用户名: 密码: 验证码:
塔南凹陷断裂生长变形机制及控制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以塔南凹陷三维地震资料解释为基础,本文研究认为塔南凹陷在垂向上由三种不同性质的盆地叠加而成,自下而上依次为:由铜钵庙组构成的山间残留盆地、南一段和南二段构成的被动裂谷盆地、南三段到青元岗组的主动裂谷盆地。其中主动裂谷盆地可进一步划分为三大构造层,即由南三段和南四段构成的断陷构造层、由大磨拐河组和伊敏组构成的断—坳构造层、由青元岗组及其上部构成坳陷构造层。不同成盆期受构造变形性质差异的影响,形成了不同的构造样式。其中,被动裂陷时期,受走滑作用影响产生大量反向断层;主动裂陷时期,地幔柱上涌,断裂伸展变形强烈形成大规模“中央背斜带”;断-坳转化时期,盆地在张扭应力作用下断裂形成“似花状”的构造样式;构造反转期,盆地受挤压应力的影响而使断裂呈现反转构造样式。
     塔南凹陷主要发育两条转换斜坡(“软连接”)型转换带和九条“硬连接”型转换带。应用“三图一剥”技术反演不同类型转换带的形成及演化过程,认为转换带主要形成于南三段和南四段时期且发现转换带明显地控制扇体的分布。塔南凹陷三种不同性质的盆地形成三个不同样式的盆地构造样式:铜钵庙时期为“山间残留盆地”;被动裂陷时期为“泛盆”;主动裂陷时期是“复式小型断陷湖盆”。盆地主要发育两套烃源岩,时期为南二段和南三段。其中,被动裂陷时期形成的南二段烃源岩,品质优、排烃效率高、全区发育,受断层影响小,是塔南凹陷的主力烃源岩。主动裂陷时期形成的南三段烃源岩,品质较优,排烃效率稍差,主要发育于洼槽内部,受断层控制明显,是塔南凹陷的重要烃源岩。塔南凹陷在区域走滑应力作用下形成反向断层,并导致远离断层的地层发生翘倾。翘倾部位由于受到大气水长期淋滤作用而形成良好的储层。根据塔南凹陷断裂的形成演化过程可分为四套断裂系统:早期伸展断裂系统、中期张扭断裂系统、早期伸展中期张扭断裂系统、早期伸展中期张扭晚期反转断裂系统。其中,早期伸展和早期伸展中期张扭对油气聚集起到遮挡作用,封闭南一、二段的油气;早期伸展中期张扭晚期反转对油气的聚集起到桥梁和纽带作用,调节下部油气运移到南四段和大二段成藏。
     塔南凹陷断裂控藏模式主要为以下三种:油气侧向运移反向断层遮挡低隆起聚集模式、油气初次运移同向断层遮挡或岩性尖灭洼槽变换部位聚集模式、油气垂向运移反转断层输导反转构造聚集模式。
Based on interpretation of 3-D seismic data, Tanan depression is divided into 3 basins vertically, from bottom to up as follows:interment-basin whichi formed in Tongbomiao group, passive rift in Nanyiduan and naner member, active rift in the period of from nansan member to qing yuan gang group.the active rift can be divided into 3 major tectonic statas: fault depression strata in Nansan member and Nansi member, rift-depression strata in Dayi member and Daer member; depression strata in qingyuangang group.Tanan depression is duplex half graben-rift which is composed of 4 different types of basins. Each type of basin has its own period of structural styles, strike-slip activity resulted in a large number of antithetic faults in passive rifting period; these was a large scale "the central anticline belt" in active rifting period;the faults structural style looked like flower shape in rift-depression period; the fracture showed inverted structural styles by the compressive stress in the basin of inversion.
     Tanan depression mainly developed two transformation zone and nine hard-linkage transformation zone.Using "three diagram and a stripped picture" to interpretate evolution of the different kinds of transformation zone,we draw a conclusion that transformation zone mainly developed in Naner member and Nansan member and controlled the distribution of sandbody.Different kinds of basin tectonic styles composed different characteristic basins:mountain residue basin in Tongbomiao group,basin in passive rifting period, small multiple faulted basin in active rifting period.There were two sets of hydrocarbon source rock in Naner and Nansan member. Hydrocarbon source rock of Naner member was the main hydrocarbon source rock. Hydrocarbon source rock of Nansan member was the important hydrocarbon source rock. Regional strike-slip activity resulted in antithetic faults which caused the strata upward,the strata because of long-term eluviation of atmosphere and water become favourable store rock.According to the formation and evolution of Tanan depression, the fracture can be divided into four sets of fault systems:early extensional fault system, medium trans-tensional fault system, early-extensional mid-transtensional fault system, early-extensional mid-transtensional late-reversal fault system. Early extensional fault system and early-extensional mid-transtensional fault system prevented hydrocarbone from losing in Naner member and Nanyi member.the early-extensional mid-transtensional late-reversal fault system played a part of bridge and link for hydrocarbone storage,made the underneath hydrocarbone migrate to formate reservoir in Nansi member and Daer member.
     Fractures of poor-controlling model in Tanan depression can be divided into three types:the model of hydrocarbone lateral migration and antithetic faults hiding and lower uplift accumulating,the model of hydrocarbone primary migration and synthetic faults sealing or lithologic pinch out accumulating in groove, the model of hydrocarbone vertical migration and reversal faults conducting and reversal fractures accumulating.
引文
[1]Bally A W, Bernoulli D, Davis G A, et al. Listric normal faults. Oceanologica Acta. Proceeding 26th international geological congress [J].Geology of Continental Margins Symposium. Paris,1981,7-17.
    [2]漆家福,夏义平,杨桥.油区构造解析[M].北京:石油工业出版社,2006,51-92.
    [3]Wernicke B, Burchfiel B C. Modes of extensional tectonics [J]. Struct Geol,1982,16:
    845-851.[4]陈发景,汪新文,等.伸展断陷盆地分析[M].北京:地质出版社,2004,101-153.
    [5]李丕龙等.陆相断陷盆地油气地质与勘探[M].山东东营:石油大学出版社,2003,54-102.
    [6]陆克政,朱筱敏,漆家福.含油气盆地分析[M].山东东营:石油大学出版社,2001,162-182.
    [7]漆家福,陈发景.下辽河—辽东湾新生代裂陷盆地的构造解析[M].北京:地质出版社,1995,121-165.
    [8]Morley C K, Nelson R A, Patton T L, et al. S G transfer zones in the east African rift system and their relevance to hydrocarbon exploration in rifts[J].American Assoc Petroleum Geol Bull,1990,74:1159-1191.
    [9]Moustafa A R.Internal structure and deformation of an accommodation zone in the northern part of the Sue rift[J] Journal of Structural Geology,1996,18:83-108.
    [10]Rosendahl B R. Architecture of continental rifts with special reference to East Africa [J].Annual Review of Earth and Planetary Science Letters,1987,15:445-504.
    [11]Fauld J E, Varga R J. The role of accommodation zones and transfer zones in the regional segmentation of extended terranes Faulds J E, Stewart J H. Accommodation Zones and Transfer Zones:The Regional Segmentation of the Basin and Range Province[J].Geological Society of America Special Paper,1998, (323):1-46.
    [12]Gibbs A D.Structural evolution of extensional basin margins [J].Geological Society of London Journal,1984,141:609-620.
    [13]刘德来,王伟,马莉.伸展盆地转换带分析—以松辽盆地北部为例[J].地质科技情报,1994,13(2):5-8.
    [14]邬光辉,漆家福.黄骅盆地一级构造变换带的特征与成因[J].石油与天然气地质,1999,22(2):127-128.
    [15]Dahlstrom C.D.A., Structural geology in the eastern margin of the Canadian Rocky mountains [J].Bull Canadian Petroleum Geol,1970,18:332-406.
    [16]Moustafa A M. Block faulting in the Gulf of Suez[J]:Cairo,DeMinex-Cairo,5th Egyptian General Petroleum Organization Exploration Seminar,1976,19.
    [17]Bosworth W Geometry of propagating continental rifts [J].Natrue,1985,315:625-627.
    [18]Bosworth W Off-axis Volcanism in the Gregory rift, East Africa implications for models of continental rifting[J].Geology,1987,15:397-400.
    [19]陈书平,漆家福,王德仁等.东濮凹陷断裂系统及变换构造[J].石油学报,2007,28(1):43-49.
    [20]漆家福.裂陷盆地中的构变换带及其石油地质意义[J].海相油气地质,2007,12(4):43-50.
    [21]Peacock,D.C.P. Displacement and segment linkage in strike-slip fault zones[J].Journal of Structural Geology,1991,13,1025-1035.
    [22]Soliva, R., Schultz, R.A., Benedicto, A. Three dimensional displacementlength scaling and maximum dimension of normal faults in layered rocks [A]. Geophysical Research Letters,2002,32,16302
    [23]Schelishe R W.Half graben basin filling models:New constraints on continental extensional basin developnent[J].Basin Research,1991,3(2):123-141.
    [24]王家豪,王华,肖敦清等.伸展构造体系中传递带的控砂作用[J].石油与天然气地质,2008,29(1):19-25.
    [25]刘磊,张光亚,候连华,罗贝维,等.准格尔盆地西北缘红山嘴及邻区构造变换带与油气成藏关系[J].现代地质,2009,23(4):607-615.
    [26]李德生.渤海湾盆地复合油气田的开发前景[J].石油学报,1986,7(1):1-21.
    [27]胡见义,黄第藩,徐树宝等.中国陆相石油地质理论基础[M].北京:石油工业出版社,1991,142-168.
    [28]林畅松,潘元林,肖建新等.“构造坡折带”——断陷盆地层序分析和油气预测的重要概念[J].地球科学—中国地质大学学报,2000,25(3):260-265.
    [29]杜金虎,刘震.二连盆地隐蔽油藏勘探[M].北京:石油工业出版社,2003.
    [30]李丕龙.富油断陷盆地油气环状分布与惠民凹陷勘探方向[J].石油实验地质,2001,23(2):146-148.
    [31]刘震,梁全胜,肖伟,等.内蒙古二连盆地岩性圈闭早期形成和多期形成特征分析[J].现代地质,2005,19(3):403-408.
    [32]Muraoka, H., Kamata, H., Displacement distribution along minor fault traces [J]. Structural Geology,1983,5:483-495.
    [33]Watterson, J., Fault dimensions,displacements and growth [M].Pure and Applied Geophysics,1986,124:363-373.
    [34]Walsh, J.J., Watterson, J., Distributions of cumulative displacement and seismic slip on a single normal fault surface [J].Journal of Structural Geology,1988,9:1039-1046.
    [35]Marrett, R., Allmendinger, R.W., Estimates of strain due to brittle faulting sampling of fault populations [J]. Structural Geology,1991,13:735-738.
    [36]Marrett, R., Allmendinger, R.W., Kinematic analysis of fault-slip [J]. Structural Geology,1990,12:973-986.
    [37]Walsh,J.J.,Watterson,J., Analysis of the relationship between displacements and dimensions of faults[J]. Structural of Geology,1995,10:239-247.
    [38]Fossen, H., Hesthammer, J., Geometric analysis and scaling relations of deformation bands in porous sandstone[J].Structural Geology.,1997,12:1479-1493.
    [39]Marrett, R., Allmendinger, R.W., Estimates of strain due to brittle faulting sampling of fault populations [J]. Structural Geology,1991,13:735-738.
    [40]Dawers, N.H., Anders, M.H., Displacement-length scaling and fault linkage [J]. Structural Geology.,1995,17:607-614.
    [41]Dugdale, D.S., Yielding of steel sheets containing slits. [J]. Mech.Phys. Solids,1960,8: 100-104.
    [42]Cowie, P.A., Scholz, C.H., Physical explanation for the displacement-length relationship of fault using a post-yield fracture mechanics model [J].Journal of Structural Geology,1992a,14:1133-1148.
    [43]Cowie,P.A.,Scholz,C.H.,Displacement-length scaling relationship for faults:data synthesis and discussion[J]. Journal of Structural Geology,1992b,14:1149-1156.
    [44]Geoguel, J., Traite de Tectonique Masson, Paris Translated by Thalmann H.E. Tectonics Freeman, San Francisco,1952.
    [45]Peacock,D,C.P., Displacement and segment linkage in trike-slip fault zones[J]. Jouranl of Structural Geology,1991,13:1025-1035.
    [46]Gupta, A., Scholz, C.H., A model of normal fault interaction based on observations and theory [J]. Structure.of Geol.,2000,12:123-129.
    [47]Kim,Y-S., Andrews, J.R., Sanderson,D.J., Damage zones around strike-slip fault systems and strike-slip fault evolution,Crackington Haven,Southwest England[J]. Journal of Geoscience.,2000,4:53-72.
    [48]吴根耀.白垩纪:中国及区域板块构造演化的一个重要转变期[J].中国地质,2006,33(1):64-77.
    [49]刘和甫,李晓清,刘立群等.伸展构造与裂谷盆地成藏区带[J].石油与天然气地质,2005,33(1):537-552.
    [50]Walsh, J.J., Watterson, J. Analysis of the relationship between displacements and dimensions of faults [J]. Journal of Structural Geology 1988,10,239-247
    [51]Cartwright, J.A., Trudgill, B.D., Mansfield, C.S. Fault growth by segment linkage an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah[J].Journal of Structural Geology,1995,17:1319-1326.
    [52]Kim, Y.S., Andrews, J.R., Sanderson, D.J. Damage zones around strike-slip fault systems and strike-slip fault evolution, Crackington Haven, southwest England[J].Geoscience Journal, 2000,4:53-72.
    [53]Burgmann,R., Pollard,D.D., Martel,S.J. Slip distributions on faults effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness,and fault interaction[J].Journal of Structural Geology,1994,16:1675-1690.
    [54]Kim, Y.S., Anderews, J.R., Sanderson, D.J.Reactivated strike-slip faults:examples from north Cornwall, UK. [J].Tectonophysics,2001,340:173-194.
    [55]Kim, Y.S., Sanderson, D.J. The relationship between displacement and length of faults:a review. [J]. Earth-Science Reviews,2005,68:317-334.
    [56]Wilkins,S.J., Gross, M.R. Normal fault growth in layered rocks at Slipt Mountain, Utah:influence of mechanical stratigraphy on dip linkage,fault restriction and fault scaling [J].Journal of Structual Geology,2002,24:1413-1429.
    [57]Ellis, M.A., Dunlap, W.J. Displacement variation along thrust faults implications for the development of large faults [J]. Journal of Structural Geology,1988,10:183-192.
    [58]Thorsen C E. Age of growth faulting in southeast Louisiana [J]. Trans.Gulf-Coast. Ass. Geol. Socs,1963,13(2):103-110.
    [59]张文佑.断块构造导论[M].北京:石油工业出版社,1984,69-164·
    [60]王鹏,王伟峰,黄龙威等[J].断块油气田,2004,11(3):7-11·
    [61]张占文,张凤莲,曹海滨.断块运动与西部凹陷潜山油气藏的形成[J].断块油气田,1995,2(6):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700