用户名: 密码: 验证码:
pH和溶解性有机质影响下黑碳吸附农药行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑碳是化石燃料和生物质不完全燃烧生成的具有高度芳香化结构的高聚物,它在环境(大气圈、水圈、生物圈、土壤和岩石)中无处不在。黑碳具有多孔性和高比表面积,对有机化合物有较高的亲和力,对生物利用和自然系统中污染物的迁移有着重要的影响。作为潜在的环境污染物载体,黑碳可能会引发一些土壤效应,导致增加农药的使用风险。在自然条件下,天然有机质的存在会对黑碳吸附农药污染物的行为产生重要的协同影响,pH值的变化也会改变黑碳和农药的性质,从而影响了黑碳对农药污染物的吸附行为。为了揭示黑碳对农药的吸附规律及pH值和溶解性有机质对黑碳吸附农药行为的影响,本论文以秸秆为原料制备了较高比表面积的黑碳(吸附剂),选择四类农药为目标吸附质,采用单宁酸和没食子酸为不同分子大小的代表性溶解性有机质(DOM)(预载吸附质),以DOM预载方式研究pH值和DOM对黑碳吸附农药的影响。
     本论文研究了黑碳及预载化黑碳对弱酸性农药苯氧乙酸类除草剂的吸附行为。结果表明:在低pH条件下,吸附剂对农药吸附效果较好,且2.4-二氯苯氧乙酸的吸附量都明显高于苯氧乙酸。无论在何种pH值下,单宁酸对黑碳吸附酸性农药的行为都是明显的抑制作用,没食子酸对吸附行为是略有抑制,且都遵循预载量300μmol/g的抑制效果大于预载量10μmol/g的规律,最主要的原因是由于溶解性有机质的预载,导致产生了孔堵效应和竞争吸附。吸附机理主要依靠微孔填充、静电作用和范德华力等方式。影响吸附的主要因素是吸附质的溶解度、表面官能团含量、农药的pKa值及电离性质等。
     弱碱性农药扑灭通在黑碳上的吸附行为表明,在pH=5.90条件下的吸附效果优于pH=1.25,且在这两种pH条件下吸附量差异非常明显。这主要与扑灭通的溶解度及其三氮苯骨架的结构有关。预载化黑碳对碱性农药的吸附规律和酸性农药相同,在相同的条件下,单宁酸和没食子酸对碱性农药的吸附行为同样是抑制作用,单宁酸的抑制效果显著,没食子酸的抑制作用微弱,且都随着溶解性有机质预载量的增加抑制效果增强,其原因主要还是孔堵效应和竞争吸附的影响。
     中性农药敌稗在黑碳上的吸附规律表现为吸附量较高,无pH依赖性,主要原因是敌稗溶解度较低,有利于吸附剂对敌稗的吸附,且由于敌稗分子没有pKa,在两个pH条件下基本都以分子态形式存在,不发生解离,此外pH对吸附剂表面电荷性质影响不大,从而导致敌稗的吸附行为不受pH值影响。敌稗在预载化黑碳上的吸附规律和碱性农药相同。
     两性农药毒莠定在黑碳及预载化黑碳上的吸附具有明显的pH依赖性,吸附量随pH值的增加先升后降,pH=5.90条件下吸附量最低,pH=3.00时吸附量最高,当pH=1.25时又有所下降,但还是明显高pH=5.90的条件下的吸附量。说明酸性条件下有利于吸附,且当pH值接近毒莠定的pKa时有很大吸附。pH值影响吸附剂吸附农药的行为主要是通过引起毒莠定分子形态和吸附剂表面电荷变化决定的。本实验研究表明,范德华力是黑碳吸附毒莠定的主要机理。单宁酸预载对毒莠定吸附行为的影响与其他农药相似,对毒莠定的吸附行为抑制作用明显,而没食子酸对毒莠定的吸附行为是明显增溶作用,并遵循预载量100μmol/g的促进作用大于预载量300μmol/g的规律。
     采用Langmuir和Freundlich方程对所有吸附数据进行拟合,相关系数基本上均大于0.97,表明Langmuir和Freundlich模型能较好地用于描述上述吸附过程。
     上述讨论较全面地研究了pH和溶解性有机质对黑碳吸附农药影响的作用规律和机理,将为今后研究高含碳土壤的吸附与修复研究提供理论的研究积累。
Black carbon (BC) is defined as the highly aromatic polymeric materials produced from incomplete combustion of fossil fuel and biomass. It exists in all the environmental compartments including atmosphere, hydrosphere, biosphere, soil and rock. With a porous structure and high surface areas, BC has a high affinity for organic compounds and plays an important role in the bioavailability and migration of pollutants in natural systems. As a potential carrier of environmental pollutants, BC may bring about certain soil effects and result in an increased risk associated with pesticide use. Under natural conditions, natural organic matter may have an important synergistic effect on the sorption of pesticides by BC. The variation in pH value may also alter the properties of both BC and pesticides, thereby influencing the adsorption of pesticides by BC. To elucidate the adsorption of pesticides on BC as influenced by dissolved organic matter (DOM), BCs of high surface areas were prepared from rice straws and used as the absorbents for four pesticides. The pesticides were weakly acidic, weakly basic, neutral or amphoteric in terms of their dissociating properties. Tannic acid and gallic acid, differing substantially in molecular size, were used as model DOM to evaluate the effects of pH and DOM preloading on the adsorption.
     The results from the adsorption of 2,4-D (2,4-dichlorophenoxyacetic acid, a weakly acidic pesticide) on virgin BC and DOM-preloaded BC show that the adsorption of 2,4-D was higher at lower pH values. Compared to phenoxyacetic acid, the adsorption of 2.4-D was significantly higher. At any experimental pH value, tannic acid significantly inhibited the adsorption of 2,4-D, in comparison to an only slight inhibition by gallic acid. The degree of inhibition was consistently higher by a loading of 300μmol/g than by 100μmol/g. This was due to the pore blockage by. and the competitive adsorption of. tannic acid. The adsorption occurred via micropore filling, electrostatic interaction, and van der Waals forces. The main influential factors included the solubility. pKa and dissociating properties of pesticide and the surface properties of BCs.
     The adsorption of prometon (a weakly basic pesticide) was substantially higher at pH 5.90 than at pH 1.25. This may be explained in terms of the solubility and three-N benzene ring structure of prometon. Similar to the adsorption of 2.4-D. the adsorption of prometon was inhibited by both tannic acid and gallic acid, the former acid being much more powerful than the latter in the degree of inhibition. The inhibition increased with increasing the DOM loading. The pore blockage and competitive adsorption were again considered to have contributed to the observed inhibitory effect of DOM.
     The adsorption of propanil (a neutral pesticide) on BC was high and independent of pH. This was due to the low solubility and non-dissociating property of propanil. In addition, the surface charge of BCs was not clearly affected by pH. The adsorption of propanil on DOM-loaded BCs occurred in a manner similar to that of 2,4-D.
     The adsorption of picloram (an amphoteric pesticide) on BC and DOM-loaded BC showed an obvious dependence on pH. The adsorption increased as pH increased from 1.25 and reached the maximum at pH 3.00. The adsorption then decreased with further increasing pH and reached the minimum at pH 5.90. In addition, the adsorption at pH 1.25 was higher than that at pH 5.90. All these results indicate that acidic conditions, in particular when pH was close to pKal of picloram, were in favor of adsorption. The speciation of picloram and the surface charge of BCs. both influenced by pH, together determined the adsorption of picloram, which occurred through the van der Waals forces. Similar to other pesticides tested, the adsorption of picloram was reduced by the preloading of tannic acid. The reduction of picloram adsorption of preloading gallic acid was due to its solubility enhancement of picloram, which was higher at a loading of 100μmol/g than 300μmol/g.
     All the adsorption data were fitted to the Langmuir equation and the Freundlich equation. The correlation coefficients obtained are generally greater than 0.97, indicating that both adsorption models were adequate to describe the adsorption of tested pesticides on BCs.
     This thesis thoroughly investigated the influence of pH and DOM preloading on the adsorption of multiple pesticides on BCs and the underlying mechanisms. The results will lay a solid foundation for future investigation on sorption of pollutants and remediation in carbon-containing soils.
引文
[1]Comelissen,G.,Gustafsson,O.,Bucheli,T.D.,Jonker,M.T.O.,Koelmans,A.A.,Noort.P.C.M.V.,Extensive Sorption of Organic Compounds to Black Carbon,Coal,and Kerogen in Sediments and Soils:Mechanisms and Consequence Distribution,Bioaccumulation,and Biodegradation,Environ.Sci.Techol.,2005,39:6888-6895.
    [2]Zhu,D.Q.,Pignatelio,J.J.,Characterization of Aromatic Compound Sorptive Interactions with Black Carbon(Charcoal)Assisted by Graphite as a Model,Environ.Sci.Techol.,2005,39:2033-2041.
    [3]张旭东,梁超,诸葛玉平,姜勇,解宏图,何红波,王晶.黑碳在土壤有机碳生物地球化学循环中的作用,土壤通报,2003.34:349-355.
    [4]Kwon,S.,Joseph J.Pignatello.Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon(char)[J].Environ Sci Technol,2005,39(20):7932-7939.
    [5]Kwon,S.,Pignatello,J.J.,Effect of Natural Organic Substance on the Surface and Adsorptive Properties of Environmental Black Carbon(Char)Pseudo Pore Blockage by Model Lipid Components and Iits Implications for N2-Probed Surface Properties,Environ.Sci.Techol.,2005.39:7932-7939.
    [6]Joseph J.Pignatello,Kwon,S.,and Yufeung L.Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon(char):attenuation of surface activity by humic and fulvic acids.Environ Sci Technol,2006,40:7757-7763.
    [7]Dickens A.F.,Gelinas Y.Masiello C.A..et al.Reburial of fossil organic carbon in marine sediments.Nature,2004,427(6972):336-339.
    [8]秦世广,汤洁,温玉璞.黑碳气溶胶及其在气候变化研究中的意义.应用气象学报,2001,27(11):3-7.
    [9]何跃,张甘霖.城市土壤有机碳和黑碳的含量特征与来源分析.土壤学报.2006,43(2):177-182.
    [10]Kuhlbusch T.A.J.,Black carbon and the carbon cycle.Science,1998,280:1903-1904.
    [11]Masiello C.A.,Druffel E.M.,Black carbon in deep-sea sediment.Science,1998,280:1911-1913.
    [12]Wu Q,Blume H.P.,Beyer L.,et al.Method for characterization of inert organic carbon in urbic anthrosols.Communications in Soil Science and Plant Analysis,1999,30(9/10):1497-1506.
    [13] Schleuss U, Wu Q, Blume H.P.,Variability of soils in urban and periurban areas in Northern Germany.Catena,1998,33:255-270.
    [14] Lim B, Cachier H., Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays.Chemical Ecology,1996,131(1-4):143-154.
    [15] Song J.Z., Peng P.A., Huang W.L., Black carbon and kerogen in soils and sediments. I. Quantification and characterization. Environmental Science and Technology, 2002,36(18):3960-3967.
    [16] Glaser B.J., Balashov E, Haumaier L,et al.Black Carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry, 2000, 31(7/8):669-678.
    [17] Yaning Y, Guangyao S. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J].Environ Sci Technol,2003,37(16):3635-3639.
    [18] Hayatsu R, Winans R.E., Scott R.G., et al. Investigation of aqueous sodium dichromate oxidation for coal structure studies. Fuel, 1981.60: 77-82.
    [19] Schmidt M.W.I., Noack A.G., Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob.Biogeochem.Cycles, 2000,14: 777-793.
    [20] Gustafsson O, Haghseta F, Chan C, et al. Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability. Environmental Science and Technology, 1997, 31(1): 203-209.
    [21] Goldberg E. D., Black carbon in the environment: properties and distribution. John Wiley . New York, 1985.
    
    [22] 韩永明, 曹军骥. 环境中的黑碳及其全球生物地球化学循环. 海洋地质与第四纪地质, 2005,25(1): 125-132.
    [23] Golchin A. Clarke P, Baldock,J.A,.et al.The effect of vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil as shown by 13CNMR spectroscopy. I. Whoke soil and humic acid fraction. Geoderma, 1997,76: 155-174.
    [24] Golchin A.Clarke P,Baldock,J.A,.et al.The effect of vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil as shown by 13CNMR spectroscopy. II.Whoke soil and humic acid fraction. Geoderma., 1997,76: 175-192.
    [25] Kuhlbusch T.A.J,, Crutzen P.J.,BIack carbon, the global carbon cycle, and atmospheric carbon dioxide[A]. In: Levine J S. Biomass Burning and Golbal Change[C]. M IT Press. Cambridge MA, 1,1996,160-169.
    [26] Wolbach W.S.,Anders E. Element carbon in sediments: Determination and isotopic analysis in the presence of kerogen[J].Geochim.Cosmochim.Acta,1989,53(7):1637-1647.
    [27]Rose N.L.A method for the extraction of carbonaceous particles from lake sediment[J].J Paleolimnol,1990,3:45-53.
    [28]Emiliani C,Price D.A.,Seipp J.Is the post-glacial artificial?[J].Geochem Soc Spec Publ,1991,3:229-231.
    [29]Bird M.I.,Grocke D.R.,Determination of the abundance and carbon isotope composition of elemental carbon in sediments[J].Geochim.Cosmochim.Acta,1997,61:3413-3423.
    [30]王旭,于赤灵等.沉积物中黑碳的提取和测定方法误差分析和回收率实验[J].地球化学,2001.30(5):339-444.
    [31]凌荣祥,罗泰义,周明忠.黑色岩系岩石样品中黑碳含量测定和误差分析.地球与环境,2006,34(2):82-88.
    [32]Gelinas,Y.,Prentice,K.M.,Baldock.J.A.,Hedges.J.I.,An Improved Thermal Oxidation Method for the Quantificaton of Soot/Graphic Black Carbon in Sediments and Soils.Environ.Sci.Techol.,2001,35:3519-3525.
    [33]Chun,Y.,Sheng,G.,Chiou,C.T.,Evaluation of current techniques for isolation of chars as natural adsorbents,Environ.Sci.Techol..2001.35:3519-3525.
    [34]Chun,Y.,Sheng,G..Chiou,C.T,.Xing,B.Compositions and sorption properties of crop residue-derived chars.Environ.Sci.Technol.2004,38:4649-4655.
    [35]Zhu,D.Q,,Pignatello,J.J.,Characterization of Aromatic Compound Sorptive Interactions with Black Carbon(Charcoal)Assisted by Graphite as a Model,Environ.Sci.Techol.,2005,39:2033-2041.
    [36]李睿,屈明.土壤溶解性有机质的生态环境效应[J].生态环境,2004.13(2):271-275.
    [37]Karanfil,T.,Kitis,M.,Kilduff,J.E.,Wigton,R.,Role of Granular Activated Carbon Surface Chemistry on the Aasorption of Organic Compounds.2.Natural Organia Matter,Environ.Sci.Techol.,1999.33:3225-3233.
    [38]Arvola L,Tulonen T.Effects of aliochthonous dissolved organic matters and inorganic nutrients on the growth of bacteria and algae from a highly humic lake.Environ,Int,1998,24(5-6):509-520.
    [39]凌婉婷,徐建民,高彦征,汪海珍.溶解性有机质对土壤中有机污染物环境行为的影响.应用生态学报,2004,15(2):326-330.
    [40]Kalbitz K,Solinger S,et al.Controls on the dynamics of dissolved organic matter in soils:A review[J].Soil Science,2000,165(4):277-304.
    [41]Karbitz K.Solinger S,Park J.H..et al.Controls on the dynamics of dissolved organic matter in soils:A review[J].Soil Sci,1998,165(4):277-304.
    [42]Grasso D,Chin Y.P.,Weber W.J.J.,Structural and behavioral characteristics of a commercial humic acid and natural dissolved aquatic organic mater[J].Chemosphere,1990,21(10-11):1181-1198.
    [43]Homann P.S.,Grigao D.F.,Molecular weight distribution of soluble organics from laboratory-manipulated surface soils[J].Soil Sci Soc Am.1992.56:1305-1310.
    [44]Benner R,Pakulski J.D.,Mccarthy M..et al.Chemical characteristics of dissolved organic mater in the ocean[J].Science.1998.255(5051):1561-1564.
    [45]Leenheer J.A.,Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters.Environmental Sciences and Technology.1981,15(5):578-587.
    [46]Chiou C.T..Porter P.E.,Partition equilibria of nonionic organic compounds between soil organic matter and water.Environ Sci Technol,1983.17:227-231.
    [47]Maxin C.R.,Kgel-Knaber I.Partitioning of polycyclic aromatic hydrocarbons(PAH)to water-soluble soil organic matter.Eur J Soil Sci.1995,46:193-204.
    [48]Mc Carthy J.F.,Jimenez B.D.,Interactions between polycyclic aromatic hydrocarbons and dissolved humic materials:Binding and dissociation.Environ Sci Technol,1985.19:1067-1072.
    [49]Klaus U,Mohamed S,Volk M,et al.Interaction of aquatic humic substances with anliazine and its derivatives:The nature of the bound residues.Chemosphere,1998,37(2):341-361.
    [50]Sposito G,Martin-Neto L,Yang A.Atrazine complication by soil humic acids.J Environ Qual,1996.25:1203-1209.
    [51]Henry V.M.,Association of hydrophobic organic contaminants with soluble organic matter:Evaluation of the database of K doc values.Adv Environ Res,2002.6:577-593.
    [52]McCarthy J.F..Roberson L.E.,BurrusL W.Association of benzo(a)pyrene with dissolved organic matter:Prediction of dome from structural and chemical properties of the organic matter.Chemosphere,1989,19:1911-1920.
    [53]Chiou C.T.,Malcolm R.L.,Brinton T.I.,et al.Water solubility,enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids.Environ Sci Technol.1986.20:502-508.
    [54]刘维屏,季瑾.吸附,脱附农药在土壤—水环境中归宿的主要支配因素.中国环境科学,1996,16(1):25-30.
    [55]丁应祥,朱琰等.有机污染物在土壤—水体系中的分配理论.农村生态环境.1997,(2):42-45.
    [56]Barricuso E,Bear U,Calvet R.Dissolved Organic Matter and Adsorption-Desorption of Dimefuron,Atrazine and Carbetamide by Soils.J.Environ.Qual.,1992,21:359-367.
    [57]Schlautman M.A.,M organ J.J.,Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials.Environ Sci Technol,1993,27:961-969.
    [58]Miller Wegener U.,Interaction of humic substances with biota.In:Frimmel FH,Christman RF eds.Humic Substances and Their Role in the Environment.Chichester:John Wiley and Sons.1988,179-192.
    [59]Choundry G.C.,Humic Substance.New York:Gordo and Breach.1984,7:143.
    [60]Macalady D.L.,Wolfe N.L.,ACS Symposium Series,No.259,Treatment and Disposal of Pesticide Wastes.Washington DC:American Chemical Society.1984.
    [61]Acobson J.M.Z.,Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J].Nature,2001,409:695-697.
    [62]Kuhlbusch T.A.J.,Crutzen P.J.,Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO_2 and a source of O_2[J].Global Biogeochemical Cycle,1995,9(4):491-501.
    [63]Penner J.E.,Eddleman H,Novakav T.Toward t he development of a global inventory for black carbon[J].Atmospheric Environment,1993,27A:260-267.
    [64]Levine J.S.,Cofer W.R.,Cahoon D.R..et al.Biomass burning:a driver for global change [J].Environment Science &Technology.1995,29:120-125.
    [65]Verardo D.J.,Ruddiman F.Late Pleistocene charcoal in t ropical Atlantic deep-sea sediments:Climatic and geochemical significance[J].Geology,1996,24:855-857.
    [66]Washington J,Braida,Joseph J,Pignatello.Sorption hystersis of benzene in charcoal particles[J].Environ Sci Technol,2003.37(2):409-417.
    [67]Robert W.Kramer,Elizabeth B,Kujawinski,Patrick G,Hatcher.Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry[J].Environ Sci Technol.2004,38(12):3387-3395.
    [68]Chiou.C.T.,D.E.Deviations from Sorption Linearity on Soils of Polar and Nonpolar Organic Compounds at Low Relative Concentrations.Environ.Sci.Technol.,1998,32:338-343.
    [69]罗雪梅,刘昌明,何孟常.土壤与沉积物对多环芳烃类有机物的吸附作用.生态环境,2004.13:394-398.
    [70]Sheng,G.,Yang Y.,Huang,M.,Yang,K..Influence of pH on pesticide sorption by soil containing wheat residue-derived char.Environ.Pollut.,2005,134:457-463.
    [71]吴成,张晓丽,李关宾.低分子量有机酸对黑碳吸附Pb、Cd的影响,农业环境科学学报,2006,25(5):1383-1387.
    [72]张旭东,梁超,诸葛玉平,姜勇,解宏图,何红波,王晶.黑碳在土壤有机碳生物地球化学循环中的作用.土壤通报,2003,34:349-355.
    [73]Comelissen,G.,Gustafsson,O.,Sorption of Phenanthrene to Environmental Black Carbon in Sediment with and without Organic Matter and Native Sorbates,Environ.Sci.Techol.,2004,38:148-155.
    [74]Comelissen,G.,Kukulska,Z.,Kalaitzidis,S.,Christanis,K.,Gustafsson,O.,Relations between Environmental Black Carbon Sorption and Geochemical Sorbent Characteristics,Environ.Sci.Techol.,2004,38:3632-3640.
    [75]Xiao,B.H.,Yu,Z.Q.,Huang,W.L.,Song,J.Z.,Peng,P.A.,Black Carbon and Kerogen in Soils and Sediments.2.Their Roles in Equilibrium Sorption of Less-Polar Organic Pollutants,Environ.Sci.Techol.,2004,38:5842-5852.
    [76]Lohmann,R.;MacFarlaneJ.K.;Gschwend,P.M.;Importantance of Black Carbon to Sorption of Native PAHs,PCBs,and PCDDs in Boston and New York Harbor Sediments,Environ.Sci.Techol.,2005.39:141-148.
    [77]陈怀满.土壤中化学物质的行为与环境质量.北京,科学出版社,2002.
    [78]党志,于虹,黄伟林,刘丛强.土壤/沉积物吸附有机污染物机理研究的进展.化学通报,2001.2:81-85.
    [79]周岩梅,刘瑞霞,汤鸿霄.溶解性有机质在土壤及沉积物吸附多环芳烃类有机污染物过程中的作用研究.环境科学学报,2003,23(2):216-223.
    [80]Accardi-Dey,A.;Gschwend,P.M.,Reinterpreting Literature Sorption Data Considering both Absorption into Organic Carbon and Adsorption onto Black Carbon,Environ.Sci.Technol.,2004.38:3632-3640.
    [81]Accardi-Dey,A.;Gschwend,P.M.,Assessing the Combind Roles of Natural Oganic Matter and Black Carbon as sorbents in Sediments,Environ.Sci.Techol.,2002.36(1):21-29.
    [82]Seokjoon K,Joseph J,Pignatello.Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon(char)[J].Environ Sci Technol,2005.39(20):7932-7939.
    [83]Yang,Y.,Sheng.G.,Pesticide adsorptivity of aged particulate matter arising from crop r esidue burns.J.Aaric.Food Chem.,2003.51:5047-5051.
    [84]Cornelissen G.,Gustafsson,O.,Importance of Unburned Coal Carbon,Black Carbon,and Amorphous Organic Carbon to Phenanthene Sorption in Sediments.Environ.Sci.Techol.,2005,39:764-769.
    [85]Moore,B.C.,Cannon,F.S.,Westrick,J.A.,Metz,D.H.,Shrive,C.A.,DeMarco,J.,Hartmen,D.J.,Changes in GAC Pore Structure During Full-Scale Water Treatment in Cincinnati:A Composition Between Virgin and Thermally Reactivated GAC,Carbon,2001,39:789-807.
    [86]Kiduff,J.E.,Karanfil,T.,Role of Granular Activated Carbon Surface Chemistry on the Adsorption of Organic Cpmpounds:1.Priority Pollutants,Environ.Sci.Technol.,1999.33:3217-3224.
    [87]Karanfil,T.,Dastgheib,S.A.,Mauldin,D.,Exploring Molecular Sieve Capabilities of Activated Carbon Fibers to Reduce the Impact of NOM Prelading Trichlorothylene Adsorption,Environ.Sci.Techol..2006,40:1321-1327.
    [88]江霞,蒋文举,金燕,张振鹏.改性活性炭在环境保护中的应用.环境科学与技术,2005.26(5):55-57.
    [89]柯以侃,董慧茹.分析化学手册(第二版)第三分册 光谱分析[M].北京:化学工业出版社,1998.637.
    [90]北京水环境技术与设备研究中心,北京市环境保护科学研究院,国家城市环境污染控制工程技术研究中心.三废处理工程技术手册(第1版).北京:化学工业出版社,2000.
    [91]方禹之主编.仪器分析.上海:华东师范大学出版社,1990.
    [92]严衍禄主编.近红外光谱分析基础与应用.北京:中国轻工业出版社,2004.
    [93]王国平,刘景双,张君枝,等.湿地表层沉积物对重金属的吸附研究[J].农业环境科学学报,2003.22(3):325-328.
    [94]Jung.M.W,Ahn,K.H.,Lee,YH.,Kim K.P.,Rhee,J.S.,Park,J.T.and Paeng,K.J.,Adsorption characteristics of phenol and chloro-phenols on granular activated carbons(GAC),Microchemical Journal 2001,70,123-131.
    [95]赵振国.吸附作用应用原理[M].化学工业出版社.2005.
    [96](日)近藤精一,(日)石川达雄,(日)安部郁夫.吸附科学[M].化学工业出版社.2006.
    [97]李金昶,王璐,韩明友,包明,王广,王元鸿.固相萃取富集高效液相色谱法测定苯氧乙酸和2,4-二氯苯氧乙酸.分析化学研究简报,2001,29(5):580-582.
    [98]Dean J.A.,Lauge's Handbook of Chemistry,15th Ed,MC Graw-Hill Book Co..New York.
    [99]恭书椿,陈应新,韩玉莲,张静贞.环境化学.华东师范大学出版社,1991.
    [100]Kwon,S.,Pignatello,J.J.,Effect of Natural Organic Substance on the Surface and Adsorptive Properties of Environmental Black Carbon(Char)Pseudo Pore Blockage by Model Lipid Components and Iits Implications for N2-Probed Surface Properties,Environ.Sci.Techol.,2005,39:7932-7939.
    [101]Josephj.Pignatello,Seokjoon,Kwon,et,al.Effect of Natural Organic Substances on the Surface and Adsorptive Properties of Environmental Black Carbon(Char):Attenuation of Surface Activity by Humic and Fulvic Acids.Environ.Sci.Technol.2006,40:7757-7763.
    [102]曲风臣.土壤腐殖酸分级、表征及其光化学作用研究.中国优秀博硕士学位论文全文数据库大连理工大学硕士学位论文,2006,3.
    [103]Hilton H.W.,Yuen Q.H.,Adsorption of several pre-emergence herbicides by Hawaiian sugar cone soils[J].Agri and food chem,1963,11(3):230-234.
    [104]Yaning Y,Guangyao S,Minsheng H,Bin soil containing wheat-straw-derived char[J].Science of total environment,2005,207:2251-2260.
    [105]A.M.Oliveira-Brett·L.A.da Silva,A DNA-electrochemical biosensor for screening environmental damage caused by s-triazine derivatives.Analytical and Bioanalytical Chemistry,2002,1-21.
    [106]Barnett,J.B.,Gandy,J.,Wilbourn,D.,Theus,S.A.,1992.Comparison of the immunotoxicity of propanil and its metabolite,3,4.dichloroaniline,in C57B1/6 mice.Fund.Appl.Toxicol.18,628-631.
    [107]刘惠君,刘维屏,杨炜春,薛斌.均三氮苯类除草剂对土壤酶活性的影响.土壤学报,2003,40(2):286-292.
    [108]郑和辉,叶常明.乙草胺和丁草胺的水解及其动力学[J].环境化学,2001,20(2):168-170.
    [109]黎媛萍,曾光明,汤琳等.间接竞争法测定稻田土壤中除草剂毒莠定的残留量[J].环境科学学报,2007,27(7):1222-1226.
    [110]I.Pavlovic et al.Adsorption of acidic pesticides 2,4-D,Clopyralid and Picloram on calcined hydrotalcite.Applied Clay Science,2005,30:125-133.
    [111]毛威,韩旦.高效液相色谱法测定毒莠定的含量.中国药师,2004,7(7):571-572.
    [112]Furuya,E.G.,Chang,H.T.,Miura,Y.,NollSep,K.E..A fundamental analysis of the isotherm for the adsorption of phenolic compounds on activated carbon[J].Separation and Purification Technology.1997,11(2):69-78.
    [113]章燕豪.吸附作用[M].上海:上海科学技术文献出版社,1989.
    [114]Zhenyu R.,Jingtang Z,Maozhang W,Bijiang Z.,Carbon[J],1999,37(8):1257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700