用户名: 密码: 验证码:
先进控制方法在电厂热工过程控制中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内大型热力设备的自动控制系统已逐步采用先进的分散控制系统,这为先进控制理论的应用提供了良好的实现条件。但是目前大型热力设备的自动控制几乎都仍采用常规的线性PID控制系统,难以在整个负荷变动范围内均取得优良的控制品质。绝大多数大型发电厂的关键控制系统,在机组负荷大范围变化时,均未能取得理想的控制品质,严重影响了热力设备的安全、经济运行。
     目前国内大型火电机组的锅炉过热汽温和再热汽温控制,几乎仍采用常规的串级控制系统,而不少电厂汽温被控对象的滞后很大,且喷水阀存在严重的非线性,使得当机组负荷变化时,汽温往往偏离设定值8~10℃,超温十分频繁。由于过热汽温和再热汽温的频繁超温,容易导致锅炉爆管事故的发生,严重影响了火电机组的安全、经济运行。为此,有必要研究基于现代控制策略的新型汽温控制方案。
     同样,大型火电机组的负荷系统是一个多变量非线性动态系统,它的动态特性随工况的变化而大范围变化。基于传统PID控制系统的机、炉协调控制系统,只是根据大型火电机组在某一负荷点上的对象特性来设计的,但当机组的负荷大范围变化时,被控对象的动态特性往往变化很大,且被控对象存在严重的非线性。因此,常规PID控制系统在机组的整个负荷范围内不可能是全局最优的,使大型火电机组的负荷跟踪能力及机组的稳定性均难以取得良好的控制效果。
     由于PID控制规律是线性的,而热工被控对象是非线性的,因此,若仍采用PID控制策略来对电站热工控制系统进行优化,总是突破不了用线性控制器来控制非线性对象的这一局限性,控制品质提高必定会受到限制。要进一步提高控制品质,应该尝试从方法上改变目前的这个常规控制模式,而研究采用基于火电机组整体非线性模型的全局非线性优化控制系统
     为了解决电厂热工过程控制中存在的一些实际问题,本文针对大型火电机组汽温被控对象大惯性、大滞后的特点,以及负荷系统的非线性、时变性等特点,结合非线性系统模糊模型和预测控制、状态变量控制的方法,提出了一系列基于非线性模糊模型的状态变量控制方法和预测控制方法的先进控制策略,为复杂热力系统的控制提供了新的思路和方法。
     论文的第一章主要介绍了论文的选题意义和背景,以及状态变量控制、预测控制、基于线性矩阵不等式(LMI)控制的研究现状,分析了当前火电机组热工过程控制中存在的问题,并介绍了论文的主要研究工作。
     考虑到状态变量控制技术和预测控制技术是目前两种比较适合大滞后被控过程的控制方法,论文第二章重点介绍了状态变量控制和预测控制的基本原理,针对大型火电厂再热汽温被控对象大惯性、大滞后的特点,提出了基于状态变量-预测控制技术的再热汽温控制方法,即先采用状态反馈理论来补偿再热汽温被控对象的滞后和惯性,然后通过预测控制来对补偿后的广义被控对象进行控制。仿真试验及现场运行结果表明,该控制方法具有优良的控制品质,是一种对大滞后过程较为有效的控制策略。
     论文第三章根据目前国内外在非线性系统控制研究上的现状及存在的问题,文中针对被控对象的仿射TSK模糊模型,结合现代控制理论中的状态变量控制原理,研究提出了仿射模糊状态变量控制方法,并从理论上证明了闭环系统的稳定性,该控制方法具有优良的全局
Advanced DCS (Distributed Control Systems) have been used in large scale thermal dynamic facility’s automatic control system. It provides good conditions for the application of the advanced control theory. However, because almost all of the large scale thermal facilities are still using conventional linear PID control system, it is very difficult to acquire excellent controlling performance in the global load varying range. Almost all of the critical control systems of the large scale power plant cannot acquire satisfying control quality when unit load varies in great ranges, it threatens the secure and economical operation of thermal dynamic facility severely.
     Most of the reheat steam temperature and superheat steam temperature control systems are the common cascade control system. But many of the controlled objects have large inertia and lag characteristic, and the spray valve have great nonlinearity. The steam temperature will deviate 8~10℃from the set-point when unit load changes, and always exceeds the steam temperature limits. Because the steam temperature usually exceeds the setpoint, the accident of blowing out the pipeline happened frequently. It threatens the unit’s security and economy severely. So it is necessary to research new style steam temperature control strategy based on the modern control theory.
     Load system of the large scale power plant’s unit as well, is a multi-variable nonlinear dynamic system, and the dynamic characteristic will change with the different operating condition. The traditional boiler-turbine coordinated control system is based on PID. This kind of coordinated control system is designed on a specific load condition. When the unit load varies in a large range, the unit’s characteristic would also change significantly. The characteristic of the unit’s load system has great nonlinearity, so it is impossible that the common PID control system have the global optimization in the whole load varying range. And it is difficult that the unit load tracking ability and the unit’s stability have good control performance.
     Because the PID controlling law is linear while the controlled object is nonlinear, if we still use the traditional PID control theory to optimize the thermal power plant control system, we are using the linear controller to control the nonlinear object. Then the control performance would be confined. In order to improve the control performance, we must change the conventional control strategy thoroughly. We can research the global nonlinear optimizing control system which based on the power plant’s global nonlinear model.
     In order to resolve the practical problem in the thermal process control of power plant, aimed at the large inertia and lag characteristics of the steam temperature object, and the time-variant and nonlinearity of the load system, combine with the nonlinear fuzzy model and predictive control, state variable control methods, this paper put forwards a series of advanced control strategies based on nonlinear fuzzy model state variable control theory, state feedback control theory and predictive control theory. It is a new idea for the controlling of the complex thermal-dynamical systems.
     The purpose of the selected researching aspect and the background of this paper are introduced in the first part of the paper. It also introduces the researching status of the state variable control, predictive control and Linear Matrix Inequality, and analyzes the existing
引文
[1] 吕剑虹,陈建勤,刘志远,等.基于模糊规则的热工过程非线性模型的研究[J].中国电机工程学报. 2002,22(11):132-137.
    [2] 雎刚,陈绍炳,徐治皋.火电机组锅炉过热汽温的约束模型预测控制研究[J].热能动力工程.2001,16(11):641-643,682.
    [3] 赵文杰,刘吉臻,刘延泉.基于 T-S 模型的非线性系统控制方法[J].华北电力大学学报.2003,30(3):48-52.
    [4] Z. Qu. Robust Control of Nonlinear Systems by Estimating time Variant Uncertainties[J]. IEEE Trans on Automatic Control, 2002, 47(1): 115-121.
    [5] 吕剑虹,王建武,王永生等.200MW 及以下容量机组除氧器和凝汽器水位多变量模糊控制系统[J].中国电力.2001,34(1):55-58.
    [6] 吕剑虹,张世军,陈来九.自学习多变量汽温控制系统[J].东南大学学报.1995,25(5):33-39.
    [7] 沈炯,金林,陈来九.火电单元机组负荷最优预见控制系统仿真研究[J].中国电机工程学报.1999,19(3):14-17,52.
    [8] 王东风,韩璞,曾德良.单元机组协调控制系统发展和现状[J].中国电力.2002,35(11):69-73.
    [9] 侯逸文,沈炯,李益国.基于小波神经网络的火电单元机组负荷系统建模仿真研究[J].中国电机工程学报.2003,23(10):220-224.
    [10] 房方,刘吉臻,谭文.火电单元机组协调控制系统的多变量 IMC-PID 设计[J].动力工程.2004,24(3):360-365.
    [11] 郑大钟.线性系统理论[M].北京:清华大学出版社,2000.
    [12] Harry L. Trentelman, Anton A. Stoorvogel, Malo Hautus. Control Theory for Linear Systems[M]. Berlin: Springer, 2001.
    [13] Julian Stoev, Jin Young Choi, Jay Farrell. Adaptive control for output feedback nonlinear systems in the presence of modeling errors[J]. Automatica. 2002, 38, 1761-1767.
    [14] Jong-Koo Park, Dong-Ryeol Shin, Tai M. Chung. Dynamic observers for linear time-invariant systems[J]. Automatica, 2002, 38, 1083-1087.
    [15] Kremp. R. Application of three-level-pseudorandom-signals for parameter estimation of nonlinear system[A]. 3rd IFAC Symp. On Identification and System Parameter Estimation[C], 1973, 2:835-838.
    [16] Min-Shin Chen, Ren Jay Fu. An observer-based state feedback control of parametrically excited systems[J]. Systems & Control Letters, 1997, 30, 119-125.
    [17] T. Baumann, B. Srinivasan, R. Longchamp, “Singularity in Dynamic State Feedback Linearization”, in Proceedings of the 36th Conference on Decision & Control, San Diego, California USA. December, 1997 : 12-17.
    [18] Masoud Soroush, Neeraj Zambare. Nonlinear Output Feedback Control of a Class of Ploymerization Reactors[J]. IEEE Trans. On Control Systems Technology, 2000, 8(2):310-320.
    [19] Kay-Soon Low, Hualiang Zhuang. Robust Model Predictive Control and Observer for Direct Drive Applications[J]. IEEE Trans. On Power Electronics, 2000, 15(6):1018-1028.
    [20] Wook Chang, Jin Bae Park, Young Hoon Joo. Static output-feedback Fuzzy controller for Chen’s chaotic system with uncertainties[J]. Information Sciences, 2003, 151:227-244.
    [21] Hu Pinhui, Zuo Xin, Yuan Pu. Properties of state feedback model predictive control systems. in Proceedings of the 3rd World Congress on Intelligent Control and Automation, Hefei, P.R. China, 2000: 2774-2778.
    [22] Han Zhongxu, Wang Yuxue, Qu Yun, etc. Application of state feedback Based on Increment FunctionObserver in Generator Units of Power Plant in China. in Proceedings of 2004 International Conference on Power System Technology, Singapore, November 2004:1261-1265.
    [23] Shen T, Tamura K. Robust H∞ control of linear systems with nonlinear perturbation. in Proceedings of Asian Control Conference, Tokyo, 1994: 201-204.
    [24] Lee K. R., Kim J. H., Jeung E. T. Output feedback robust H∞ control of nonlinear fuzzy dynamic systems with time-varying delay[J]. IEEE Trans on Fuzzy Systems, 2000, 8(6): 657-664.
    [25] S.G.Cao, N.W.Rees, G. Feng. Analysis and design of fuzzy control systems using dynamic fuzzy-state space models[J]. IEEE Trans. Fyzzy Syst., vol.7, pp.192-200, Apr.1999.
    [26] Min-Shin Chen, Ren Jay Fu. An observer-based state feedback control of parametrically excited systems[J]. Systems & Control Letters. 1997(30), pp: 119-125.
    [27] K.Tanaka, T.Ikeda, H.O.Wang. Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs[J]. IEEE Trans. Fuzzy Syst., vol.6, pp.250-265, May 1998
    [28] 韩忠旭,吕秀红,韩莉.过热器蒸汽温度状态观测器的鲁棒性分析[J].中国电机工程学报.2003,23(4):177-180.
    [29] 吕剑虹,陈建勤,刘志远,等.基于模糊规则的热工过程非线性模型的研究[J].中国电机工程学报.2002,22(11):132-137.
    [30] 陈彦桥,刘吉臻,谭文,等.模糊多模型控制及其对 500MW 单元机组协调控制系统的仿真研究[J].中国电机工程学报.2003,23(10):199-203.
    [31] 吕剑虹,袁震等.基于状态变量控制器的再热汽温控制系统[J].中国电力.2002,35(1):53-56.
    [32] 韩忠旭.状态观测器及状态反馈控制在亚临界锅炉蒸汽温度控制系统中的应用[J].中国电机工程学报.1999,19(11):76-79.
    [33] 华志刚,吕剑虹,张铁军.状态变量-预测控制技术在 600MW 机组再热汽温控制中的研究与应用[J].中国电机工程学报.2005,25(12):103-107.
    [34] Luan Xiuchun, Li Shiyong, Li Liling. Adaptive Control for the Superheated Steam Temperature based on Multi-Model State Observer. Proceedings of the Third International Conference on Machine Learning and Cybermetics, Shanghai, August 2004: 978-982.
    [35] 刘建江,倪维斗,张法文等.基于 H∞理论的状态变量控制在再热汽温控制中的应用[J].动力工程.2000,20(5):867-871.
    [36] Richalet J, et al. Model Predictive Heuristic Control: Applications to Industrial Processes[J]. Automatica. 1978, 14(5): 413-428.
    [37] C.R. Cutler, B.L. Ramaker. Dynamic matrix Control-A computer control algorithm [J]. in Proc. Joint Automatic Control Conf.,1980
    [38] Clarke D.W., Mohtadi C., Tuffs P.S..Generalized Predictive Contrl: Part 1 and 2 [J]. Automatica, 1987, 23(2): 137-160
    [39] Danielle Dougherty, Doug Cooper. A practical multiple model adaptive strategy for single-loop MPC[J]. Control Engineering Practice, 2003(11):141-159.
    [40] Mike J. Grimble, Andrzej W. Ordys. Predictive control for industrial applications[J]. Annual Review in Control, 2001(25):13-24.
    [41] Drago Matko, Katarina Kavsek-Biasizzo, Igor Skrjanc, etc. Generalized Predictive Control of a Thermal Plant Using Fuzzy Model. in Proceedings of the American Control Conference, Chicago, Illinois, June 2000: 2053-2057.
    [42] 吕剑虹.特征结构下基于极点配置的多变量预测控制[J].自动化学报.1994,20(5):610-615.
    [43] Kothare M V, Balakrishnan V, Morari M. Robust constrained model predictive control using linear matrix inequalities[J]. Automatica, 1996, 32(10):1361-1379.
    [44] Jianli Wei, Yongmao Xu. Neural networks based model predictive control of an industrial polypropylene process. in Proceedings of 2002 IEEE International Conference on Control Applications, Glasgow, Scotland U.K, September 2002: 1252-1267.
    [45] 李静如,李尚春.模糊预测控制及其应用研究[J].控制理论与应用.1992,9(3):283-287.
    [46] Jean Saint-Donat, Naveen Bhat, Thomas J Mcavoy. Neural net based model predictive control[J]. Int. J. Control, 1991, 54(6): 1453-1468.
    [47] Stephen Piche, Bijian Sayyer-Rodsari, Doug Johnson, et al. Nonlinear Model Predictive Control Using Neural Networks[J]. IEEE Control Systems Magazine, 2000, 6:53-62.
    [48] 雎刚,陈来九.模糊预测控制及其在过热汽温控制中的应用[J].中国电机工程学报.1996,16(1):17-21.
    [49] Bruce P. Gibbs, David S. Weber, David W. Porter. Application of Nonlinear Model-Based Predictive Control to Fossil Power Plants. in Proceedings of the 30th Conference on Decision and Control, Brighton, England. December 1991: 1850-1856.
    [50] G. Prasad, E. Swidenbank, B. W. Hogg. A Neural Net Model-based Multivariable Long-range Predictive Control Strategy Applied in Thermal Power Plant Control[J]. IEEE Transactions on Energy Conversion, 1998, 13(2):176-182.
    [51] Qiu Xuefeng, Xue Meisheng, Sun Demin, etc. The Stair-like Generalized Predictive Control for Main-steam Pressure of Boiler in Steam-power Plant. in Proceedings of the 3th World Congress on Intelligent Control and Automation, Hefei, P. R. China. 2000: 3165-3167.
    [52] Eduardo Gallestey, Alec Stothert, Marc Antoine, etc. Model Predictive Control and the Optimization of Power Plant Load While Considering Lifetime Consumption[J]. IEEE Trans. On Power Systems, 2002, 17(1): 186-191.
    [53] 郭颖,张铁军,吕剑虹.基于遗传监督的受限预测控制及其在热工控制中的作用[J].东南大学(自然科学版).2005,35(1):55-59.
    [54] Han Pu, Wang Guoyu, Wang Dongfeng. On the Application of Predictive Functional Control in Steam Temperature Systems of Thermal Power Plant. in Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, December 2003: 6559-6564.
    [55] Yang Xiyun, Xu Daping, Liu Yibing. Study of Multivariable Predictive Functional Control for Reheats Temperature System. in Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, P. R. China, June 2004: 600-603.
    [56] 孙德立,佟振声.燃煤电站球磨机的模型算法控制[C].中国自动化学会控制理论及其应用年会论文集,中国杭州,1990.
    [57] Tetsuya Iwasaki, Skelton R E. All Controllers for the General H∞ Control Problem: LMI Existence Conditions and State Space Formulas[J]. Automatica, 1994, 30(8): 1307-1317.
    [58] Tetsuya Iwasaki. Control System Design via LMIs[J]. J. SICE, 1995, 34(3): 164-169.
    [59] Carsten, Gahinet. Multiobjective Output-Feedback Control via LMI Optimization[J]. IEEE Trans. On Automatic Control, 1997, 42(7): 896-910.
    [60] Stephen Boyd S, Laurent EI Ghaoui, et al. Linear Matrix Inequalities in System and Control Theory: SIAM Studies in Applied Mathematics[M]. 1994.
    [61] Lee Y I, Kouvaritakis B. Linear matrix inequalities and polyhedral invariant sets in constrained robust predictive control[A]. Proc. of American Control Coference[C], San Diego, 1999, 657-661.
    [62] 李益国,沈炯,吕震中.基于 LMI 的鲁棒负荷预见控制方法[J].中国电机工程学报.2003,23(12):213-217.
    [63] Ghaoui, Gerard. Control of Rational Systems Using Linear Fractional Representations and Linear MatrixInequalities[J]. Automatica, 1996, 32(9): 1273-1284.
    [64] 曹永岩,孙优贤.输出反馈严格正实控制器设计[J].控制与决策.1998,12(2):160-164.
    [65] 忻欣,冯纯伯.一般广义对象的严格真 H∞控制设计[J].自动化学报.1997,123(5):669-672.
    [66] Turan L, Safonov M G, Huang C H. Synthesis of Positive Real Feedback Systems: A Simple Derivation via Parrott’s Theorem[J]. IEEE Trans. On Automatic Control, 1997, 42(5): 1154-1156.
    [67] Yamada Yuji, Hara Shinji. An LMI Approach to Local Optimization for Constantly Scaled H∞ Control Problems[J]. Int. J. Control, 1997, 67(2): 234-249.
    [68] 朱晓东,孙优贤.不确定动态时滞系统的基于观测器的鲁棒镇定设计[J].控制理论与应用.1996,13(2):254-258.
    [69] 张明君,孙优贤.基于观测器的状态和控制输入不确定时滞系统的鲁棒镇定[J].信息与控制.1998,27(2):11-15.
    [70] Vikram Kapila, Wassim M Haddad. Memoryless H∞ Controllers for Discrete Time Systems with Time Delay[J]. Automatica, 1998, 34(9): 1141-1144.
    [71] 苏宏业,王景成,褚键.一类不确定动态时滞系统的无记忆鲁棒镇定控制[J].自动化学报.1998,24(4):497-501.
    [72] 俞立,王万良,褚键.不确定时滞系统的输出反馈稳定化控制器设计[J].自动化学报.1998,24(2):225-229.
    [73] 陆国平.不确定时滞系统的无记忆鲁棒控制[J].信息与控制.1999,28(2):21-26.
    [74] Eun Tae Jeung, Jong Hae Kim, Hong Bae Park. H∞ - Output Feedback Controller Design for Linear Systems with Time- Varying Delayed State[J]. IEEE Trans. On Automatic Control, 1998, 43(7): 971-974.
    [75] Niculescu Silviu - Iulian. H∞ Memoryless Control with a-Stability Time Delay Systems: An LMI Approach[J]. IEEE Trans. On Automatic Control, 1998, 43(8): 739-742.
    [76] Shaked U, Yaesh I, Carlos E de Souza. Bounded Real Criteria for Linear Time- Delay Systems[J]. IEEE Trans. On Automatic Control, 1998, 43(7): 1016-1022.
    [77] Hutchinson. The Kalman Filter Applied to Aerospace and Electronic Systems[J]. IEEE Trans. On Aerospace and Electronic Systems, 1993, 29(4): 1321-1331.
    [78] K. Tanaka, M Sugeno, Stability analysis of fuzzy systems using Lyapunov’s direct method[C]. In Proc. NAFIPS, Totonto, Canada, 1990.
    [79] R. Langari, M. Tomizuka, Analysis and synthesis of fuzzy linguistic control systems[C]. In ASME Winter Annu. Meet., 1990, pp. 35-42
    [80] S. Kitamura, T. Kurozumi, Extended circle criterion and stability analysis of fuzzy control systems[C]. In Proc. Int. Fuzzy Eng. Symp., Yokohama, Japan, 1991, vol. 2, pp. 634-643.
    [81] K. Tanaka, M. Sugeno, Stability analysis and design of fuzzy control systems[J]. Fuzzy Sets Syst., vol. 45, no. 2, pp. 135-156, 1992.
    [82] K. Tanaka, M.Sano, On the concept of fuzzy regulators and fuzzy observers[C]. In Proc. 3rd IEEE Int. Conf. Fuzzy Syst., Orlando, FL, June 1994, vol. 2, pp. 767-772.
    [83] S. Singh, Stability analysis of discrete fuzzy control systems[C]. In Proc. 1st IEEE Int. Conf. Fuzzy Syst. San Diego, CA, 1992, pp. 527-534.
    [84] R. Katoh, et al, Graphical stability analysis of a fuzzy control system[C]. In Proc. IEEE Int. Conf. IECON, HI, 1993, vol. 1, pp. 248-253.
    [85] K Tanaka, T Ikeda, Hua O Wang. Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stability, H∞ control theory and linear matrix inequalities[J]. IEEE Trans. on Fuzzy Systems, 1996, 4(1), pp. 1-13.
    [86] K Tanaka, M Sano. A robust stabilization problem of fuzzy control systems and its application to backing upcontrol of a truck-trailer[J]. IEEE Trans. on Fuzzy Systems, 1994, 2(2), pp. 119-134.
    [87] E Kim, H J Kang, M Park. Numerical stability analysis of fuzzy control systems via quadratic programming and linear matrix inequalities[J]. IEEE Trans. Syst., Man, Cybern. A, 1999, 29, pp. 333-346.
    [88] H. Wang, K. Tanaka, M. Griffin, An approach to fuzzy control of nonlinear systems: Stability and design
    [89] Bolis V., Maffezzoni C., Ferrarini L. Synthesis of boiler-turbine control system by single loop auto-tuning[J]. Control Engineering Practice, 1995 (36): 761-771.
    [90] Wang Jingfang, Jiang Xuezhi, Wang Wei. Simulation Study on Coordinated PID Neural Network Control for Boiler-Turbine Unit. in Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, P.R. China, 2002: 909-912.
    [91] Xie Gang, Yan Gaowei, Ma Hongwei, etc. The intelligent compound controller used in thermal Power Unit coordinated control system. in Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, P.R. China, 2002: 1867-1871.
    [92] Liu Hongbo, Li Shaoyuan, Chai Tianyou. Control of Power-Plant Main Steam Pressure and Power Output Based on Fuzzy Reasoning and Auto-tuning. in Proceedings of The IEEE International Conference on Fuzzy Systems, 2003: 1395-1400.
    [93] Wang Dongfeng, Han Pu, Guo Qigang. Neural Network Self-tuning PID Control for Boiler-Turbine Unit. in Proceedings of 5th World Congress on Intelligent Control and Automation, Hangzhou, P. R. China, 2004: 5175-5179.
    [94] Lu S, Hogg B. W. Predictive coordinated control for power-plant steam pressure and power output[J]. Control Engineering Practice, 1997, 5 (1): 79-84.
    [95] 刘志远,吕剑虹,陈来九.基于神经网络在线学习的过热汽温自适应控制系统[J].中国电机工程学报.2004,24(4):179-183.
    [96] Ibrahim Kaya. Improving performance using cascade control and a Smith predictor[J]. ISA Transactions, 2000 (40): 223-234.
    [97] Kai Shen, Jidong Lu, Zhenghua Li, etc. An adaptive fuzzy approach for the incineration temperature control process[J]. Fuel, 2005 (84): 1144-1150.
    [98] Toshitaka Fujiwara, Hirokazu Miyakawa. Application of predictive adaptive control system for steam temperature control in boiler plant. in Proceedings of the 29th Conference on Decision and Control, Honolulu, Hawall, 1990: 2181-2184.
    [99] Martin Fischer, Oliver Nelles, Rolf Isermann. Adaptive predictive control of a heat exchanger based on a fuzzy model[J]. Control Engineering Practice, 1998(6): 259-269.
    [100] G. Arroyo-Figueroa, L. E. Sucar, A. Villavicencio. Fuzzy intelligent system for the operation of fossil power plants[J]. Engineering Application of Artificial Intelligence, 2000(13): 431-439.
    [101] A. Sanchez-Lopez, G. Arroyo-Figueroa, A. Villavicencio-Ramirez. Advanced control algorithms for steam temperature regulation of thermal power plants[J]. Electrical Power and Energy Systems, 2004 (26): 779-785.
    [102] 胡一倩,吕剑虹,张铁军.一类自适应模糊控制方法研究及在锅炉汽温控制中的应用[J].中国电机工程学报.2003,23(1):136-140.
    [103] Gee Yong Park, Poong Hyun Seong. Application of a self-organizing fuzzy logic controller to nuclear steam generator level control[J]. Nuclear Engineering and Design, 1997(167): 345-356.
    [104] Li Tianyou. A weighted algorithm of fuzzy logic strategy on water level control of steam generator[J]. The 36th IEEE Conference on Decision and Control, San Diego, California, USA, 1997.
    [105] H. Habibiyan, S. Setayeshi, H. Arab-Alibeik. A fuzzy-gain-scheduled neural controller for nuclear steam generators[J]. Annals of Nuclear Energy, 2004 (31): 1765-1781.
    [106] Yang Ping, Peng Daogang, Yang Yanhua, etc. Neural networks internal model control for water level ofboiler drum in Power Station. in Proceedings of 3rd International Conference on Machine Learning and Cybernetics, Shanghai, P. R. China, 2004: 3300-3303.
    [107] 刘长良,梁伟平,董泽.火电厂球磨机制粉系统的自调整模糊控制[J].中国电机工程学报.2001,21(12):93-96.
    [108] 刘长良,梁伟平,董泽.钢球磨煤机制粉系统的递阶模糊控制[J].动力工程.2002,22(5):1969-1973.
    [109] 吕剑虹,沈炯,杨榕,等.中储式钢球磨煤机制粉系统控制策略研究及应用[J].中国电力.2000,33(9):57-61.
    [110] Cai Jun, Lu Dezheng, Wang Pingyang. Load Following Capability of Thermal Power Plant as Contributed by Coal Mill Control[J]. IEEE Trans. On Control Systems Technology, 1998, 16(4):1203-1207.
    [111] Wang Dongfeng, Han Pu, Peng Daogang. Optimal for Ball Mill Pulverizing System and Its Applications. in Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, P. R. China, Nov. 2004: 2131-2136.
    [1] 郑大钟.线性系统理论[M].北京:清华大学出版社,2000.
    [2] Harry L. Trentelman, Anton A. Stoorvogel, Malo Hautus. Control Theory for Linear Systems[M]. Berlin: Springer, 2001.
    [3] Julian Stoev,Jin Young Choi,Jay Farrell.Adaptive control for output feedback nonlinear systems in the presence of modeling errors[J].Automatica.2002,38,1761-1767.
    [4] Jong-Koo Park, Dong-Ryeol Shin, Tai M. Chung. Dynamic observers for linear time-invariant systems[J]. Automatica, 2002, 38, 1083-1087.
    [5] G. Kang, W. Lee, “Design of TSK fuzzy controller based on TSK fuzzy model using pole placement”, in Proc. IEEE International Conference. Fuzzy Systems, vol.1, 1998, pp: 605-612
    [6] Soohee Han, Wook Hyun Kwon. Receding Horizon Finite Memory Controls for Output Feedback Controls of Discrete-Time State Space Models. in Proceedings of the 30nd Annual Conference of the IEEE Industrial Electronics Society, Busan, Korea, November 2004: 1289-1294.
    [7] Feng-Hsiag Hsiao, Jung-Dong, Hwang, Cheng-Wu Chen, etc. Robust Stabilization of Nonlinear Multiple Time-Delay Large-Scale Systems Via Decentralized Fuzzy Control[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(1):152-163.
    [8] N. C. Sahoo, B. K. Panigrahi, P. K. Dash, etal. Multivariable nonlinear control of STATCOM for synchronous generator stabilization[J]. Electrical Power and Energy Systems, 2004(26): 37-48.
    [9] Martinez M, Senent J S, Blasco X. Generalized predictive control using genetic algorithms[J]. Engineering Applications of Artifical Intelligence, 1998, 11: 355-367.
    [10] Onnen C, Babuska R, Kaymak U, etal. Genetic algorithms for optimization in predictive control[J]. Control Engineering Practice, 1997, 5(10): 1363-1372.
    [11] Naeem W. Nonlinear predictive control using genetic algorithms[D]. Dhrhan: King Fahd University of Petroleum and Minirals, Saudi Arabia, 2001.
    [12] Masoud Soroush, Neeraj Zambare. Nonlinear Output Feedback Control of a Class of Ploymerization Reactors[J]. IEEE Trans. On Control Systems Technology, 2000, 8(2):310-320.
    [13] Wook Chang, Jin Bae Park, Young Hoon Joo. Static output-feedback Fuzzy controller for Chen’s chaotic system with uncertainties[J]. Information Sciences, 2003, 151:227-244.
    [14] Kremp. R. Application of three-level-pseudorandom-signals for parameter estimation of nonlinear system[A]. 3rd IFAC Symp. On Identification and System Parameter Estimation[C], 1973, 2:835-838.
    [15] 沈炯,金林,陈来九.火电单元机组负荷最优预见控制系统仿真研究[J].中国电机工程学报.1999,19(3):14-17,52.
    [16] 吕剑虹,陈建勤,刘志远,等.基于模糊规则的热工过程非线性模型的研究[J].中国电机工程学报.2002,22(11):132-137.
    [17] 陈彦桥,刘吉臻,谭文,等.模糊多模型控制及其对 500MW 单元机组协调控制系统的仿真研究[J].中国电机工程学报.2003,23(10):199-203.
    [18] Wang Dongfeng, Han Pu, Peng Daogang. Optimal for Ball Mill Pulverizing System and Its Applications. in Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, P. R. China, Nov. 2004: 2131-2136.
    [19] 吕剑虹,袁震等.基于状态变量控制器的再热汽温控制系统[J].中国电力.2002,35(1):53-56.
    [20] 韩忠旭.状态观测器及状态反馈控制在亚临界锅炉蒸汽温度控制系统中的应用[J].中国电机工程学报.1999,19(11):76-79.
    [21] Luan Xiuchun, Li Shiyong, Li Liling. Adaptive Control for the Superheated Steam Temperature based on Multi-Model State Observer. Proceedings of the Third International Conference on Machine Learning and Cybermetics, Shanghai, August 2004: 978-982.
    [22] Richalet J, et al. Model Predictive Heuristic Control: Applications to Industrial Processes[J]. Automatica. 1978, 14(5): 413-428.
    [23] C.R. Cutler, B.L. Ramaker. Dynamic matrix Control-A computer control algorithm [J]. in Proc. Joint Automatic Control Conf.,1980
    [24] Danielle Dougherty, Doug Cooper. A practical multiple model adaptive strategy for single-loop MPC[J]. Control Engineering Practice, 2003(11):141-159.
    [25] Camacho E F. Constrained generalized predictive control[J]. IEEE Trans on Automatic Control. 1993, 38(2): 327-331.
    [26] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control-part Ⅱ. Extensions and interpretations[J]. Automatica. 1987, 23(2): 149-160.
    [27] 吕剑虹,陈来九.预测控制在热工控制中的应用前景[J].动力工程.1997,17(2):12-15.
    [28] Camacho E F, Bordons C. Model Predictive Control[M], London: Springer, 1999.
    [29] Wilkinson D J, Morris A J, Tham M T. Multivariable constrained predictive control (with application to high performance distillation)[J]. International Journal Control, 1994, 59(3): 841-862.
    [30] Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model predictive control: stability and optimality[J]. Automatica, 2000, 35: 789-814.
    [31] Eduardo Gallestey,Alec Stothert,Marc Antoine,Steve Morton.Model Predictive Control and the Optimization of Power Plant Load While Considering Lifetime Consumption [J] IEEE Trans. Power Systems.2002,17(2),186-191
    [32] 雎刚,陈来九.模糊预测控制及其在过热汽温控制中的应用[J].中国电机工程学报.1996,16(1):17-21.
    [33] Tang G.Y., Feedforward and feedback optimal control for linear systems with sinusoidal disturbances[J]. High Technology Letters. 2001, 7(4): 16-19.
    [34] M.J. Grimble. Non-linear generalized minimum variance feedback, feedforward and tracking control[J]. Automatica. 2005(41): 957-969.
    [35] D. Wang, D.H. Zhou, Y.H. Jin. Adaptive generic model control for a class of nonlinear time-varying processes with input time delay[J]. Journal of Process Control. 2004(14): 517-531.
    [36] Swaroop Darbha. On the synthesis of controllers for continuous time LTI systems that achieve a non-negative impulse response[J]. Automatica. 2003(39): 159-165.
    [37] Wei-Yen Wang, Yih-Guang Leu, Tsu-Tian Lee. Output-feedback control of nonlinear systems using direct adaptive fuzzy-neural controller[J]. Fuzzy Sets and Systems. 2003(140): 341-358.
    [38] Zhaoyang Wan, Mayuresh V. Kothare. Robust output feedback model predictive control using off-line linear matrix inequalities[J]. Journal of Process Control. 2002(12): 763-774.
    [39] Katsuhiko Ogata. Modern Control Engineering (Second Edition) [M],Prentice-Hall,Englewood Cliffs,New Jersey,1990
    [40] 张国山,柴天佑,顾兴源.一般动态系统降阶观测器的设计及参数化表示[J].控制理论与应用.1997,14(4):584-588.
    [41] Andrew E.B.Lim, Xun Yu Zhou. Stochastic Optimal LQR Control with Integral Quadratic Constraints and Indefinite Control Weights[J]. IEEE Trans. on Automatic Control. 1999, 44(7): 1359-1369.
    [42] Chi-Jo Wang. Controllability and Observability of Linear Time-Varying Singular Systems[J]. IEEE Trans. on Automatic Control.1999,44(10):1901-1905.
    [43] Clarke D.W., Scattolini R. Constrained receding-horizon predictive control[J]. IEE Proceedings. D-Control Theory and Applications, 1991, 138(4): 347-354.
    [44] 胡一倩,吕剑虹,张铁军.一类自适应模糊控制方法研究及在锅炉汽温控制中的应用[J].中国电机工程学报.2003,23(1):136-140.
    [45] 李少远,王群仙.非最小相位系统的加权预测控制[J].控制理论与应用.1998,15(2):295-298.
    [46] Sarimveis H, Bafas G.. Fuzzy model predictive control of non-linear processes using genetic algorithms[J]. Fuzzy Sets and Systems, 2003, 139, pp: 59-80.
    [47] Huang Y.L, Lou H.H., Gong J.P. Fuzzy model predictive control[J]. IEEE Trans. On Fuzzy Systems, 2000, 8(6): 665-677.
    [48] Chunjiang Qian, Wei Lin. A Continuous Feedback Approach to Global Strong Stabilization of Nonlinear Systems[J]. IEEE Trans. on Automatic Control. 2001, 46(7): 1061-1079.
    [49] Katsuhiko Ogata. Modern Control Engineering (Second Edition) [M],Prentice-Hall,Englewood Cliffs,New Jersey,1990
    [1] Wang Jingfang, Jiang Xuezhi, Wang Wei. Simulation Study on Coordinated PID Neural Network Control for Boiler-Turbine Unit. in Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, P.R. China, 2002: 909-912.
    [2] 刘志远,吕剑虹,陈来九.基于神经网络在线学习的过热汽温自适应控制系统[J].中国电机工程学报.2004,24(4):179-183.
    [3] Yang Ping, Peng Daogang, Yang Yanhua, etc. Neural networks internal model control for water level of boiler drum in Power Station. in Proceedings of 3rd International Conference on Machine Learning and Cybernetics, Shanghai, P. R. China, 2004: 3300-3303.
    [4] 陈彦桥,刘吉臻,谭文,等.模糊多模型控制及其对 500MW 单元机组协调控制系统的仿真研究[J].中国电机工程学报.2003,23(10):199-203.
    [5] Mike J. Grimble, Andrzej W. Ordys. Predictive control for industrial applications[J]. Annual Review in Control, 2001(25):13-24.
    [6] A. Sanchez-Lopez, G. Arroyo-Figueroa, A. Villavicencio-Ramirez. Advanced control algorithms for steam temperature regulation of thermal power plants[J]. Electrical Power and Energy Systems, 2004 (26): 779-785.
    [7] Toshitaka Fujiwara, Hirokazu Miyakawa. Application of predictive adaptive control system for steam temperature control in boiler plant. in Proceedings of the 29th Conference on Decision and Control, Honolulu, Hawall, 1990: 2181-2184.
    [8] 胡一倩,吕剑虹,张铁军.一类自适应模糊控制方法研究及在锅炉汽温控制中的应用[J].中国电机工程学报.2003,23(1):136-140.
    [9] Liu B. Dependent-chance programming with fuzzy dicisions[J]. IEEE Trans. On Fuzzy Systems, 1999, 7 (3): 354-360.
    [10] E. P. Klement, M. Navara. A survey on different triangular norm-based fuzzy logics[J]. Fuzzy Sets and Systems, 1999, 101: 241-251.
    [11] Olaru C, Wehenkel L. A complete fuzzy decision tree technique[J]. Fuzzy Sets and Systems, 2003, 138: 221-254.
    [12] Cheng C C, Hsieh W H. The fuzzy crystallization algorithm: a new approach to complex systems modeling[J]. IEEE Trans. on System, Man and Cybernetics (B), 2001, 31(6): 891-901.
    [13] Hoppner F, Klawonm F. A contribution to convergence theory of fuzzy c-means and derivatives[J]. IEEE Trans. on Fuzzy Systems, 2003, 11(5): 682-694.
    [14] Wong C C, Chen C C. A hybrid clustering and gradient descent approach for fuzzy modeling[J]. IEEE Trans. on System, Man and Cybernetics (B), 1999, 29(6): 686-693.
    [15] Ruusunen M, Leiviska K. Fuzzy modeling of carbon dioxide in a burning process[J]. Control Engineering Practice, 2004, 12: 607-614.
    [16] K. Tanaka, M Sugeno, Stability analysis of fuzzy systems using Lyapunov’s direct method[C]. In Proc. NAFIPS, Totonto, Canada, 1990.
    [17] R. Langari, M. Tomizuka, Analysis and synthesis of fuzzy linguistic control systems[C]. In ASME Winter Annu. Meet., 1990, pp. 35-42
    [18] K.Tanaka and M.Sugeno. Stability analysis and design of fuzzy control system[J]. Fuzzy Sets Syst. Vol.45, pp.135-156, 1992.
    [19] T.Takagi, M.Sugeno. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Trans.Syst., Man, Cybern., vol. SMC-15, pp. 116-132, 1985
    [20] M.A.L.Thathachar and P.Viswanath. On the stability of fuzzy systems[J]. IEEE Trans. Fuzzy Syst., vol.5, pp.145-151, Feb.1997
    [21] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Trans. Syst., Man, Cybern., vol. 15, pp. 116-132, 1985.
    [22] H. Wang, K. Tanaka, An LMI-based stable fuzzy control of nonlinear systems and its application to control of chaos[C]. Proc. FUZZ-IEEE, vol. 2, pp. 1433-1438, 1996.
    [23] K. Tanaka, M. Sano, A robust stabilization problem of fuzzy controller systems and its applications to backing up control of a truck-trailer[J]. IEEE Trans. Fuzzy Syst., vol. 2, pp. 119-134, May. 1994.
    [24] E.Kim, H.J.Kang, M.Park. Numerical stability analysis of fuzzy control systems and via quadratic programming and linear matrix inequalities[J]. IEEE Trans.Syst., Man, Cybern. A, vol.29, pp.333-346, July.1999.
    [25] K.Tanaka, M.Sano. A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck trailer[J]. IEEE Trans. Fuzzy Syst., vol.2, pp. 119-134, May 1994.
    [26] K.Tanaka, T.Ikeda, H.O.Wang. Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs[J]. IEEE Trans. Fuzzy Syst., vol.6, pp.250-265, May 1998
    [27] M.Chadli, D.Maquin, J.Ragot. Relaxed stability conditions for Takagi-Sugeno fuzzy systems[J]. in IEEE Int. Conf.Syst., Man, Cybern., vol.5, pp.3514-3519, 2000
    [28] H.K.Lam, F.H.Leung, P.K.S.Tam. Design and stability analysis of fuzzy model-based nonlinear controller for nonlinear systems using genetic algorithm[J]. IEEE Trans. Syst., Man, Cybern.B, vol.33, pp. 250-257,Apr.2003.
    [29] 李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [30] W.Gao, J.Xie, “Design of stable fuzzy system based on LMI,” in proc. 3rd World Cong. Intelligent Control Automation, vol.3, 2000, pp.1552-1555.
    [31] P.Korba, R.Babuska, H.B.Verbruggen, and et al. Fuzzy gain scheduling: Controller and observer design based on Lyapunov method and convex optimization[J]. IEEE Trans. Fuzzy Syst., vol.11, pp.285-298, June 2003.
    [32] S.G.Cao, N.W.Rees, G. Feng. Analysis and design of fuzzy control systems using dynamic fuzzy-state space models[J]. IEEE Trans. Fyzzy Syst., vol.7, pp.192-200, Apr.1999.
    [33] Min-Shin Chen, Ren Jay Fu. An observer-based state feedback control of parametrically excited systems[J]. Systems & Control Letters. 1997(30), pp: 119-125.
    [34] E.Kim, D.Kim. Stability analysis and synthesis for an affine fuzzy system via LMI and ILMI: Discrete case[J]. IEEE Trans. Syst., Man, Cybern.B, vol.31, pp.132-140, Feb.2001.
    [35] G. Kang, W. Lee, “Desige of Fuzzy Parameter Adaptive Controllers”, in Proc.International Fuzzy Systems Association World Congress, 1995 : 609-612.
    [36] K.Tanaka, M.Sugeno. Stability Analysis and Design of Fuzzy Control Systems[J]. Fuzzy Sets and Systems, vol. 4: 135-156, 1992.
    [37] H. O. Wang, K. Tanaka, M. F. Griffin, An Approach to Fuzzy Control of Nonlinear Systems:Stability and Design Issues[J]. IEEE Trans. on Fuzzy Systems, vol. 4: 14-23, Feb.1996.
    [38] Gao S.G., Rees N.W., Feng C., Quadratic stability analysis and design of continuous-time fuzzy control systems[J], International Journal of Systems Science, 1996, 27(2): 193-203.
    [39] Feng G., Controller synthesis of fuzy dynamic systems based on piecewise Lyapunov function[J], IEEE Trans. on Fuzzy Systems, 2003, 11(5): 605-612
    [40] T. Takagi, M. Sugeno. Fuzzy Identification of Systems and Its Applications to Modeling and Control[J]. IEEE Trans. Syst., Man, Cybern., vol. 15(1), pp: 116-132, 1985.
    [41] 蔡自兴,肖晓明.动态模糊系统的鲁棒稳定性分析与控制器设计[J].中南工业大学学报.1999,30(4):418-421.
    [42] M.Sugeno, G.Kang. Structure Identification of Fuzzy Model[J]. Fuzzy Sets and Systems, vol.28:15-33, 1988.
    [43] S. Singh, Stability analysis of discrete fuzzy control systems[C]. In Proc. 1st IEEE Int. Conf. Fuzzy Syst. San Diego, CA, 1992, pp. 527-534.
    [44] R. Katoh, et al, Graphical stability analysis of a fuzzy control system[C]. In Proc. IEEE Int. Conf. IECON, HI, 1993, vol. 1, pp. 248-253.
    [45] K.Kiriakidis, A.Grivas, A.Tzes. Quadratic stability analysis of the Takagi-Sugeno fuzzy model[J]. Fuzzy Sets Syst., vol.98, pp.1-14,1998.
    [46] K. S. Narendra, K. Parthasarthy. Identification and control dynamical systems using neural networks[J]. IEEE Trans. Neural Networks, vol.1, pp:4-27, Mar. 1990.
    [47] 张霄力,赵军.一类线性切换系统的鲁棒状态反馈镇定[J].控制与决策.2001,16(1):822-824.
    [48] S.H.Zak, “Stabilizing fuzzy system models using linear controller,” IEEE Trans. Fuzzy Syst., vol.7, pp.236-240, 1999
    [49] Katsuhiko Ogata. Modern Control Engineering (Second Edition) [M],Prentice-Hall,Englewood Cliffs,New Jersey,1990
    [50] 谢振东,刘永清,谢胜利.非线性离散系统状态跟踪的学习控制方法[J].华南理工大学学报(自然科学版).1999,27(8):50-53.
    [51] 朱红霞,沈炯,李益国.一种新的动态聚类算法及其在热工过程模糊建模中的应用[J].中国电机工程学报.2005,25(7):34-40.
    [1] R. Lopez, L. Valverde. New Results in Fuzzy Clustering Based on the Concept of Indistinguishability Relation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1988, 10(5):754-757.
    [2] 高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004.
    [3] R C T Lee. Fuzzy logic and the resolution principle[J]. Journal of the ACM, 1972, 19(1):109-119.
    [4] Hadjili M L, Wertz V. Takagi-Sugeno fuzzy modeling incorporating input variables selection[J]. IEEE Trans. on Fuzzy Systems, 2002, 10(6): 728-742.
    [5] Yen J, Wang L, Gillespie C W. Improving the interpretability of TSK fuzzy models by combining global learning and local learning[J]. IEEE Trans. on Fuzzy Systems, 1998, 6(3): 530-537.
    [6] Johansen T A, Shorten R, Murray-Smith R. On the Interpretation and Identification of Dynamic Takagi-Sugeno Fuzzy Models[J]. IEEE Trans. on Fuzzy Systems. 2002, 8(3): 297-312.
    [7] Setnes M. Supervised fuzzy clustering for rule extraction[J]. IEEE Trans. on Fuzzy Systems. 2000, 8(4): 416-424.
    [8] 赵瑞安,吴方.非线性最优化理论和方法[M].杭州:浙江科学技术出版社,1992.
    [9] Jiu-Lun Fan, Wen-Zhi Zhen, Wei-Xin Xie. Suppressed fuzzy c-means clustering algorithm[J]. Pattern Recognition Letters. 2003 (24): 1607-1612.
    [10] Mu-Song Chen, Shinn-Wen Wang. Fuzzy clustering analysis for optimizing fuzzy membership functions[J]. Fuzzy Sets and Systems. 1999 (103): 239-254.
    [11] Abd EI Ouahab boudraa, Jean-Jacques Mallet, Jean-Eugene Besson. Left Ventricle Automated Dectection Method in Gated Isotopic Ventriculography Using Fuzzy Clustering[J]. IEEE Trans. on Medical Imaging. 1993, 12(3): 451-465.
    [12] J.C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters[J]. Journal of Cybernetics, vol.3, pp:32-57, 1974.
    [13] N.R. Pal, J.C. Bezdek, On cluster validity for the fuzzy c-means model[J] IEEE Transactions on, Fuzzy Systems, vol.3, pp:370-379, Aug.1995.
    [14] Abonyi J, Babuska R, Szeifert F. Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models [J], IEEE Trans. on Systems, Man, and Cybernetics (B), 2002, 32(5): 612–621.
    [15] 朱红霞,沈炯,李益国.一种新的动态聚类算法及其在热工过程模糊建模中的应用[J].中国电机工程学报.2005,25(7):34-40.
    [16] Chrysostomos D. Stylios, Peter P. Groumpos. Modeling Complex Systems Using Fuzzy Cognitive Maps[J]. IEEE Trans. on Systems, Man and Cybernetics-Part A: Systems and Humans. 2004, 34(1): 155-162.
    [17] Richard J. Hathaway, James C. Bezdek, Yingkang Hu. Generalized Fuzzy c-Means Clustering Strategies Using Lp Norm Distances[J]. IEEE Trans. on Fuzzy Systems. 2000, 8(5): 576-582.
    [18] Raghu Krishnapuram, James M. Keller. The Possibilistic c-Means Algorithm: Insights and Recommendations[J]. IEEE Trans. on Fuzzy Systems. 1996, 4 (3): 385-393.
    [19] 边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.
    [20] T.Takagi, M.Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans.Syst., Man, Cybern., vol. SMC-15, pp. 116-132, 1985
    [21] A. Lo Schiavo, A. M. Luciano. Powerful and Flexible Fuzzy Algorithm for Nonlinear Dynamic System Identification[J]. IEEE Trans. on Fuzzy Systems. 2001, 9(6): 828-835.
    [22] Li-Xin Wang. Design and Analysis of Fuzzy Identifiers of Nonlinear Dynamic Systems[J]. IEEE Trans. on Automatic Control. 1995, 40(1): 11-23.
    [23] Yin Wang, Gang Rong, Shuqing Wang. Hybrid fuzzy modeling of chemical processes[J]. Fuzzy Sets and Systems. 2002, (130): 265-275.
    [24] Shaocheng Tong, Han-Hiong Li. Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties[J]. Fuzzy Sets and Systems. 2002, (131): 165-184.
    [25] Babuska R. Fuzzy Modeling for Control[M]. Norwell, MA: Kluwer, 1998.
    [26] D. J. Wilkinson, A. J. Morris, M. T. Tham. Multivariable constrained predictive control (with application to high performance distillation). International Journal of Control, 1994, 59: 841-862
    [27] Z. Huaguang, L. L. Cai, Multivariable fuzzy generalized predictive control. Cybernetics and Systems, 2002, 33: 69-99.
    [28] S. Boyd, L. Vandenberghe. Convex optimization. UK, Cambridge University Press, 2004.
    [29] Cao S G, Rees N W, Feng G. Analysis and design for a class of complex control systems, PartⅠ: fuzzy modeling and identification[J]. Automatica. 1997, 33: 1017-1028.
    [30] J. A. Roubos, S. Mollov, R. Babuska, et al. Fuzzy model-based predictive control using Takagi-Sugeno models. International Journal of Approximate Reasoning, 1999, 22: 3-30.
    [31] J. A. Rossiter. Model-based predictive control: a practical approach, CRC Press: London, 2003.
    [32] 曾德良,赵征,陈彦桥等.500MW 机组锅炉模型及实验分析[J].中国电机工程学报.2003,23(5):149-152.
    [1] K Tanaka, M Sugeno. Stability analysis and design of fuzzy control systems[J]. IEEE Trans. on Fuzzy Systems, 1992, 45(2): 135-156.
    [2] K Tanaka, T Ikeda, Hua O Wang. Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, H∞ control theory and linear matrix inequalities[J]. IEEE Trans. on Fuzzy Systems, 1996, 4(1): 1-13.
    [3] K Tanaka, M Sano. Fuzzy stable criterion of a class of nonlinear systems[J]. Information Sciences, 1993, 71(1): 3-26.
    [4] K Tanaka, M Sano. A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer[J]. IEEE Trans. on Fuzzy Systems, 1994, 2(2): 119-134.
    [5] T Takagi, M Sugeno. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Trans. on Syst, Man and Cybern, 1985, 15(2): 116-132.
    [6] Hua O Wang, K Tanaka, M Griffin. An approach to fuzzy control of nonlinear systems: Stability and design issues[J]. IEEE Trans. on Fuzzy Systems, 1996, 4(1): 14-23.
    [7] H. Wang, K. Tanaka, M. Griffin, Parallel distributed compensation of nonlinear systems by Takagi and Sugeno’s fuzzy model[C]. In Proc. FUZZ-IEEE, Yokohama, Japan, 1995, pp. 531-538.
    [8] K. Tanaka, M Sugeno, Stability analysis of fuzzy systems using Lyapunov’s direct method[C]. In Proc. NAFIPS, Totonto, Canada, 1990.
    [9] R. Langari, M. Tomizuka, Analysis and synthesis of fuzzy linguistic control systems[C]. In ASME Winter Annu. Meet., 1990, pp. 35-42
    [10] S. Kitamura, T. Kurozumi, Extended circle criterion and stability analysis of fuzzy control systems[C]. In Proc. Int. Fuzzy Eng. Symp., Yokohama, Japan, 1991, vol. 2, pp. 634-643.
    [11] K. Tanaka, M. Sugeno, Stability analysis and design of fuzzy control systems[J]. Fuzzy Sets Syst., vol. 45, no. 2, pp. 135-156, 1992.
    [12]张友刚,刘志刚,肖建.基于 LMI 的仿射型模糊控制系统的稳定性研究[J].控制与决策.2003,18(6):690-693.
    [13] K. Tanaka, M.Sano, On the concept of fuzzy regulators and fuzzy observers[C]. In Proc. 3rd IEEE Int. Conf. Fuzzy Syst., Orlando, FL, June 1994, vol. 2, pp. 767-772.
    [14] S. Singh, Stability analysis of discrete fuzzy control systems[C]. In Proc. 1st IEEE Int. Conf. Fuzzy Syst. San Diego, CA, 1992, pp. 527-534.
    [15] R. Katoh, et al, Graphical stability analysis of a fuzzy control system[C]. In Proc. IEEE Int. Conf. IECON, HI, 1993, vol. 1, pp. 248-253.
    [16] K Tanaka, T Ikeda, Hua O Wang. Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stability, H∞ control theory and linear matrix inequalities[J]. IEEE Trans. on Fuzzy Systems, 1996, 4(1), pp. 1-13.
    [17] K Tanaka, M Sano. A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer[J]. IEEE Trans. on Fuzzy Systems, 1994, 2(2), pp. 119-134.
    [18] E Kim, H J Kang, M Park. Numerical stability analysis of fuzzy control systems via quadratic programming and linear matrix inequalities[J]. IEEE Trans. Syst., Man, Cybern. A, 1999, 29, pp. 333-346.
    [19] 谢振华,范训礼,曲建岭,等.基于 LMI 的模糊控制器设计方法[J].控制与决策.2000,15(125):549-553.
    [20] H. Wang, K. Tanaka, M. Griffin, An approach to fuzzy control of nonlinear systems: Stability and designissues[J]. IEEE Trans. Fuzzy Syst., vol. 4, pp. 14-23, Feb. 1996.
    [21] Onnen C, Babuska R, Kaymak U, et al. Genetic algorithms for optimization in predictive control[J]. Control Engineering Practice, 1997, 5(10): 1363-1372.
    [22] Camacho E F, Bordons C. Model Predictive Control[M]. London: Springer, 1999.
    [23] Kothare M V, Balakrishnan V, Morari M. Robust constrained model predictive control using linear matrix inequalities[J]. Automatica, 1996, 32(10): 1361-1379.
    [24] Harry L. Trentelman, Anton A. Stoorvogel, Malo Hautus. Control Theory for Linear Systems [M]. Berlin: Springer, 2001.
    [25] C. C. Chiang, Z. H. Kuo. Decentralized adaptive fuzzy controller design of large-scale nonlinear systems with unmatched uncertainties[J]. IEEE Conf. on Fuzzy Systems, vol.1, pp: 668-673, 2002.
    [26] F. H. Hsiao, J. D. Hwang. Stability analysis of fuzzy large-scale systems[J]. IEEE Trans. on Syst., Man, Cybern. Part-B, vol.32, pp: 122-126, 2002.
    [27] M. Akar, U. Ozguner. Decentralized techniques for the analysis and control of Takagi-Sugeno fuzzy systems[J]. IEEE Trans. on Fuzzy Systems, vol.8, no. 6, pp: 691-704, 2000.
    [28] Wu H.S., Kolchi M., Lyapunov stability theory and robust control of uncertain descriptor systems[J]. International Journal of Systems Science, 1995, 26(10): 1981-1991
    [29] Chio H.H., Memoryless stabilization of uncertain Dynamic systems including time-varying delayed states and controls[J].Automatica, 1995, 31(10):1349-1351.
    [30] Cao S G, Rees N W, Feng G. Analysis and design of fuzzy control systems using dynamic fuzzy state-space models[J].IEEE Trans. on Fuzzy Systems, 1999, 7(2): 192-200.
    [31] Wang H O, Tanaka K, Griffin M F. An approach to fuzzy control of nonlinear systems: Stability and design issues[J]. IEEE Trans. on Fuzzy Systems, 1996, 4(1):14-23.
    [32] Kiriakidis K. Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear matrix inequalities[J]. IEEE Trans. on Fuzzy Systems, 2001, 9(2): 192-200.
    [33] Eun Tae Jeung, Jong Hae Kim, Hong Bae Park. H∞ - Output Feedback Controller Design for Linear Systems with Time- Varying Delayed State[J]. IEEE Trans. On Automatic Control, 1998, 43(7): 971-974.
    [34] Niculescu Silviu - Iulian. H∞ Memoryless Control with a-Stability Time Delay Systems: An LMI Approach[J]. IEEE Trans. On Automatic Control, 1998, 43(8): 739-742.
    [35] Shen T, Tamura K. Robust H∞ control of linear systems with nonlinear perturbation. in Proceedings of Asian Control Conference, Tokyo, 1994: 201-204.
    [36] Tetsuya Iwasaki, Skelton R E. All Controllers for the General H∞ Control Problem: LMI Existence Conditions and State Space Formulas[J]. Automatica, 1994, 30(8): 1307-1317.
    [37] Tetsuya Iwasaki. Control System Design via LMIs[J]. J. SICE, 1995, 34(3): 164-169.
    [38] Carsten, Gahinet. Multiobjective Output-Feedback Control via LMI Optimization[J]. IEEE Trans. On Automatic Control, 1997, 42(7): 896-910.
    [39] Stephen Boyd S, Laurent EI Ghaoui, et al. Linear Matrix Inequalities in System and Control Theory: SIAM Studies in Applied Mathematics[M]. 1994.
    [40] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Trans. Syst., Man, Cybern., vol. 15, pp. 116-132, 1985.
    [41] H. Wang, K. Tanaka, An LMI-based stable fuzzy control of nonlinear systems and its application to control of chaos[C]. Proc. FUZZ-IEEE, vol. 2, pp. 1433-1438, 1996.
    [42] K. Tanaka, M. Sano, A robust stabilization problem of fuzzy controller systems and its applications to backing up control of a truck-trailer[J]. IEEE Trans. Fuzzy Syst., vol. 2, pp. 119-134, May. 1994.
    [43] S. Boyd, et al, Linear Matrix Inequalities in Systems and Control Theory[C]. Philadelphia, PA: SIAM, 1994.
    [44] 赵文杰,刘吉臻,刘延泉.基于 T-S 模型的非线性系统控制方法[J].华北电力大学学报.2003,30(3):48-52.
    [45] 俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [46] 沈炯,金林,陈来九.火电单元机组负荷最优预见控制系统仿真研究[J].中国电机工程学报.1999,19(3):14-17,52.
    [47] Wang Dongfeng, Han Pu, Guo Qigang. Neural Network Self-tuning PID Control for Boiler-Turbine Unit. in Proceedings of 5th World Congress on Intelligent Control and Automation, Hangzhou, P. R. China, 2004: 5175-5179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700