用户名: 密码: 验证码:
琼东南盆地断裂组合样式及其变形机制模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以琼东南盆地区域二维和部分三维地震资料的地震地质精细解释为基础,结合钻井、测井、岩心、重磁等资料,应用板块构造、盆地动力学和解析构造学等地质分析的理论和技术方法,对盆地内主干断裂系统的几何学特征和运动学过程进行分析,总结出断裂系统的构造样式及不同类型的断裂扩展模式。同时,应用平衡剖面技术恢复盆地断裂系统发育演化过程;应用数值模拟方法研究控制断裂及其组合样式的变形场,结合区域背景分析及前人的研究成果,探讨断裂系统发育演化机制,分析盆地断裂系统与盆地结构和沉积体系的耦合关系。此外,还应用相干技术对3D地震资料进行二次处理和精细构造解释,研究了发育在浅海—半深海相泥岩地层中的层间断层的基本特征及其可能的成因机制。
     琼东南盆地断裂系统主要有NE向、NW向和近EW向三组,其中NE向断层占主导地位,EW向次之,NW向断层最少。NW向断层除了与莺歌海盆地分界的1号边界走滑断层外,其他均为调节断层,也带有一定的走滑性质。2号断裂带、6号断裂带、11号断裂带及5号断裂带东段等“控盆、控凹”的主干断裂,均为NE向。EW向断裂主要为陵水组沉积时期,区域应力场转变为SN向拉张产生的次级断层,但3号断裂带和5号断裂带西段因受1号走滑断裂带的影响也为近EW走向。除6号、11号断层倾向为NW向外,其余主干断裂倾向均为SE向。除11号断层外,其它断层倾角以大于30°为主,表现为高角度正断层。断裂带结构以简单的单断式结构为主,断阶结构主要出现在5号、11号断层东西末端、6号断层西部、2号断裂带东部末端等位置。
     琼东南盆地各个地质历史时期,各主干断裂活动特征具有较强的相似性:始新世时期,断层的活动性都较弱,断层滑移量及断层活动速率均较小,表现为孤立的、单独发育的小型断层系;早渐新世时期,断裂带的活动性突然明显加强,断层滑移量及断层活动速率均较高;晚渐新世时期,区域应力场由NW向拉张转变为SN向拉张,各主干断裂均继承性活动,且断层的活动性仍在较高,但绝大多数小型断层停止生长,平面上表现为断层数量的急剧减少,同时诱发一定数量的EW走向断层的活动;早中新世时期,各断裂带活动性均急剧减弱,琼东南盆地进入裂后热沉降期。空间上,盆地中央坳陷带内的断裂活动性明显大于北部凹陷带;盆地东部断裂系统的活动性主要集中在中南部,而盆地西部断裂系统活动性差异较小。早渐新世到晚渐新世时期,6号断层、11号断层及2号断层松南段的断裂活动中心都发生了明显的由东向西迁移的现象;晚渐新世到早中新世时期,整个盆地断裂活动特征由“东强西弱”转变为“西强东弱”。
     琼东南盆地层间断层主要发育在早—中中新世三亚组和梅山组浅海—半深海相泥岩地层中,该断层系主要为倾角大于45°的板状正断层,断层长度一般不超过1000m,但断层走向在不同区域差别很大。东北部地区主要由平行于等深线的EW向的断层密集带和与之垂直的SN向直线状断层组成,EW向的断层密集带主要受重力滑塌作用,而SN向直线状断层体积收缩作用形成,并受到重力滑塌作用的影响;中部地区底辟作用十分发育,断层主要分为放射状断层和与之垂直的层间断层两部分,放射状断层主要受超压水力破裂作用,而与之垂直的层间断层主要为体积收缩形成,并受到了放射状断层的影响;西南部地区层间断层变现为断层多边形,在构造断层影响区,层间断层走向与构造断层相互垂直,其形成机制为地层的脱水收缩作用,并受到区域远程应力场的影响。
     系统总结了琼东南盆地内发育的构造样式及构造转换带特征,划分了盆地内构造样式和构造转换带的类型。根据盆地构造样式的成因机制(力学机制)不同将其分为伸展型、底辟型和多边形断层三个大类。构造研究基本可分为断层和褶皱两部分,根据断层产状又可将断层分为板式正断层和铲式正断层两种;根据褶皱发育的几何学特征将褶皱划分为纵向褶皱、披覆褶皱和横向褶皱三个基本类型。根据发生塑性流动的底辟物质不同,将底辟构造分为泥底辟构造和火山岩底辟构造。琼东南盆地主要发育同向倾斜型、相向倾斜型和相背倾斜型三类构造转换带,其中同向倾斜型有可分为部分叠覆式、叠覆式和传递式三种类型。
     将琼东南盆地断裂系统发育模式总结为简单生长型和生长连通型两大类。并应用有限元数值模拟方法,模拟了断层形成演化过程:断层的最大位移与断裂迹长遵循幂指数关系,6号断层和11号断层符合孤立断层演化模式,断层中部表现为垂向生长,断点处表现为横向扩展;5号断层和2号断层符合多条断层演化模式,在断层交互处表现为较高的应力集中,容易产生纵向扩展使断层相互连通,同时最大垂向位移向断层交互处迁移,连通后最大位移向交互处跃迁。琼东南盆地西部的剪切应力对断裂的发育有着重要的影响,使得断裂的最大位移向剪切力处迁移,最大应力出现在远离走滑断层的断点处,靠近走滑断层处的应力集中不明显,范围较广,表现为是断层羽状散开,表明红河走滑断裂带对琼东南盆地西部断裂活动有着重要的影响。
     断裂系统控制了盆地结构及盆地主要凹陷发育演化特征;断裂几何学、运动学特征及盆地结构又共同控制着盆地内沉积体系,特别是砂体的发育及空间展布特征。反过来说,断陷阶段沉积厚度最大的区域即为断裂活动的中心区域,沉降中心迁移反应了断裂活动中心的迁移。
Based on geological structural interpretation of latest 2D and 3D seismic profiles, combined with drilling data, log measurement, bore specimen and gravity and magnetic data, geometry and kinematics characteristic of main faults in Qiongdongnan Basin (QDNB) have been studied by using theoretical analysis of geologic analysis such as plate tectonic theory, basin dynamic analysis, analytic structural geology et al. Structural styles and fault growth models were summed up. At the same time, balanced cross sections were used to renew the evolution of faults system in QDNB; numerical modeling was used to analyze the deformation characteristic of faults; developmental mechanism of faults in QDNB had been researched based on regional geological setting analyse. Basin architecture and depositional system tract depends upon a complex interaction with the evolution of fault propagation. Furthermore,3D seismic data was secondary treated using coherence technique and was secondary structure elucidated. The basic characteristic of intrastratal faults in QDNB and their formation mechanism were also discussed.
     There were three groups fault system in QDNB, including NE-trend faults, NW- trend faults and nearly EW-trend faults. NE-trend faults were the dominant fault system, EW-trend faults were the secondary and NW-trending faults were least. Beside No.1 fault, which was strike-slip fault and the boundary fault of Yinggehai basin, the other NW-trend faults were adjusted faults, but also with a certain strike-slip weight. The main faults which control the development of basin or sag were NE-trend faults, such as No.2 fault, No.6 fault, No.11 fault and eastern part of No.5 fault. EW-trend faults, which were dominate formed during the deposition period of the Lingshui formation, were subsidiary faults generated by the regional SN-trend stretching. But No.3fault system and western part of No.5fault system were also EW-trend faults due to the impact of the No.1 strike-slip fault zone. No.6 fault and No.11 fault tendency was NW, and the other main faults tendency was SE. All the fault dips, except No.11 fault, were greater than 30°as high-angle normal faults. The main structure of fault system was simple single faults; and fault terrace structures were mainly located in terminal portion of faults such as No.5 fault, No.11 fault, No.6 fault, and No2. fault.
     There were lots of similarities of main faults activity characteristic during the geological history of QDNB. Many small faults with small displacements and low displacement rates were active during Eocene period. This characteristic was testable in basin record as numerous, isolated, bounded by small faults. During Early-Oligocene period, the faults were active with larger displacements and higher displacement rates suddenly. In Late-Oligocene period, the regional extensional stress field changed form NW-tension into SN-tension, but all the main faults were continually active with larger displacements and higher displacement rates; but vast of small faults were inactive lead to the number of faults sharp reduction in the performance of fault plane map; at the same time, a lot of EW-trend faults were beginning active. Starting from the Early Miocene, the main faults were nearly inactive, the basin entered into the period of thermal subsidence stage. The spatial and temporal migration of main active faulting was clear revealed. The faults activity rates were significantly higher in central depression zone than the faults in northern depression zone; fault system in eastern was mainly in its central and southern, and fault system in western had little faults activity difference. The center of single fault activity (such as No.6 fault and No.11 fault et al.) migrated from east to west during Early Oligocene to Late Oligocene, and the center of the whole fault system in QDNB also migrated from east to west during Late Oligocene to Early Miocene.
     A large number of intrastratal faults have been identified in the early-middle Miocene Meishan Formation and Huangliu Formation shallow-bathyal mudstone in QDNB. Those faults were all extensional and planar with most dips above 45°and less than 1000m long, but the faults strike in the different regions vary widely. In the northeast part of the studying area, the intrastratal faults were composed of EW-trending densely faulted belt and SN-trending linear faults, the EW-trending densely faulted belt were resulted from gravity-driven mechanical, while the SN-trending linear faults were resulted from volumetric mechanical and also were influenced by gravity-driven. In the central part of the studying area, the intrastratal faults were composed of radial faults and other faults which perpendicular to the former, the radial faults were resulted from hydraulic fracture mechanical, while other faults were resulted from volumetric mechanical and also were influenced by radial faults. In the southwest part, the intrastratal faults were polygonal faults, which were resulted from volumetric mechanical. The polygonal faults were perpendicular to the tectonic faults in tectonic faults-affected area.
     Structural styles and transfer zones were systematic summarized and compartmentalized in QDNB. The structural styles, base on different formation mechanism of Structural styles, were divided into extension structural, diapiric and the polygonal faults three types. Fault and fold were basic research of structure; fault, according to the fault occurrence, can be divided into platy normal faults and the listric normal fault; and fold, according to their geometry characteristics, can be divided into longitudinal fold, drape fold and transverse fold. The diapiric structure was divided into mud diapiric and volcanic diapiric, according to the different diapiric material. Three types of transfer zones, includes synthetic, convergent and divergent, were dug out in QDNB. And the synthetic transfer zone can be further divided into part overlapping, overlapping cover and transform fault.
     The development patterns of fault system in QDNB were summarized by two types——simple propagation and propagation amalgamation. Finite element numerical simulation was applied for modeling the process of fault formation and evolution:the maximum displacement of a fault was proportional to the trace length's power exponent. No.6 fault and No.11 fault accord with the single fault evolution pattern:the middle part of the fault was characteristic as vertical growth and lateral extension was developed at the breakpoint. No.5 fault and No.2 fault were attributed to muti-faults evolution pattern:high stress was stimulated at the convergence point of the faults that vertical expansion was developed to connect the faults. The maximum displacement transported to the convergence point at the same time. The shearing stress in the Western QDNB had important influence on fault growth. The maximum displacement transferred to the direction of shearing stress. The maximum stress was present to breakpoint away from the breakpoint. The stress concentration around the strike-slip fault was not apparent, and the faults were pinnate ranged. It was indicated that Honghe strike-slip faults had important influence on fault activity in Western QDNB.
     In particular, the processes of fault propagation, growth, linkage and death were major tectonic controls on QDNB architecture and the three-dimensional evolution of QDNB. Depositional system, especially the distribution and its evolution of sand body morphology, was controlled by both basin architecture and the evolution of fault system. On the other hand, the region of maximum depositional thickness of rifted basin reflects on the region of maximum displacement rate of fault, and the migration of center of subsidence reflects on the migration of fault action centre.
引文
1胡代圣.琼东南盆地的基本地质特征成生演化与泊气空间展布.1988,内部资料
    2王槐基.茑一琼盆地构造区划及其重点圈闭落实.“八五”国家重点科技攻关项目成果报告,1994,内部资料
    3王良书.琼东南盆地结构和构造动力学研究.“九五”国家重点科技攻关项目成果”,南京大学/南海西部研究院.2000,内部资料
    4吕明.茑琼盆地层序地层和沉积特征.“十五”国家重大科技攻关课题成果报告,2006,内部资料
    王华,陆永潮.2003.琼东南②号断裂带沉积相分析及储层预测.中海石油研究中心南海西部研究院内部报告
    6吕明.莺琼盆地层序地层和沉积特征,叶五”国家重大科技攻关课题成果报告,2006,内部资料
    [1]钟志洪.莺琼盆地构造形成机制与油气聚集的研究:[博十论文].南京:南京大学,2000.
    [2]李绪宣,朱光辉.琼东南盆地断裂系统及其油气输导特征[J].中国海上油气,2005,17(1):127-138.
    [3]李绪宣,钟志红,董伟良等.琼东南盆地古近纪裂陷构造特征及其动力学机制[J].石油勘探与开发,2006,33(6):713-721.
    [4]谢文彦,张一伟,孙珍.琼东南盆地断裂构造与成因机制[J].海洋地质与第四纪地质,2007,27(1):26-33.
    [5]于俊峰,段如泰.琼东南盆地2号断裂东带发育特征及形成机理[J].大地构造与成矿学,2008,32(3):293-299.
    [6]佟殿君,任建业,雷超等.琼东南盆地深水区岩石圈伸展模式及其对裂后期沉降的控制[J].地球科学——中国地质大学学报,2009,34(6):963-974.
    [7]雷超,任建业,裴健翔等.琼东南盆地深水区构造格局和幕式演化过程[J].地球科学——中国地质大学学报,2011,36(1):151-162.
    [8]Roy F, Therasse M, Dutoit B, et al. Numerical Studies of the Quench Propagation in Coated Conductors for Fault Current Limiters[J]. Ieee Transactions On Applied Superconductivity, 2009,19(3):2496-2499.
    [9]Silje S, Berg T S. Controls on damage zone asymmetry of a normal fault zone:outcrop analyses of a segment of the Moab fault, SE Utah[J]. Journal of Structural Geology,2005, 27:1803-1822.
    [10]Zhou Y J, Hu C B, Cai Y G. Influence of an inhomogeneous stress field and fault-zone thickness on the displacement and stresses induced by normal faulting[J]. Journal of Structural Geology,2009,31:491-497.
    [11]Manighetti I, King G, Sammis C G. The role of off-fault damage in the evolution of normal faults[J]. Earth and Planetary Science Letters,2004,217:399-408.
    [12]Cowie P A, Scholz C H. Physical explanation for the displacement-length relationship of faults a post-yield fracture mechanics model[J]. J. Struct. Geol.,1992a,14:1133-1148.
    [13]Cowie P A, Scholz C H. Displacement-length scaling relationship for faults:Data synthesis and discussion[J]. J Struct Geol,1992b,14:1149-1156.
    [14]董进,张世红,姜勇彪.正断层位移—距离关系及其研究意义[J].地学前缘,2004,11(4):575-584.
    [15]Dawers N H, Anders M H, Scholz C H. Fault length and displacement:Scaling laws[J]. Geology,1993,21:1107-1110.
    [16]Young S K, David J S. The relationship between displacement and length of fauls:a review[J]. Earth-Science Reviews,2005,68:317-334
    [17]Gawthorpe R L, Leeder M R. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research,2000,12:195-218.
    [18]Cowie P A, Gupta S, Dawers N H. Implication of fault array evolution for synrift depocentre development:insights from a numerical fault growth model[J]. Basin Research,2000,12: 241-261.
    [19]McLeod A E, Dawers N H, Underhill J R. The propagation and linkage of normal faults: Insights from the Strathspey-Brent-Statfjord fault array, northern North Sea[J]. Basin Research,2000,12:263-284.
    [20]Davies S J, Dawers N H, Mcleod A E. The structural and sedimentological evolution of early synrift successions:the Middle Jurassic Tarbert Formation, North Sea[J]. Basin Research, 2000,12:343-365.
    [21]Adam J, Urai J L, Wieneke B. Shear localisation and strain distribution during tectonic faulting-new insights from granular-flow experiments and hight-resolution optical image correlation techniques[J]. Journal of Structural Geology,2005,27:283-301
    [22]Davis K, Douglas W B, Donald F. Thrust-fault growth and segment linkage in the active Ostler fault zone, New Zealand[J]. Journal of Structural Geology,2005,27:1528-1546.
    [23]Soliva R, Benedicto A. A linkage criterion for segmented normal faults[J]. Journal of Structural Geology,2004,26:2251-2267
    [24]Simon A K, Atilla A, David D P. Joints at high angles to normal fault strike:an explanation using 3-D numerical models of fault-perturbed stress fields[J]. Journal of Structural Geology, 2000,22:1-23.
    [25]Maerten L, Gillespie P, David D P. Effects of local stress perturbation on secondary fault development [J]. Journal of Structural Geology,2002,24:145-153.
    [26]Alberti M. Spatial structures in earthquakes and faults:quantifying similarity in simulated stress fields and natural data sets[J]. Journal of Structural Geology,2006,28:998-1018.
    [27]Walsh J J, Nicol A, Childs C. An alternative model for the growth of faults[J]. Journal of Structural Geology,2002,24:1669-1675.
    [28]Matthew A A, Martel S J. Fault terminations and barriers to fault growth[J]. Journal of Structural Geology,2004,26:1885-1896.
    [29]Rundberg Y. Tertiary sedimentary history and basin evolution of the Norwegian North Sea between 608 and 628, an integrated approach. Dr. Ing. thesis, NTH, Trondheim,1989, 267-278
    [30]Higgs W G, McClay K R. Analogue sandbox modelling of Miocene extensional faulting in the Outer Moray Firth. In:Williams, G.D., Dobb, A. (Eds.), Tectonics and Seismic Sequence Stratigraphy,71. Geological Society of London Special Publication,1993,141-162.
    [31]Clausen O R, Korstgard J A. Small-scale faulting as an indicator of deformation mechanism in the Tertiary sediments of the northern Danish Central Trough[J]. Journal of Structural Geology,1993,15:1343-1357.
    [32]Stewart S A. Tertiary extensional fault systems on the western margin of the North Sea Basin[J]. Petroleum Geoscience,1996 12:167-176.
    [33]Cartwright J A. Episodic basin-wide hydrofracturing of overpressured Early Cenozoic mudrock sequences in the North Sea Basin[J]. Marine and Petroleum Geology,1994a,11: 587-607.
    [34]Cartwright J A. Episodic basin-wide expulsion from geopressured shale sequences in the North Sea basin[J]. Geology,1994b,22:447-450.
    [35]Lonergan L, Cartwright J, Laver R. Polygonal faulting in the Tertiary of the central North Sea: implications for reservoir geology. In:Coward, M.P., et al. (Eds.), Structural Geology in Reservoir Characterization, Special Publication 127. Geological Society of London,1998a: 191-207.
    [36]Lonergan L, Cartwright J, Laver R. The geometry of polygonal fault systems in Tertiary mudrocks of the North Sea[J]. Journal of Structural Geology,1998b,20:529-548
    [37]Dewhurst D N, Cartwright J, Lonergan L. The development of polygonal fault systems by syneresis of colloidal sediments [J]. Marine and Petroleum Geology,1999,16:793-810.
    [38]Goulty N R. Geomechanics of polygonal fault systems:a review[J]. Petroleum Geoscience, 2008,14:389-397.
    [39]Cartwright J A, Dewhurst D N. Layer-bound compaction faults in fine-grained sediments [J]. Geological Society of AmericaBulletin,1998,110:1242-1257.
    [40]Paola N D, Collettini C, Trippetta F. A mechanical model for complex fault patterns induced by evaporite dehydration and cyclic changes in fluid pressure[J]. Journal of Structural Geology,2007,29:1573-1584.
    [41]Larter S, Aplin A C, Bowler B, et al. A drain in my graben:An integrated study of the Heimdal area petroleum system[J]. Journal of Geochemical Exploration,2000,69:619-622.
    [42]Victor P, Moretti I. Polygonal fault systems and channel boudinage:3D analysis of multidirectional extension in analogue sandbox experiments[J]. Marine and Petroleum Geology,2006,23:777-789.
    [43]Gay A, Lopez M, Cochonat P, et al. Evidences of early to late fluid migration from an upper Miocene turbiditic channel revealed by 3D seismic coupled to geochemical sampling within seafloor pockmarks, Lower Congo Basin[J]. Marine and Petroleum Geology,2006a,23 (3): 387-399
    [44]Gay A, Lopez M, Cochonat P, et al. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin[J]. Marine Geology,2006b,226:25-40.
    [45]Hustoft S, Mienert J, Bunz S, et al. High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin[J]. Marine Geology,2007,245:89-106
    [46]Stewart S A. Implications of passive salt diaper kinematics for reservoir segmentation by radial and concentric faults[J]. Marine and Petroleum Geology,2006,23:843-853.
    [47]Hansen D M, Cartwrigh J. The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills[J]. Journal of Structural Geology,2006,28:1520-1535.
    [48]余一欣,汤良杰,余纯利.多边断层系及其研究现状[J].世界地质,2005,24(2):149-153.
    [49]付晓匕,宋岩.松辽盆地三肇凹陷“T11”多边断层非构造成因机制探讨[J].地质学报,2008,82(6):738-749.
    [50]吴时国,孙启良,董冬冬等.深水盆地中多边形断层的几何特征与形成机制探讨[J].地质力学学报,2009a,1(3):231-240.
    [51]吴时国,孙启良,吴拓宁等.琼东南盆地深水区多边形断层的发现及其油气意义[J].石油学报,2009b,30(1):22-26.
    [52]李绪宣.琼东南盆地构造动力学演化及油气成藏研究:[博士论文].北京:中国科学院研究生院,2004.
    [53]Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia [J]. Geological Society Special Publications,1986,19:115-157.
    [54]Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan-Red River metamorphic belt: Tertiary left lateral shear between Indochina and South China [J]. Nature,1990,243: 431-437.
    [55]Leloup P H, Harrisson T M, Ryerson F J, et al. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan [J]. J. G. R.,1993,98: 6715-6743.
    [56]Lacassin R, Maluski H, Leloup PH, et al. Tertiary diachronic extrusion and deformation of western Indochina:Structural and Ar-40/Ar-39 evidence from NW Thailand [J]. Journal of Geophysical Research-Solid Earth.1997,102(B5):10013-10037.
    [57]Lacassin R, Leloup P H, Tapponnier P. Bounds On Strain In Large Tertiary Shear Zones Of Se Asia From Boudinage Restoration [J]. Journal of Structural Geology.1993,15(6):677-692.
    [58]Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia [J]. Geology, 1995,23(8):719-722.
    [59]郭令智,钟志洪,王良书等.莺歌海盆地区域构造演化[J].高校地质山版社,2001,7(1):1-12
    [60]Honza E, Fujioka K. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous[J]. Tectonophysics,2004,384(1-4): 23-53.
    [61]Morley C K. Combined escape tectonics and subduction rollback-back arc extension:a model for the evolution of Tertiary rift basins in Thailand, Malaysia and Laos [J]. Journal of the Geological Society, London,2001,158:461-474.
    [62]Leloup P H, Harrisson T M, Ryerson F J, et al. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan [J]. Tectonophysics, 1995,251:3-84.
    [63]Taylor B, Hayes D E. Origin and history of the South China Sea Basin. In:D. E. Hayes (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. [C] Part 2, Geoyhys. Monogr. Ser., AGU, Washington D C,1983,27:23-56.
    [64]Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading in the South China Sea:implications for the Tertiary Tectonics of Southeast Asia [J]. J. Geophys. Res.,1993,98(B4):629-638.
    [65]Funahara S, Nishiwaki N, Murata F, et al. Clockwise rotation of the Red River fault inferred from paleomagnetic study of Cretaceous rock in the Shan-Thai-Malay block of western Yunnan, China [J]. Earth Planet. Sci. Lett.,1993,117:29-42.
    [66]Ruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750 Ma to the present [J]. The Island Arc,1997,6:121-142.
    [67]龚再升,李思田,汪集旸等.南海北部大陆边缘盆地油气成藏动力学研究[M].北京:科学出版社,2004,3-45.
    [68]龚再升,李思田.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学技术出版社,1997.
    [69]刘传联.琼东南盆地渐新统烃源岩微观沉积特征与沉积环境[J].石油学报,2010,31(4):573-578
    [70]李增学,何玉平,刘海燕等.琼东南盆地崖城组煤的沉积学特征与聚煤模式[J].石油学报,2010,31(4):542-547.
    [71]米立军,王东东,李增学等.琼东南盆地崖城组高分辨率层序地层格架与煤层形成特征[J].石油学报,2010,31(4)534-541
    [72]陈红汉,付新明,杨甲明.莺琼盆地YA13-1气田成藏过程分析[J],1997,18(4):32-37
    [73]郝芳,李思田,孙永传.莺歌海—琼东南盆地的有机成熟作用及油气生成模式[J].中国科学(D),1996,26(6):555-560.
    [74]孙永革,杨中威,谢柳娟等.基于裂解色谱质谱技术的琼东南盆地渐新统源岩生烃潜力评价[J].石油学报,2010,31(4):579-585
    [75]李思田,林畅松,张启明等.南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件[J].科学通报,1998,43(8):797-810.
    [76]Sun Q L, Wu S G, Yao G S, et al. Characteristics and Formation Mechanism of Polygonal Faults in Qiongdongnan Basin, Northern South China Sea[J]. Journal of Earth Science,2009, 20(1):180-192.
    [77]Dorthe M H, John W S, Mark A W, et al. Development of a major polygonal fault system in Upper Cretaceous chalk and Cenozoic mudrocks of the Sable Subbasin, Canadian Atlantic margin[J]. Marine and Petroleum Geology,2004,21:1205-1219.
    [78]Lachenbruch A H. Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost[J]. Geological Society of America Special Publication,1962,70:69
    [79]Maerten L, Willemse E J M, Pollard D D, et al. Slip distribution on intersecting normal faults[J]. Journal of Structural Geology,1999,21:259-271
    [80]Stuevold L M, Faerseth R B, Arnesen L, et al. Polygonal faults in the Ormen Lange Field, More Basin, offshore Mid Norway [J]. In:Subsurface Sediment Mobilization. Geol. Soc. Spec. Pub,2003,16:263-281.
    [81]Dahlstrom C D A. Structural geology in the eastern margin of the Canadian Rocky mountains [J]. Bull of Canadian Petroleum Geology,1970,187:332-406
    [82]Rosendahl B R. Architecture of continental rifts with special reference to East Africa[J]. Annual Review of Earth and planetary Sciences,1987,15:445-503.
    [83]Scott D L, Rosendahl B R. North Viking graben:an East African prospective[J]. AAPG Bull, 1989,73(2):155-165.
    [84]Gibbs A D. Linked fault families in basin formation[J]. Journal of the Structural Geology, 1990,12(5-6):795-803.
    [85]Morley C K, Nelson R A, Patton T L, et al. Transfer zones in East African rift system and their relevance to hydrocarbon exploration in rifts[J]. AAPG Bull,1990,74 (8):1234-1253.
    [86]Anders M H, Schlische R W. Overlapping faults, intrabasin highs, and growth of normal faults[J]. The Journal of Geology,1994,102:165-180.
    [87]Faulds J E, Varga R J. The role of accommodation zone and transfer zone in the regional segmentation of extended terranes[J]. Geology Society of America special Paper,1998,323: 1-45.
    [88]胡望水,王燮培.松辽盆地北部变换构造及其石油地质意义[J].石油与天然气地质,1994,15(2):164-172.
    [89]刘德来,王伟大,马莉.伸展盆地转换带分析-以松辽盆地北部为例[J].地质科技情,1994,13(2):5-9.
    [90]刘剑平,汪新文,周章保等.伸展地区变换构造研究进展[J].地质科技情报,2000,19(3):27-32.
    [91]陈发景.调节带(或传递带)的基本概念和分类[J].现代地质,2003,17(2):186-207.
    [92]孙向阳,任建业.东营凹陷北带转换带构造与储集体分布[J].石油勘探与开发,2004,31(1):21-23.
    [93]陈昭年,陈发景,王琦.正断层软联接及其传递带类型[J].现代地质,2005,19(4):495-499
    [94]王风华,李荣权.构造转换带精细研究及非构造油气藏勘探[J].新疆石油地质,2006,27(2):178-180.
    [95]漆家福.裂陷盆地中的构造变换带及其石油地质意义[J].海相油气地质,2007,12(4):43-50.
    [96]闫宝义,黄艳,崔永谦等.饶阳凹陷构造转换带对新近系油气成藏的控制作用[J].中国石油勘探,2008,13(2):17-20.
    [97]周心怀,余一欣,魏刚等.渤海辽东湾海域JZ25-I S转换带与油气成藏的关系[J].石油学报,2008,29(6):837-840.
    [98]余一欣,周心怀,汤良杰等.渤海海域辽东湾坳陷正断层联接及其转换带特征[J].地质评论,2009,55(1):79-84.
    [99]林海涛,任建业,雷超等.琼东南盆地2号断层构造转换带及其对砂体分布的控制[J].大地构造与成矿学,2010,34(3):308-316.
    [100]王燮培.石油勘探构造分析.北京:石油工业出版社,1990.
    [101]Dahlstrom C D A. Balanced cross sections [J]. Canadian:Journal of Earth Sciences,1969,6: 743-757.
    [102]Suppe J. Geometry and kinematics of fault-bend folding[J]. American Journal of science. 1983,283:684-721.
    [103]Gibbs A. Balanced cross-section construction from seismic sections in areas of extensional tectonics[J]. Journal of Structural Geology,1983,5:153-160.
    [104]漆家福,Groshong R H,杨桥.用面积守恒原理预测伸展断陷盆地中岩层内部应变及亚分辨率正断层的方法[J].地球科学-中国地质大学学报,2002,27(6):696-702.
    [105]漆家福,杨桥,王子煌等.关于编制盆地构造演化剖面的几个问题的讨论[J].地质评论.2001,47(4):388-392.
    [106]漆家福,杨桥,王子煌.编制盆地复原古构造图的若干问题的讨论[J].地质科学,2003,38(3):413-424.
    [107]谢文彦王涛张一伟等.琼东南盆地西南部新生代断陷特征与岩浆活动机理[J].大地构造与成矿学,2009.5,33(2):199-205.
    [108]Cartwright J A, Trudgill B D, Mansfield C S. Fault growth by segment linkage:an explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SE Utah[J]. Journal of Stuctural Geology,1995,17:1319-1326.
    [109]Schlische R W. Structural and stratigraphic development of the Newark extensional basin, eastern North America:evidence for the growth of the basin and its bounding faults[J]. Geological Society of America Bulletin,1992,104:1246-1263.
    [110]Gawthorpe R L, Sharp I, Underhill J R, et al. Linked sequence stratigraphic and structural evolution of propagating normal faults[J]. Geology,1997,25:795-798.
    [111]Morley C K. Patterns of displacement along large normal faults:implications for basin evolution and fault propagation, based on examples from East Africa[J]. AAPG Bulletin, 1999a,83:613-634.
    [112]Morley C K. Basin evolution trends in East Africa, in C. K. Morley, ed., Geoscience of rift systems-evolution of East Africa:AAPG Studies in Geology,1999b,44:131-150.
    [113]Contreras J, Anders M H, Scholz C H. Growth of a normal fault system:observations from the Lake Malawi basin of the East African rift[J]. Journal of Structural Geology,2000,22: 159-168.
    [114]Mansfield C S, Cartwright J A. High resolution fault displacement mapping from three-dimensional seismic data:evidence for dip linkage during fault growth[J]. Journal of Structural Geology,1996,18:249-263.
    [115]Morley C K, Burhannudinnur M. Anatomy of growth fault zones in poorly lithified sandstones and shales:implications for reservoir studies and seismic interpretation:part 2, seismic reflection geometries[J]. Petroleum Geoscience,1997,.3:225-231.
    [116]Dawers N H, Underhill J R. The role of fault interaction and linkage in controlling syn-rift stratigraphic sequences:Late Jurassic, Statfjord East area, northern North Sea[J]. AAPG Bulletin,2000,84:45-64.
    [117]Schlische R W, Anders M H. Stratigraphic effects and tectonic implications of the growth of normal faults and extensional basins, in K. K. Beraton, ed., Reconstructing the history of Basin and Range extension using sedimentology and stratigraphy:Geological Society of American Special Paper, 1996 303:183-203
    [118]Morley C K, Wescott W A, Stone R M, et al. Geology and geophysics of the western Turkana basins, in C. K. Morley, ed., Geoscience of rift systems evolution of East Africa: AAPG Studies in Geology,1999,44:55-66
    [119]Morley C K. Evolution of large normal fault:Evidence from seismic reflection data[J]. AAPG Bulletin,2002,86(6):961-978
    [120]任建业,李思田.西太平洋边缘海盆地的扩张过程和动力学背景[J].地学前缘,2000,7(3):203-213
    [121]Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics,2002,344:175-205
    [122]孙珍,钟志洪,周蒂等.南海的发育机制研究——相似模拟证据[J].中国科学D辑,2006,(4):25-30.
    [123]Lee T Y, Lawver L A. Cenozoic plate reconstruction of Southeast Asia [J]. Tectonophysics, 1995,251:85-138.
    [124]Cripps J C, Taylor R K. The engineering properties of mudrocks[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1981,4:325-346.
    [125]Cartwright J A, Lonergan L. Volumetric contraction during the compaction of mudrocks:a mechanism for the development of regional-scale polygonal fault systems[J]. Basin Research,1996,8:183-193.
    [126]Goulty N R. Polygonal fault networks in fine-grained sediments-analternative to the syneresis mechanism[J]. First Break,2001,19:69-73.
    [127]Goulty N R. Mechanics of layer-bound polygonal faulting in fine grained sediments[J]. Journal of the Geological Society, London,2002,159,239-246.
    [128]Goulty N R, Swarbrick R E. Development of polygonal fault systems:A test of hypothesis[J]. Journal of the Geological Society,2005,162:587-590.
    [129]Jones M E. Mechanical principles of sediment deformation. In:Maltman, A. (ed) The Geological Deformation of Sediments. Chapman &Hall, Cambridge,1994,37-71.
    [130]漆家福,杨桥,童亨茂等.构造因素对半地堑盆地的层序充填的影响[J].地球科学中国地质大学学报,1997,22(6):603-608.
    [131]杨明慧,刘池阳.陆相伸展盆地的层序类型、结构和序列与充填模式一以冀中坳陷下第三系为例[J].沉积学报,2002.20(2):222-228.
    [132]林畅松,郑和荣,任建业等.渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的控制[J].中国科学辑(D辑),2003,33(11):1025-1036.
    [133]Brown L F J, Louchs R G, Ramon H T, et al. Understanding growth-faulted, intraslope subbasins by applying sequence-stratigraphic principles:Examples from the south Texas Oligocene Frio Formation[J]. AAPG Bulletin,2004,88:1501-1522.
    [134]任建业,林畅松,李思田等.二连盆地鸟里亚斯太断陷层序地层格架及其幕式充填演化[J].沉积学报,1999,17(4):553-559.
    [135]Leeder M R, Seger M, Stark C P. Sedimentology and tectonic geomorphology adjacent to active and inactive normal faults in the Megara Basin and Alkyonides Gulf, Central Greece[J]. Geol. Soc. London,1991,148:331-343.
    [136]王永诗,鲜本忠.车镇凹陷北部陡坡带断裂结构及其对沉积和成藏的控制[J].油气地质与采收率,2006,13(6):5-9.
    [137]肖焕饮,王宝言,陈宝宁等.济阳坳陷陡坡带断裂控砂模式[J].油气地质与采收率,2002,9(5):20-23.
    [138]张立强,纪友亮,王声朗等.尔濮凹陷陡坡带北部控凹断裂样式及砂体充填模式[J].吉林大学学报(地球科学版),2005,35(1):43-47.
    [139]程日辉,郑和荣,林畅松.构造断阶与砂体预测:以沾化凹陷富林地区为例[J].石油与天然气地质,1999,3:203-206.
    [140]蔡希源,李思田等.陆相盆地高精度层序地层学——隐蔽油气藏勘探基础、方法与实践[M].北京:地质出版社,2003.
    [141]蔡佳.琼东南盆地古近系古地貌恢复及其对层序样式和沉积特征的控制:[博士论文].武汉:中国地质大学(武汉),2009.
    [142]姜华,王建波,张磊等.南堡凹陷西南庄断层分段活动性及其对沉积的控制作用[J].沉积学报,2010,28(6):1047-1053.
    [143]张翠梅.渤海湾盆地南堡凹陷构造—沉积分析:[博士论文].武汉:中国地质大学(武汉),2010.
    [144]陈发景,贾庆素,张洪年.传递带及其在砂体发育中的作用[J].石油与天然气地质,2007,25(2):144-148.
    [145]邵磊,李昂,吴国瑄等.琼东南盆地沉积环境及物源演变特征[J].石油学报,2010,31(4):548-552.
    [146]王家豪,王华,赵忠新等.层序地层学应用于古地貌分析一以塔河油田为例[J].地球科学一中国地质大学学报,2003,28(4):425—30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700