的动力学实验研究.清华大学学报, 2003, 43(8): 1027~1030
    130 J. F. Wei, Z. F. Xiong, F. L. Guan. Dynamic Interaction Analysis between Large Antenna Pointing Control System and Satellite Attitude Control System. 52nd International Astronautical Congress, 2001, IAF-01-A.3.04
    131闵桂荣.卫星热控制技术.北京:宇航出版社, 1991: 4~48
    132 E. A. Thornton, Y. K. Kim. Thermally Induced Bending Vibrations of a Flexible Rolled-Up Solar Array. Journal of Spacecraft and Rockets, 1993, 30(4): 438~448
    133 M. Murogona, E. A. Thornton. Buckling and Quasistatic Thermal-Structural Response of Asymmetric Rolled-Up Solar Array. Journal of Spacecraft and Rockets, 1998, 35(2): 147~155
    134 E. A. Thornton, D. B. Paul. Thermal-Structural Analysis of Large Space Structures: An Assessment of Recent Advances. Journal of Spacecraft and Rockets, 1985, 22(4): 385~393
    135 H. P. Frisch. Thermally Induced Vibrations of Long Thin-Walled Cylinders of Open Section. Journal of Spacecraft and Rockets, 1970, 7: 897~905
    136 L. Afferrante, M. Ciavarella. Thermo-Elastic Dynamic Instability - a Review of Recent Results. Journal of Engineering Matermatics, 2008, 61(2): 285~300
    137 G. S. Nurre, J. P. Sharkey, H. P. Waites. Initial Performance Improvements due to Design Modifications for the Pointing Control System on the Hubble Space Telescope. Proceedings of the Annual Rocky Mountain Guidance and Control Conference, Colorado. 1991, 74: 493~511
    138 P. Sundaresan, G. Singh, G. V. Rao. A Simple Approach to Investigate Vibratory Behavior of Thermally Stressed Laminated Structures. Journal of Sound and Vibration, 1999, 219(4): 603~618
    139 G. Y. Wu. Transient Vibration Analysis of a Pinned Beam with Transverse Magnetic Fields and Thermal Loads. ASME Journal of Vibration and Acoustics, 2005, 127(3): 247~253
    140 M. K. Singha. Nonlinear Vibration of Symmetrically Laminated Composite Skew Plates by Finite Element Method. International Journal of Non-linear Mechanics, 2007, 42(9): 1144~1152
    141 P. Ribeiro. Non-linear Vibrations of Laminated Cylindrical Shallow Shells under Thermomechanical Loading. Journal of sound vibration, 2008, 315(3): 626~640
    142丁勇,薛明德.辐射换热条件下空间薄壁圆管结构瞬态温度场、热变形有限元分析.宇航学报, 2002, 23(5): 49~56
    143丁勇,薛明德,姚海民.空间薄壁管结构瞬态温度场、热变形有限元分析.应用力学学报, 2003, 20(1): 42~48
    144程乐锦,薛明德.大型空间结构热动力学耦合有限元分析.清华大学学报(自然科学版), 2004, 44(5): 681~688
    145 J. D. Johnston, E. A. Thornton. Thermally Induced Attitude Dynamics of a Spacecraft with a Flexible Appendage. Journal of Guidance, Control and Dynamics, 1998, 21(4): 581~587
    146 N. Saniei, C. Albert, J. Luo. Thermally Induced Nonlinear Vibrations of Rotating Disks. Nonlinear Dynamics, 2001, 26(4): 393~409
    147 D. C. D. Oguamanam, J. S. Hansen, G. R. Heppler. Nonlinear Transient Response of Thermally Loaded Laminated Panels. Journal of Applied Mechanics, 2004, 71(1): 49~56
    148 A. Heckmann, M. Arnold, O. Vaculin. A Modal Multifield Approach for an Extended Flexible Body Description in Multibody Dynamics. Multibody System Dynamics, 2005, 13(3): 299~322
    149刘锦阳,袁瑞,洪嘉振.考虑几何非线性和热效应的刚-柔耦合动力学.固体力学学报, 2008, 29(1): 73~77
    150刘锦阳,袁瑞,洪嘉振.考虑热效应的柔性板的刚-柔耦合动力学特性.上海交通大学学报, 2008, 42(8): 1226~1237
    151刘锦阳,崔麟.热载荷作用下大变形柔性梁刚柔耦合动力学分析.振动工程学报, 2009, 22(1): 48~53
    152 W. Gwaronski, T. Williams. Model Reduction for Flexible Structure. Journal of Guidance, Control and Dynamics, 1991, 14(1): 68~76
    153 N. M. Newmark. A Method of Computation for Structural Dynamics. Journal of Engineering Mechanics, 1959, 85(3): 249~260
    154 W Blajer. A Geometric Unification of Constrained System Dynamics. Multibody System Dynamics, 1997, 1(1): 3~21
    155 H. Itoh, K. Ishikawa, Y. Kobayashi. Analysis of Transverse Vibration of Antenna Structure Resonator Using Bernoulli-Euler Beam Theory and Quantum Mechanical Examination of its Quantized Displacement. Japanese Journal of Applied Physics, 2008, 47(7): 5734~5742
    156 G. Sterbini. Analysis of Satellite Multibeam Antennas’s Performances. Acta Astronautica, 2006, 59(1): 166~174
    157 M. Misawa, K. Funamoto. Dynamic Characteristic Prediction of Large Satellite Antennas by Component Tests. Journal of Spacecraft and Rockets, 2005, 42(5): 845~849
    158 T. Zhou. Dynamics and Vibration-suppression Control of Flexible-payload Manipulator Systems. University of Toronto, Ph.D Thesis, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700