用户名: 密码: 验证码:
冷轧带肋钢筋机械性能的智能预测方法与工艺参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷轧带肋钢筋因其优良的综合机械性能和粘结锚固性能,在建筑领域得到了日益广泛的应用,带来了明显的社会效益和经济效益。随着冷轧带肋钢筋产品应用层次的不断发展和应用领域的进一步拓宽,对产品机械性能和工艺水平提出了更高的要求。针对目前冷轧带肋钢筋生产中存在的产品机械性能不稳定、合格率低等问题,研究了冷轧带肋钢筋产品机械性能智能预测方法和产品冷轧工艺优化模型,为冷轧工艺规划和产品质量控制提供一快速、精确、经济的新途径。
     针对冷轧带肋钢筋产品机械性能和冷轧工艺参数间的物理关系极为复杂,难以直接建立两者之间的显式方程,研究了样本空间划分对于产品机械性能预测的意义,提出了基于原材料初始强度和工艺参数向量间距离划分样本空间的方法,为实现在较少数量训练样本前提下产品机械性能的智能预测奠定了基础。
     建立了冷轧工艺参数和产品性能参数间的线性直接映射预测模型、线性和非线性回归分析预测模型,并在各样本子空间和全空间范围内对产品机械性能进行了预测。结果表明,对于线性直接映射模型和线性回归分析预测模型,工艺参数向量的降维处理对提高其预测性能具有积极意义;而对于非线性回归分析预测模型,足够数量的实测样本数据对保证其预测精度更具积极意义。
     构建了基于BP神经网络的冷轧带肋钢筋机械性能预测模型,研究了隐含层节点数和网络误差等参数对产品性能预测精度的影响,并在各样本子空间和全样本空间范围内,对冷轧带肋钢筋产品机械性能进行了预测。结果表明,BP网络的合理结构、隐含层节点数和网络误差合理取值等因素,对保证冷轧带肋钢筋性能预测模型的训练效率、预测精度等具有重要意义。
     建立了基于径向基函数网络的冷轧带肋钢筋机械性能预测模型,研究了RBF神经元层宽度系数和网络误差对RBF网络逼近性能的影响,并在各样本子空间和全样本空间内对产品机械性能进行了预测。结果表明,在神经元层宽度系数和网络误差等取值合适的情况下,基于RBF网络的冷轧带肋钢筋性能预测模型具有较高的预测精度;按照工艺参数间距离划分样本空间,对于基于RBF网络的预测模型更具有积极意义。
     针对工艺实验法规划冷轧工艺成本高、周期长等缺点,研究了冷轧带肋钢筋加工工艺的多目标优化模型,提出了基于遗传算法和径向基函数网络的冷轧带肋钢筋加工工艺优化方法。利用遗传算法的全局搜索能力和径向基函数网络的高精度逼近性能,快速、准确地确定满足产品机械性能要求的工艺参数优化组合,为制定和优化冷轧带肋钢筋生产工艺提供了一条经济、有效的途径。
Cold rolled ribbed steel bars have been increasingly applied in the constructionfield, because of their excellent comprehensive mechanical performance andanchoring bond performance and bring about obvious social and economic benefits.With the further development of the application level and application domain of theproducts, higher requirements on the mechanical performance and the technologicallevel are put forward, which needs precision prediction of the product performanceand optimization of the processing technology.
     Aiming at the instability of mechanical performance and low pass rate in coldrolled ribbed steel bars production, the intelligent prediction method for the product'smechanical performance and the optimization model of cold rolling process areresearched, so as to provide a fast, accurate and economical new approach for coldrolling process planning and product quality control.
     Aiming at the complexity of the physical relations between cold rolled ribbedsteel bars’ mechanical performance and cold rolling technological parameters, and thedifficulty of establishing the explicit equations between the two, the meaning ofdividing the variable space for economical prediction of the product performance isresearched in this thesis. The methods of dividing the space according to the initialstrength of the raw materials and the distance between the vectors of the processparameters are proposed, laying the foundation for predicting the product performanceintelligently and accurately with small number of training samples.
     The prediction models based on linear direct mapping, linear and nonlinearregression analysis are established, and the product performance are predicted withthe models in the subspaces and the total space of the samples. Test results show thatdecrease on the dimension of the technical variable vectors is of positive significanceto the prediction precision for the linear direct mapping model and the linearprogramming analysis one, and that a sufficient number of precision sample data is sofor the nonlinear programming analysis model.
     The prediction models based on BP neural network are established, and theinfluence of the hidden neurons number and the network error on the productperformance prediction is researched. And then, the product performances arepredicted in the subspaces and the total space of the samples. Test results show thatproper structure of the network, appropriate number of the hidden neurons and right value of the network error are of significance to the training efficiency and theprediction precision for BP network model.
     The prediction models based on radial-basis function network are established,and the influence of the spread coefficient and the network error on the predictionprecision is researched. And then, the product performances are predicted in thesubspaces and the total space of the samples. Test results show that RBF network withproper spread coefficient and network error is superior to the other prediction modelsresearched in the thesis; and that dividing the sample space according to the distancebetween the vectors of the process parameters is of positive significance for RBFnetwork.
     Aiming at the high cost and low efficiency of the experimentation method forcold rolling process planning, the multi-objective optimization model of theprocessing technics of cold rolled ribbed steel bars is established, and the method ofoptimizing the processing technics with genetic algorithm and RBF network isproposed. It has been shown that the method can quickly determine the propertechnological parameters meeting the property requirement of the product, whichprovides an economical and effective way to make and optimize the processingtechnology.
引文
[1]李军红.冷轧带肋钢筋工艺的现代优化方法及质量控制[D].南昌大学博士学位论文,2006.
    [2]谢克非,李军红,周天瑞.浅谈冷轧带肋钢筋现阶段的生产应用和发展前景[J].南方金属,2003(3):5-8.
    [3]刘相华,胡贤磊,杜林秀.轧制参数计算模型及其应用[M].北京:化学工业出版社,2007:1-4.
    [4] H-T He, H-M Liu. The research on integrated neural networks in rolling load predictionsystem for temper mill[C]. Fourth international conference on machine learning and cybernetics,2005:18-21.
    [5] Y. Y. Yang, D. A. Linkens, J. Talamantes-Silva. Roll load prediction-data collection, analysisand neural network modelling[J]. Journal of Materials Processing Technology,2004,152(3):304-315.
    [6]王快社.冷轧带肋钢筋生产研究[J].金属制品,2000(8):19-20.
    [7] S. Forouzan, A. Akbarzadeh. Prediction of effect of thermo-mechanical parameters onmechanical properties and anisotropy of aluminum alloy AA3004using artificial neuralnetwork[J]. Materials and Design28(2007):1678-1684.
    [8] N. S. Reddy, J. Krishnaiah, S-G Hong, et al. Modeling medium carbon steels by using artificialneural networks[J]. Materials Science and Engineering A508(2009):93-105.
    [9] M. Eftekhari, M. Moallem, M. A. Ghadamyari, et al. Predicting Mechanical Properties of ColdRolled Low Carbon Steel Based on Magnetic Parameter Measurement using Artificial NeuralNetwork[C].2010International Conference on Computer Applications and Industrial Electronics:677-682.
    [10] H. Monajati, D. Asefi, A. Parsapour, et al. Analysis of the effects of processing parameters onmechanical properties and formability of cold rolled low carbon steel sheets using neuralnetworks[J]. Computational Materials Science49(2010)876-881.
    [11] J. Ghaisari, H. Jannesari, M. Vatani. Artificial neural network predictors for mechanicalproperties of cold rolling products [J]. Advances in Engineering Software,45(2012):91-99.
    [12]刘春辉,孟德亮,路书颜.冷轧-扭螺纹钢力学性能的试验研究[J].一重技术,2004(3):18-20.
    [13]张钧林.螺旋扭状钢筋几何形态及轴向拉伸性能的研究[J].建筑材料学报,2006,9(2):18-20.
    [14]李军红,周天瑞,郑荣.基于神经网络的冷轧带肋钢筋机械性能预测[J].中国机械工程,2006,17(15):1580-1582.
    [15] P. Wang, Z. Y. Huang, M. Y. Zhang, et al. Mechanical property prediction of strip modelbased on PSO-BP neural network. Journal of Iron and Steel Research,2008,15(3):87-91.
    [16]王玉镯,傅传国,邱洪兴.高温后冷轧带肋钢筋力学性能的试验研究[J].钢铁研究学报,2010,22(4):31-34.
    [17]陈浩军,彭艺斌,张起森.冷轧带肋钢筋混凝土受弯构件疲劳性能的试验研究[J].东南大学学报(自然科学版),2002,32(5):737-740.
    [18]陈浩军,彭艺斌,张起森.冷轧带肋钢筋混凝土受弯构件疲劳性能研究[J].中国公路学报,2006,19(1):23-27.
    [19] Luis Enrique Zárate. A Predictive Thickness Control Structure and Decision about the betterControl Parameter for the Cold Rolling Process through Sensitivity Factors via NeuralNetworks[C].2005IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications.
    [20]谢克非,周天瑞,李军红,等.冷轧带肋钢筋工艺参数的正交试验优化设计[J].南方金属,2003(8):8-12.
    [21]谢克非,周天瑞,李军红,等.基于ANN+GA冷轧带肋钢筋工艺参数的优化设计[J].锻压技术,2004(2):36-39.
    [22]谢克非,周天瑞,李军红,等.基于人工神经网络冷轧带肋钢筋轧制工艺的优化设计[J].锻压技术,2005(5):36-38.
    [23]李军红,周天瑞,郑荣等.人工智能在冷轧带肋钢筋工艺参数优化中的应用[J].塑性工程学报,2005,12(2):65-68.
    [24] J. Larkiola, P. Myllykoski, J. Nylander, et al. Prediction of rolling force in cold rolling byusing physical models and neural computing[J]. Journal of Materials Processing Technology60(1996):381-386.
    [25] Sungzoon Cho, Yongjung Cho, Sungchul Yoon. Reliable roll force prediction in cold millusing multiple neural networks. IEEE Transactions on Neural Networks,1997,8(4):874-882.
    [26] Joon-Sik Son, Duk-Man Lee, Ⅲ-Soo Kim, et al. A Study on On-Line Learning NeuralNetwork for Prediction for Rolling Force in Hot-Rolling Mill. Journal of Materials ProcessingTechnology,2005,164-165:1612-1617.
    [27]王伟,连家创.采用混合摩擦模型预报冷轧薄板轧制力[J].钢铁研究学报,2000,12(1):10-13.
    [28]贾春玉,宋耀增.在轧制力预报中应用模糊控制的研究[J].冶金设备,2000(6):5-8.
    [29]程晓茹,胡衍生,任勇,等.基于人工神经网络的中厚板精轧机轧制力预报[J].武汉科技大学学报(自然科学版),2001,24(2):132-134.
    [30]孙登月,朱光明,杜凤山,等.冷连轧机轧制力人工神经网络预报[J].冶金设备,2001(3):1-3,24.
    [31]孙登月,杜凤山,朱泉封,等.五机架冷连轧机轧制力人工神经网络预报[J].钢铁,2002,37(2):28-31.
    [32]董敏,刘才.基于模糊神经网络的冷连轧机轧制力预测[J].重型机械,2005(5):11-14.
    [33]董敏,刘才,李灵锋.RBF网络优化设计及在轧机轧制力预报中的应用[J].钢铁,2005,40(11):34-36,61.
    [34]董敏,刘才,李国友.轧制力预报问题中动态网络模型的实现[J].钢铁,2006,41(12):49-52.
    [35]张俊明,刘军,康永林,等.应用RBF神经网络预测冷连轧机轧制力[J].钢铁,2007,42(8):46-48.
    [36]周富强,曹建国,张杰,等.冷连轧机轧制力的影响因素[J].机械工程学报,2007,43(10):94-97.
    [37]杨景明,刘舒惠,车海军,等.一种结合模拟退火算法的BP网络冷连轧参数预报模型[J].钢铁,2008,43(7):55-58.
    [38]梁勋国,贾涛,矫志杰,等.基于贝叶斯方法的神经网络应用于冷轧轧制力预报[J].钢铁研究学报,2008,20(10):59-62.
    [39]张清东,徐兴刚,于孟,等.基于遗传神经网络的不锈钢带冷轧轧制力模型[J].钢铁,2008,43(12):46-48,57.
    [40]杨景明,孙晓娜,车海军,等.基于蚁群算法的神经网络冷连轧机轧制力预报[J].钢铁,2009,44(3):52-55.
    [41]田建艳,张鹏飞,刘思峰.基于灰色关联分析的神经网络轧制力预报模型的研究[J].应用力学学报,2009,26(1):164-167.
    [42]许磊,曾庆亮,胡贤磊,等.中厚板轧机轧制力自学习模型的应用[J].钢铁研究学报,2009,21(12):17-19,42.
    [43]丁敬国,曲丽丽,胡贤磊,等.中厚板轧制力自学习过程层别跳变的自整定方法[J].东北大学学报(自然科学版).2011,32(1):64-66,71.
    [44]段雪厚,王石刚,徐威,等.基于径向基神经网络的薄板平整轧制力预报模型[J].上海交通大学学报,2011,45(6):924-928.
    [45]陈长征,周建南.轧钢机力能参数神经网络预测[J].重型机械,2000(4):35-37,41.
    [46]安振刚,李谋渭,尹显东,等.遗传神经网络在平整轧制力预报中的应用[J].鞍钢技术,2001(6):49-52.
    [47]李树国,刘持平,王宝森,等.20钢变形抗力模型的建立及轧制力预报[J].轧钢,2001,18(1):26-27.
    [48]胡贤磊,王昭东,于解民,等.结合模型自学习的BP神经元网络的轧制力预报[J].东北大学学报(自然科学版),2002,23(11):1089-1092.
    [49]袁枫华,王贞祥,徐心和,等.具有NN分级误差补偿器的轧制力预报模型[J].控制与决策,2002,17(4):443-446.
    [50]邱红雷,胡贤磊,刘相华,等.人工神经网络在中厚板轧机轧制力预报中的应用[J].材料与冶金学报,2002,1(2):150-153.
    [51]路凤智,邱春林,杨军.冷轧平整机轧制力预报模型精度的探讨[J].鞍钢技术,2003(4):32-35.
    [52]周旭东,刘香茹,刘相华,等.变辊缝法热连轧机组带钢厚度与轧制力智能纠偏系统[J].上海金属,2003,25(4):28-32.
    [53]孙克,王长松,罗永军.基于小脑模型神经网络的轧制力预报模型[J].钢铁研究,2004(1):55-57.
    [54]张凤琴,刘娟,徐建忠,等.粗轧过程轧制力BP神经网络预报[J].上海金属,2004,26(4):38-40.
    [55]张延华,刘相华,王国栋.基于模糊聚类的BP神经网络模型预报中厚板轧制力[J].材料与冶金学报,2004,3(3):209-212.
    [56]李兴田,李鸿斌,张晓芳.应变速率的影响与带钢热轧模型预报精度改进[J].钢铁,2004,39(8):86-88,116.
    [57]黄敏,王建辉,顾树生.基于遗传小波神经网络的冷轧轧制力预报研究[J].控制与决策,2004,19(10):1129-1132.
    [58]贾春玉,刘宏民,邱格君.神经模糊组合预报冷连轧机轧制力[J].燕山大学学报,2005,29(3):196-200.
    [59]魏立群.基于MATLAB的BP网络预报2350中板轧制力能参数[J].上海金属,2005,27(4):43-45,49.
    [60]邱红雷,田勇,赵忠.结合模型自适应的神经元网络在中厚板轧机轧制力预报中的运用[J].钢铁研究学报,2006,18(6):59-62.
    [61]周富强,曹建国,张杰,等.冷连轧机轧制力在线计算模型[J].北京科技大学学报,2006,28(9):859-862.
    [62]周富强,曹建国,张杰,等.基于神经网络的冷连轧机轧制力预报模型[J].中南大学学报(自然科学版),2006,(6):1155-1160.
    [63]刘华强,唐荻,杨荃,等.模糊小脑模型神经网络在多辊冷连轧机轧制力预报模型中的应用[J].北京科技大学学报,2006,28(10):969-972.
    [64]何海涛,刘宏民,蒋岳峰.具有伸长率分配计算功能的轧制力预报智能模型研究[J].钢铁,2007,42(1):55-58.
    [65]刘东东,王焱,郭庆玲.基于多神经网络的热连轧轧制力预计算[J].济南大学学报(自然科学版),2007,21(3):234-237.
    [66]郭立伟,杨荃,郭磊.冷连轧过程控制轧制力模型综合参数自适应[J].北京科技大学学报,2007,29(4):413-416.
    [67]张鹏飞,田建艳.热轧轧制力小波神经网络预报模型的研究[J].山西冶金,2007(3):16-18.
    [68]丁敬国,胡贤磊,焦景民,等.变异PSO算法协同神经元网络在轧制力预报中的应用[J].钢铁研究学报,2007,19(12):56-59.
    [69]谭成楠,程晓茹,任勇,等.基于人工神经网络的CSP精轧机组轧制压力预报[J].武汉科技大学学报(自然科学版),2008,31(2):143-146.
    [70]马庆龙,王东城,刘宏民,等.基于神经网络和自适应预报模型参数的平整轧制力模型[J].塑性工程学报,2008,15(3):191-194.
    [71]岳宗敏,王小林.基于神经网络的轧制力预报模型[J].安徽工业大学学报(自然科学版),2008,25(4):417-421.
    [72]陈治明,罗飞,黄晓红,等.基于混沌优化支持向量机的轧制力预测[J].控制与决策,2009,24(06):808-812.
    [73]王建国,任素龙,吕立华,等.高速线材力能参数预报系统开发[J].中国冶金,2009,19(3):6-9,18.
    [74]韩庆,周石光.基于Elman神经网络的炉卷轧机的轧制力预报[J].钢铁,2009,44(6):56-59.
    [75]王飞.冷连轧轧制力计算模型及改进方案[J].冶金自动化,2011,35(4):69-71.
    [76]王立军,李胜利.冷轧带肋钢筋生产工艺研究[J].金属制品,1998,24(4):41-44.
    [77]卢秀春,金贺荣.冷轧带肋钢筋矫直机矫直系统参数设计[J].钢铁,2001(6):59-62.
    [78]卢秀春,金贺荣.GTK6/12冷轧带肋钢筋矫直切断机矫直系统力学研究[J].冶金设备,2002(2):13-16.
    [79]甘先远,孙建林,汪立新,等.冷轧带肋钢筋工艺润滑剂的研制与轧制润滑实验研究[J].润滑与密封,2008,33(4):103-105.
    [80]白振华,司红鑫,周庆田,等.二次冷轧过程工艺润滑制度综合优化技术的研究[J].钢铁,2011,46(6):60-62,73.
    [81]白万真,魏世忠,龙锐,等.冷轧辊典型失效形式分析综述[J].铸造技术,2006,27(9):1010-1014.
    [82]徐流杰,魏世忠,王强,等.基于BP神经网络的V9-Cr4-Mo3高速钢冷轧辊磨损模型[J].摩擦学学报,2006,26(6):541-545.
    [83]孙桂芳,刘常升,陈岁元,等.轧辊的失效及其修复技术[J].材料导报,2007,21(6):100-103.
    [84]张雅琴,何宗霖,张雪娜.板带冷轧过程三维弹塑性有限元模拟[J].中北大学学报(自然科学版),2009,30(4):390-394.
    [85]程挺宇,郑锋.纯钛板材冷轧的轧制力数学模型研究[J].稀有金属与硬质合金,2009,37(4):26-28.
    [86]贺强,张拥军.冷轧工作辊剥落失效分析与预防措施[J].金属热处理,2011,36(S1):365-369.
    [87]朱为昌,刘雅政,曾全英,等.改善冷轧带肋钢筋产品性能的若干问题[J].建筑结构,1999(9):24-26,43.
    [88]王快社.冷轧带肋钢筋生产研究[J].金属制品,2000(8):19-20.
    [89]王快社.坯料质量对冷轧带肋钢筋性能的影响[J].西安建筑科技大学学报(自然科学版),2000(3):307-309.
    [90]熊呈辉,周天瑞,李军红,等.包辛格效应的原理及其在冷轧带肋钢筋中的应用[J].南方金属,2004(12):19-22.
    [91] G. J. Al-Sulaimani, M. Kaleemullah, I. A. Basunbul, et al. Influence of corrosion and crackingon bond behavior and strength of reinforced concrete members[J]. ACI Structural Journal,1990,87(2):220-231.
    [92] J. G. Cabrera. Deterioration of concrete due to reinforcement steel corrosion[J]. Cement andConcrete Composites,1996,18(1):47-59.
    [93] Y. B. Auyeung, P. Balaguru, L. Chung. Bond behavior of corroded reinforcement bars[J]. ACIMaterials Journal,2000,97(2):214-220.
    [94] S. J. Pantazopoulou, K. D. Papoulia. Modeling cover-cracking due to reinforcement corrosionin RC structures[J]. Journal of Engineering Mechanics,2001,127(4):342-351.
    [95]张钧林.再论冷轧扭钢筋混凝土结构的力学性能[J].水泥混凝土制品,2000(1):27-31.
    [96]张钧林,张怀总.螺旋扭状钢筋节距对钢筋粘结锚固性的影响[J].建筑材料学报,2003,6(4):441-444.
    [97]张钧林,周搏,吴科如.螺旋扭状增强材料与螺旋效应研究综述[J].建筑材料学报,2006,9(1):59-65.
    [98]张钧林,王纯利.螺旋扭状增强材料螺旋效应的理论解析[J].建筑材料学报,2008,11(5):528-534.
    [99]郑晓燕,吴胜兴,刘龙强.动荷载作用下钢筋与混凝土粘结性能研究[J].混凝土与水泥制品,2002,29(6):27-30.
    [100]欧阳煜,赖校君.高强钢筋高强混凝土粘结性能的试验研究与分析[J].工业建筑,2007,37(5):77-81.
    [101]罗晓辉,卫军,何立红.钢筋粘结滑移的理论模型分析[J].武汉理工大学学报,2008,30(10):68-72.
    [102]李智斌,吴广彬,王依群.带锚固板钢筋机械锚固性能研究进展及趋势[J].建筑科学,2008,24(5):91-94.
    [103]刘立新,王莉荔.热轧带肋钢筋机械锚固性能的试验研究[J].建筑结构,2009,36(S):895-898.
    [104]刘立新,李殿文,陈萌.细晶粒热轧带肋钢筋粘结锚固性能试验研究[J].工业建筑,2011,41(2):61-65.
    [105]张慧鹏,刘立新.冷轧带肋钢筋与混凝土粘结锚固性能试验研究[J].桥隧工程,2011(7):216-220.
    [106]刘立新,朱爱萍,许莉.冷轧带肋钢筋焊接网粘结锚固性能试验研究[J].桥隧工程,2012(1):114-118.
    [107]陈强,邹道勤,毛土明.冷轧螺旋钢筋与混凝土黏结性能研究[J].混凝土,2011(2):49-51,118.
    [108]王依群,王福智.钢筋与混凝土间的黏结滑移在ANSYS中的模拟[J].天津大学学报,2006,39(2):209-213.
    [109]王林科,陶峰,王庆霖,等.锈后钢筋与混凝土粘结锚固的试验研究[J].工业建筑,1996,26(4):14-16.
    [110]袁迎曙,余索,贾福萍.锈蚀钢筋混凝土的粘结性能退化的试验研究[J].工业建筑,1999,29(11):47-50.
    [111]袁迎曙,贾福平,蔡跃.锈蚀钢筋混凝土的结构退化性能[J].土木工程学报,2001,34(3):47-52.
    [112]张伟平,张誉.锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J].土木工程学报,2001,34(5):40-43.
    [113]赵羽习,金伟良.锈蚀钢筋与混凝土粘结性能的试验研究[J].浙江大学学报(工学版),2002,36(4):352-356.
    [114] X. H. Wang. Bond strength modeling for corroded reinforcements[J]. Construction andBuilding Materials,2006,20(3):177-186.
    [115]郑晓燕,吴胜兴.动荷载下锈蚀钢筋混凝土粘结滑移特性的试验研究[J].土木工程学报,2006,39(6):42-46,65.
    [116]郑晓燕,吴胜兴.钢筋混凝土粘结滑移本构关系建立方法的研究[J].四川建筑科学研究,2006,32(1):18-21.
    [117]陈静,刘西拉.锈蚀钢筋混凝土构件粘结滑移本构模型[J].四川建筑科学研究,2008,34(4):1-7.
    [118]阎立涛,李胜利,陆东涛.冷辊拔加工中轧件残余应力的探讨[J].钢铁,1999,34(2):35-37.
    [119] Q. Qu, S. Jiang, L. Li, et al. Corrosion behavior of cold rolled steel in peracetic acidsolutions [J]. Corrosion Science50(2008):35-40.
    [120]黄华贵,臧新良,蒋松,等.三辊张力装置增张能力非线性数值预测[J].塑性工程学报,2009,16(03):97-101.
    [121]许石民,黄华贵,臧新良,等.三辊张力装置增张能力的数值模拟分析[J].钢铁,2009,44(07):53-57.
    [122]刘涛,王益群,薛志勇.带钢冷轧过程辊系径向变形的数据挖掘与预报[J].机械工程学报,2011,47(6):69-72,79.
    [123]刘涛,王益群,邢艳杰.带钢冷轧过程轧辊热变形参数的智能优化[J].燕山大学学报,2011,35(5):402-406.
    [124] Ji. Zhang, Y. Wang. Defection Recognition of Cold Rolling Strip Steel Based on ACOAlgorithm with Quantum Action [J]. Transactions on Edutainment VII, LNCS7145,2012:263-271.
    [125] T. Senuma. Present Status and Future Prospects of Simulation Models for Predicting theMicrostructure of Cold-rolled Steel Sheets[J]. ISIJ International,201252(4):679–687.
    [126] I. Shakhova, V. Dudko, A. Belyakov, et al. Effect of large strain cold rolling and subsequentannealing on microstructure and mechanical properties of an austenitic stainless steel[J]. MaterialsScience and Engineering A545(2012):176-186.
    [127]曹鸿德.塑形变形力学基础与轧制原理[M].北京:机械工业出版社,1981:151-166.
    [128]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,1999.
    [129] H. Liu, S. Wang, P. Ouyang. Fault Diagnosis in a Hydraulic Position Servo System UsingRBF Neural Network [J]. Chinese Journal of Aeronautics,2006,19(4):346-353.
    [130]史忠植.神经网络[M].北京:高等教育出版社,2009:55-56.
    [131]张良均,曹晶,蒋世忠.神经网络实用教程[M].北京:机械工业出版社,2009.
    [132]朱凯,王正林.精通MATLAB神经网络[M].北京:电子工业出版社,2010:193-245.
    [133] I. Poultangaria, R. Shahnazib, M. Sheikhan. RBF neural network based PI pitch controllerfor a class of5-MW wind turbines using particle swarm optimization algorithm [J]. ISATransactions,2012,51(5):641-648.
    [134] L. Yang, J. Zhang. Prediction Study on Anti-Slide Control of Railway Vehicle Based on RBFNeural Networks [J]. Physics Procedia,2012,25:911-916.
    [135]步尚全.泛函分析基础[M].北京:清华大学出版社,2011.
    [136]傅荟璇,赵红.MATLAB神经网络应用设计[M].北京:机械工业出版社,2010:83-97.
    [137]刘希玉,刘弘.人工神经网络与微粒群优化[M].北京:北京邮电大学出版社,2008.
    [138]闻新,周露,李翔,等.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003:278-281.
    [139]骆志高,张保刚,何鑫.基于BP神经网络的金属拉伸件裂纹在线监测[J].振动与冲击,2012,31(10):102-105.
    [140]焦李成,尚荣华,马文萍,等.多目标优化免疫算法、理论和应用[M].北京:科学出版社,2010:3-5,134.
    [141]赵继俊.优化技术与MATLAB优化工具箱[M].北京:机械工业出版社,2011:166-171.
    [142]刘惟信.机械最优化设计(第二版)[M].北京:清华大学出版社,1994:230-236.
    [143]阳明盛,罗长童.最优化理论、方法及求解软件[M].北京:科学出版社,2006:87-95,128-155.
    [144]雷英杰,张善文,李继武,等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005:11-61,146-207.
    [145] H. G. Han, Q. Chen, J. F. Qiao. An efficient self-organizing RBF neural network for waterquality prediction [J]. Neural Networks,2011,24(7):717-725.
    [146]史峰,王辉,郁磊,等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011.
    [147]侯祥林,胡英,李永强等.多层人工神经网络合理结构的确定方法[J].东北大学学报,2003,24(1):35-38.
    [148] H. S. Park, Y. D. Chung, S. K. Oh, et al. Design of information granule-oriented RBF neuralnetworks and its application to power supply for high-field magnet [J]. Engineering Applicationsof Artificial Intelligence,2011,24(3):543-554.
    [149] M. Dorigo, M. Birattari, T. Stiitzle. Ant colony optimization[J]. IEEE ComputationalIntelligence Magazine,2006,1(4):28-39.
    [150]耿小庆,和金生,于宝琴.几种改进BP算法及其在应用中的比较分析[J].计算机工程与应用,2007,43(33):243-245.
    [151]李彦斌,李存斌,杨尚东.基于免疫遗传算法改进DFNN模型及应用[J].中南大学学报,2008,39(2):345-349.
    [152] M. Randall. A parallel implementation of ant colony optimization [J]. Journal of Parallel andDistributed Computing,2002,62(9):1421-1432.
    [153] C. Blum. Ant colony optimization: introduction and recent trends[J]. Physics of LifeReviews,2005,2(4):353-373.
    [154] M. Dorigo, C. Blum. Ant colony optimization theory: a survey [J]. Theoretical ComputerScience,2005,344(2-3):243-278.
    [155] J. M. Yang, H. J. Che, F. P. Dou, et al. Genetic algorithm-based optimization used in rollingschedule [J]. Journal of Iron and Steel Research,2008,15(2):18-22.
    [156] D. D. Wang, A. K. Tieu, F. G. Boer, et al. Toward a heuristic optimum design of rollingschedules for tandem cold rolling mills[J]. Engineering Applications of Artificial Intelligence,2000,13(4):397-406.
    [157] K. A. Singh, Srinivas, M. K. Tiwari. Modelling the slab stack shuffling problem indeveloping steel rolling schedules and its solution using improved parallel genetic algorithms [J].International Journal of Production Economics,2004,91(2):135-147.
    [158] B. Wang, Y. G. Xi, H. Y. Gu. Terminal penalty rolling scheduling based on initial schedulefor single-machine scheduling problem [J]. Computer&Operations Research,2005,32(11):3059-3072.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700