用户名: 密码: 验证码:
中伊朗盆地形成演化与油气前景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中伊朗盆地是一典型的新生代弧后盆地,其主要目的层库姆组是陆源碎屑-火山碎屑-碳酸盐岩混积地层,又是典型的裂缝-孔隙型储层。正是因为盆地性质、储层特征和成藏条件的复杂性,油气勘探具有极大的挑战性。论文以前陆盆地分析和石油地质理论为指导,通过地表地质与地下地质、地质-地球物理-地球化学的综合研究,采用“面”和“点”相结合的综合研究方法,研究中伊朗盆地的形成演化和基本石油地质条件。通过地球物理研究得出盆地构造特征、断裂特征、构造演化及圈闭形成演化,进而得出盆地的形成演化;通过野外剖面,岩心、岩屑薄片鉴定研究该区沉积特征,有利沉积相带分布;通过力学性质分析,露头、岩心、成像测井裂缝观察,双侧向测井裂缝参数反演及Aran背斜C_4亚段裂缝空间的定量计算对Kashan地区裂缝性储层进行评价;通过地球化学研究烃源岩特征、油气充注期次。在此基础上,恢复油气成藏过程,探索油气藏的分布规律及其控制因素;对中伊朗盆地的油气地质条件进行综合评估,划分出较有利的油气聚集带与勘探目标,确定勘探的有利区带。并取得了以下主要认识和结论:
     1.区域构造上,中伊朗盆地的演化可分为以下四个阶段:古生代克拉通内坳陷阶段;中生代挤压-伸展交替作用阶段;古新世-始新世弧后伸展盆地阶段;渐新世-第四纪碰撞造山-造山后伸展-强烈对冲挤压阶段;
     2.Kashan地区的主体构造走向呈北西-南东向展布。可以划分出四个一级构造单元:山前冲断-褶皱带、山前凹陷带、中央隆起带和斜坡带。自Qom组沉积以来,Kashan地区主要经历了晚阿尔卑斯挤压构造运动。晚阿尔卑斯挤压构造运动在该地区可划分出5个较为强烈的构造活动幕次。晚阿尔卑斯构造运动对Aran背斜地区的具体影响为:上红组M_1段沉积末,Aran背斜已经形成雏形;M_2段开始沉积到结束,构造挤压活动强度有所加大,Aran背斜隆起幅度相对有所增大;第四系以后发生了一次强烈的构造运动使Aran背斜的褶皱幅度、特别是曲度明显的加大,至此Aran背斜基本定型。
     3.薄片分析得出Fkh-1井Qom组沉积水动力要比Am-1井、Am-2井沉积水动力弱。三口井Qom组岩石类型多样,以陆源碎屑-火山碎屑-碳酸盐岩混积沉积为主,混积特征明显。通过单井相、地震相及岩性分布特征的研究,认为该区从渐新世至早中新世经历了7次海平面升降旋回变化,其中Qom组内部包含5个三级层序S_1-S_5。海平面升降旋回变化控制着Qom组内部各段岩性变化。
     4.Kashan地区存在两套有效烃源岩,一套为侏罗系Shemshak组泥岩,另一套为中新统-渐新统Qom组泥灰岩。侏罗系烃源岩具有二次生烃的特征,在早白垩世开始进入生烃门限,晚白垩世时期的剥蚀卸载使侏罗系烃源岩的生烃作用停止;新生代早期的盆地沉降使侏罗系烃源岩开始二次生烃,并进入高成熟阶段,开始大量生成湿气。Qom组在新生代中晚期(约4 Ma-5Ma)盆地快速沉降阶段进入生油阶段,而此时侏罗系已达到过成熟阶段,大量生成干气。Arn-1井烃源岩以Qom组源岩为主,以侏罗系源岩为辅,属于混源油气藏。但Qom组源岩生烃量不足。
     5.Kashan地区主要储集层为Qom组海相碳酸盐岩,它是一种裂缝-孔隙型储层,属于低孔低渗储层,岩石表现为脆性。同时声发射测试得出Fkh-1井Qom组E段地层应力远远小于岩石破裂强度,储层存在严重的不均一性。总体看,各段中C段储层最为发育,其次为E段。Ⅰ类、Ⅱ类储层主要发育于滩微相及生物碎屑灰岩。三口井中,Arn-1井储层最发育,Arn-2井次之,Fkh-1井最差。根据野外露头调查,裂缝的发育程度受褶曲作用和断裂作用的双重控制。断层相关裂缝带的宽度小但裂缝非常发育。节理或劈理的发育与岩性及层厚相关,即厚度越大、能干性越好,节理越稀疏,反之,节理越密或发育劈理。在平面上Aran背斜C_4亚段可以分成3个复合的裂缝发育系统。Aran背斜的西北倾伏端是裂缝性储层发育最有利的部位。
     6.Aran背斜圈闭的形成时间同步或晚于油气生成、运移时间,能有效地捕获油气,形成以Qom组为源岩的自生自储型油气藏。从成藏条件来看,Aran背斜带圈闭条件好,近油源,生烃期和圈闭形成时期得到有机的匹配,有利于油气的聚集。在充足的油气源条件和准确预测裂缝发育分布的前提下,相比较其他地区,Aran背斜带是区内最有利的勘探目标。
Central Iran basin is a typical Cenozoic retro-arc basin, in which the target layer Qom Formation is the mixed siliciclastic-pyroclastics -carbonate formation, and a typical fracture and pore reservoir. Because of the complexity property of the basin, reservoir characteristics, and reservoir-forming conditions, hydrocarbon exploration in the basin is of great challenge. Based on the theory of petroleum geology and foreland basin analysis, the present paper has synthetically studied the tectonic evolution and petroleum geologic conditions through surface and underground geological conditions, geology-geophysics-geochemistry from point to area. The characteristics of the structure-fault system, tectonic evolution and trap characteristics are studied by using geophysics. The characteristics of rocks and distribution of favorable sedimentary facies belts are studied by using profiles, cores and cutting. The fractured carbonate reservoir are evaluated by using the experimental analysis of mechanical properties and outcrop、core、imaging logging fracture observation, dual laterolog fracture parameter interpret and fracture void quantitative calculation of C4 sub-member in the Aran anticline. The properties of source rocks, filling period of hydrocarbon are studied by using geochemistry, and then condition and process of hydrocarbon reservoir are resumed, regularities of distribution and controlling factor of reservoir are discussed. Finally, the paper has evaluated synthetically petroleum geologic conditions and pointed out that favorable petroleum accumulation zone and targets in central Iran basin. The following achievements have been achieved.
     1. Regional tectonic evolution of central Iran basin can be divided into four phases: the Craton depression, the compressive-extensional stage in Mesozoic Era; the retro-arc extensional basin in Paleocene-Eocene, the collision-orogenesis- ??extension- compressive in Oligocene-Quaternary.
     2. The main structure strike of Kashan area distributed in NW-SE direction. Kashan area can be divided into four first-tectonic units from south to north: foothill thrust-folded belt, foothill depression, central uplift and slope belt. Kashan area underwent compression in late Alpine movement. Tectonization in late Alpine movement can be divided into five strong tectonic episodes based on the characteristics of stratum sediment and unconformity. Tectonization effects on Aran anticline exhibited as the follows: Aran anticline begin form rudiment in Ml member of URF; stronger compressive aggrandized extent of uplift in M2 member of URF; the strongest Tectonization aggrandized ultimately extent, especially in curvature of Aran anticline in later Quaternary sediment, Aran anticline finalized the design.
     3. Thin section identification results show sedimentary hydrodynamics of Arn-2 well and Arn-1 well is stronger than Fkh-1 well. There were various types of lithology in Qom Formation within these three wells, which were typically mixture of siliciclastic-pyroclastics-carbonate sediments. Through Wells facies、seismic facies and characteristic of lithology distribution integration analysis, the paper has pointed out that there exist seven sea-level cycle and five third order sequences in Kashan area (S1~S5). Lithology changes of Qom formation were controlled by eustasy change.
     4. There are two sets of active source rocks in Kashan area. One is Shemshak shale in Jurassic, the other is marl in Oligocene-Miocene Qom Formation. Source rocks in Jurassic have characteristics of secondary hydrocarbon generation. Firstly Source rocks enter hydrocarbon generating threshold at early Cretaceous, but the denudation stopped hydrocarbon generating in late Cretaceous. The basin subsidence in early Cenozoic made source rocks of Jurassic continue to generate hydrocarbon, and enter highly matured stage. Source rocks in Qom formation entered hydrocarbon generation stage for the basin quickly subsidence in late Cenozoic (about 4-5Ma), meanwhile source rocks in Jurassic have entered highly matured stage, generated lots of gas. The crude oil in well Arn-1 is mostly derived from Qom formation and other source rocks as well, belong to mixed oil reservoir. Hydrocarbon-generation amount of Qom Formation was not enough.
     5. The predominant reservoir of Qom Formation in Kashan area is marine carbonate rock, most of whom is bioclastic limestone. The reservoir is the fracture-pore reservoir with low porosity and low permeability. The rocks show brittle failure, and stress of well Fkh-1 in E member from AE testing was far less than compressive strengths of rocks . There is a serious heterogeneity of reservoir. Overall, C member of the reservoir was most developed. Among three wells, reservoir of the Arn-1 Well was most developed, followed by Arn-2 wells. Fkh-1 Well was the worst. According to the outcrop survey, the development of fracture was controlled by dual role of the fold and fault. The development of joints or cleavage related to lithology and thickness, the greater thickness, capable of better, sparser jointed, on the contrary, joint or cleavage more developed. Aran anticline in the plane C4 sub-mermber can be divided into three compound fracture system. Aran anticline northwest dumping fractured reservoir development is the most favorable position.
     6. The formation time of Aran traps is synchronization or late of oil and gas generation, migration, it is can effectively capture of oil and gas. Based on accumulation condition analysis of the Aran Structural, hydrocarbon and traps period of the good match is conducive to the oil and gas gathering. In adequate oil and gas sources and to accurately predict the distribution of fracture, compared to other area, Aran anticline is the most favorable target for exploration
引文
[1]Bally A W.1975.Dynamics geology of oil and gas,global tectonics and petroleum exploration.Beijing:Oil and Chemical Industry Press,51-72.
    [2]Bally A W.1980.Basins and subsidence-a summary.In:Dynamics of Plate Interiors(A W Bally,P L Bender,T R McGetchin,R I Walcott).Geodyn.Ser.1,5-20.
    [3]Allen P A,Homewood P,Williams G D.1986.Foreland basins:an introduction.In:Allen P A,Homewood P,eds.,Foreland basins.Spec.Publi.Int.Ass.Sediment.,3-12.
    [4]Miall A D.1995.Collision-related foreland basins.In:Busby C J,Ingersoll R V,eds.,Tectonics of Sedimentary Basins,Blackwell Science,393-424.
    [5]Murray,G.H.,Jr.,Quantitative Fracture Study-Spanish Poll.Mckenzie Co.,North Dakota."Am.Assoc.Petrol.Geol.Bull.,1968(52):57-65.
    [6]Huang Q.Angelier J.Fracture spacing and its relation to bed thickness[J].Tectonophysis,1989,126(4):355-362.
    [7]Narr W,Suppe J.Jiont spacing in sedimentary rocks[J].J Struct Geol,1991,13(9):1037-1048.
    [8]A.M.Sibbit,Q.Faivre The dual laterolog response in fractured rocks.SPWLA 26th Annual Logging Symposium.Dallas,Texas,1985,17-20.
    [9]Zeng Liaobo,Tian Chonglu.Quantitative prediction of structural fracture in low-permeability reservoir[J].China Oil & Gas,1996,3(3):135-137.
    [10]Ronald A.Nelson.Geologic Analysis of Naturally Fracture Reservoirs.Gulf Professional Publishing,2001.
    [11]Young-Seog Kim,David C.P.Peacock,David J.Sanderson.Journal of Structural Geology.2004,26:503-517.
    [12]Matthew A.d' Alessio,Stephen J.Martel.Fault Terminations and Barriers to Fault Growth.Journal of Structural Geology.2004,26:1885-1896.
    [13]Agust Gudmundsson.Fracture Dimensions,Displacements and Fluid Transport.Journal of Structural Geology.2000,22:1221-1231.
    [14]Young-Seog Kim,D.C.P.Peacock,David J.Sanderson.Mesoscal Strike-slip Faults and Damage Zones at Marsalforn,Gozo Island,Malta.Journal of Structural Geoloty.2003,25:793-812.
    [15]徐国强,刘树根等.断层相关裂隙的一种定量计算方法.地质学报,2006.80(2):192-195.
    [16]Ronald A.Nelson,柳广第、朱筱敏译.天然裂缝性储集层地质分析.北京:石油工业出版社,1991.
    [17]曾联波,张建英,张跃明.辽河盆地静北潜山油藏裂缝发育规律[J].中国海上油气(地质),1998,12(6):381-385.
    [18]王允诚等.裂缝性致密油气储集层.北京:地质出版社,1992.
    [19]宋惠珍,贾承造,欧阳健著.裂缝性储集层研究理论与方法.北京:石油工业出版社,2001.
    [20]欧阳健.测井地质分析与油气层定量评价.北京:石油工业出版社,1999.
    [21]欧阳建.石油测井解释与储层描述,北京:石油工业出版社,1997.
    [22]谭廷栋.裂缝性油气藏测井解释模型与评价方法.北京:石油工业出版社,1987.
    [23]T.D.范.高尔夫.裂缝油藏工程基础.北京:石油工业出版社,1989.
    [24]周新桂,孙宝珊,李跃辉.辽河张强凹陷科尔康油田储层裂隙预测研究.地质力学学报,
    [25]王端平,张敬轩.胜利油田埕北 30 潜山储集性裂缝预测方法.石油实验地质,2000,22(3):250-255.
    [26]曾联波,田崇鲁,刘刚.松辽盆地南部低渗透砂岩储层裂缝及开发特征[J].石油大学学报,1998,22(2):11-13.
    [27]李会军.港深 78 井裂缝发育影响因素、成因及其在油气勘探中的意义.断块油气田,2004,11(3):27-29.
    [28]H.Huber.Geology of Kshan-Isfahan-Nain Area.Iran Oil Company,1954
    [29]A.S.Alsharhan and A.E.M.Nairn.Sedimentary Basins and Petroleum Geology of the Middle East.msterdam-Lausanne-NewYork-Oxford-Shannon-Singapore-Tokyo,1997
    [30]Peter R.Sharland et al.Arabian plate sequence stratigraphy-revision to SP2,GeoArabia,9(1),2004,pp199-214
    [31]M.Nadjafi et al.Depositional history and sequence stratigraphy of outcropping Tertiary carbonates in the Jahrum and Asmari Formations,Shiraz area.Journal of Petroleum Geology,27(2),April,2004,pp179-190
    [32]陈景达.板块大陆构造边缘与含油气盆地.石油大学出版社,1989
    [33]车自成.中国与周边国家区域大地构造学.西北大学地质系教材,1999,36
    [34]王成善.再论古特提斯海的构造格局.中国西部特提斯构造演化及成矿作用.北京:电子技术出版社,1991
    [35]Sengor,A.M.C.板块构造学与造山运动-特提斯例析.丁晓等译,复旦大学出版社,1992
    [36]Sengor,A.M.C.Space-time patterns of magmatism along the Thethysides,the Journal of Geology,1993,101
    [37]Sengor,A.M.C.1982b.A note on a late revision of the theory of embryotectonics by Argand himself.Eclogal Geol.Helv.,75:177-188
    [38]Sengor,A.M.C.1984.The orogenic system and the tectonics of Eurasia.Geol.Soc.Am.Spec.Pap.,195,82pp
    [39]Sengor,A.M.C.1987a.Tectonics of the Tethysides:orogenic collage development in acollisional setting.Ann.Rev.Earth Planet.Sci.,15:213-214
    [40]Sengor,A.M.C.1987b.Tectonic subdivision and evolution of Asia.Bull.Tech.Univ.Istanbul,Tectonics,3:693-707
    [41]Sengor,A.M.C.,Yilmaz et al.Tectonics of the Mediterranean Cimmerides:nature and evolution of the western termination of Palaeo-Tethys.Geol.Soc.London Spec.Publ.,17:77-122
    [42]贾承造,杨树锋等.特提斯北缘盆地群构造地质与天然气.北京.石油工业出版社,2001
    [43]W.E.Galloway,1989.Genetic stratigraphic sequences in basin analyses.Architecture and genesis of flooding-surface bounded depositional units,AAPG Bull.73,125-142
    [44]C.M.Soja,1996.Island-arc carbonates:characterization and recognition in the ancient geologic record.Earth-Science Reviews 41,31-65
    [45]Berberian,M.,1995.Master blind thrust faults hidden under the Zagros folds:active basement tectonics and surface morphotectonics.Tectonophysics 241,193-224.
    [46]Nadine McQuarrie,2004.Crustal scale geometry of the Zagros fold-thrust belt,Iran..Journal of Structural Geology 26,519-535
    [47]邓宏文等.高分辨率层序地层学.地质出版社,2002
    [48]纪友良等,层序地层学原理及层序成因模式.地质大学出版社,1998
    [49]宋来亮,徐国强等.中伊朗盆地卡尚地区库姆组层序地层研究,矿物岩石,2004年02期
    [50]王世虎,李政,夏斌,等.伊朗 Kashan 地区侏罗系Shemshak组烃源岩特征研究[J].石油实验地质,2003,25(6):236-239.
    [51]李政 徐兴友等.伊朗Kashan区块 Shemshak 组烃源岩特征及其油气成藏.新疆石油地质.2005,26(2):226-229
    [52]陈志勇,于俊峰.伊朗卡山地区侏罗系 Shemshak 组烃源岩特征研究.石油实验地质,2003年06期
    [53]王世虎,李政等.伊朗库姆盆地油气成藏机理分析.石油实验地质,2004,31(4):139-142
    [54]程克明,王兆云等,碳酸盐岩油气生成理论与实践,石油工业出版社,1996
    [55]王世虎,李政等.Petroleum system in Qom Basin,Iran.Pertoleum exploration and development,2004,31(4):R139-142
    [56]Peters K E,Moldowan J M.The Biomarker Fossils in Pertoleum and Ancient Sediments Original[M].New Jersey:Prentice Hall,1993,1-363
    [57]Seifert W K,Moldowan J M.Paleoreconstruction by biological markers[J].Geochim Cosmochim Acta,1981,45:783-794
    [58]Philip C T.The ingluence of marine and terrestrial source material on the conposition of petroleum[J].Geochim Cosmochim,Acta,38:947-966
    [59]Bray EE,Evans ED.Distribution of n-paraffins as a clue to recognition of source beds[J].Geochimica Cosmochimica Acta,1961,22:2-15.
    [60]Scalan,R.S.,and Smith,J.E.An improved measure of the odd-even predominance in the normal alkanes of sediment extracts and petroleum[y].Geochimica et Cosmochimica Acta,1970,34:611-620.
    [61]Tissot B P,Welte D H.Petroleum formation and occurrence[M].Berlin Heidelberg,New York:Springer-Verlag,1987.
    [62]Mackenzie A S,Li R W,Maxwell J R,Moldowan J M,et al.Molecular measurements of thermal maturation of Cretaceous shales from the Overthrust Belt,Wyoming,USA[J].In:Advances in Organic Geochemistry 1981(M.Bjorφy et al.)Wiley and Sons,New York,1983,496-503.
    [63]Moldowan J M,Seifert W K,Gallegos E J.Relationship between petroleum composition and depositional environment of petroleum source rocks[J].American Association of Petroleum Geologists Bulletin,1985,69:1255-1268.
    [64]Rubinstein I,Sieskind O,Albrecht P.Rearranged sterenes in a shale:Occurfence and simulated formation[J].Journal of the Chemical Society.Perkin Transaction,1975:1833-1836.
    [65]Sieskind O,Joly G,Albrecht P.Simulation of the geochemical traansformation of sterols Superacid effects of clay minerals[y].Geochimica et Cosmochimica Acta,1979,43:1675-1679.
    [66]Volkman J K,Alexander R,Kagi R I,et al.A geochemical reconstruction of oil generation in the Barrow Sub-basin of Western Australia[J].Geochimica et Cosmochimica Acta,1983,47:2091-2106.
    [67]Philp R P,Gilbert T D.Biomarker distributions in oils predominantly derived from terrigenous source material.In:Advances in Organic Geochemistry 1985(D.Leythaeuser,eds.)Pergamon Press,1986,73-84.
    [68]洪志华,陈致林,张春荣.济阳坳陷低熟原油特征及成因[J]。沉积学报,1997,15(2):89-94
    [69]许丽,王拥军等.伊朗库姆盆地原油地球化学特征.石油实验地质,2006,28(2):168-172
    [70]马永生等.碳酸盐岩油气勘探.石油大学出版社,1999
    [71]陈子光.岩石力学性质与构造应力场[M].北京:地质出版社,1986
    [72]陈庆宣,王维襄,孙叶,等.岩石力学与构造应力场分析[M].北京:地质出版社,1998.
    [73]路保平,林永学,张传进.水化对泥页岩力学性质影响的实验研究.地质力学学报[J],1999,5(1):65-70.
    [74]方华,伍向阳.温压条件下岩石破坏前后的力学性质和波速[J].地球物理学进展,1999,14(3):73-78.
    [75]刘树根,单钰铭,刘维国,等.地层条件下油气储集岩多参数同时测试技术[J].成都理工学院学报,1998,25(4):480-486
    [76]单钰铭,刘维国.地层条件下岩石动静力学参数的实验研究[J]成都理工学院学报,2000,27(3):249-255.
    [77]路保平,鲍洪志.岩石力学参数求取方法进展[J].石油钻探技术,2005,33(5):44-47
    [78]李智武,罗玉宏,刘树根,等.川东北地区地层条件下致密储层力学性质实验分析[J].矿物岩石,2005,25(4):52-60.
    [79]周新桂,陈永峤,孙宝珊,等.塔里木盆地北部地层岩石力学特征及地质学意义[J].石油勘探与开发,2002,29(5):8-12.
    [80]刘新荣,鲜学福,余海龙.岩性特征对岩石力学性质的影响[J].江西有色金属,2001,15(2):11-14.
    [81]夏小和,王颖轶,黄醒春,等.高温作用对大理岩强度及变形特性影响的实验研究[J].上海交通大学学报,2004,38(6):996-999.
    [82]于俊峰,夏斌等.伊朗盆地卡山地区第三系库姆组碳酸盐岩储层特征,石油实验地质,2005,27(4):378-382
    [83]强子同等.碳酸盐岩储层地质学.石油大学出版社,1998
    [84]赵良孝等,碳酸盐岩储层测井评价技术.石油大学出版社,1994
    [85]冯增昭等.中国沉积学.地质出版社,1994
    [86]Anderson E.J.Characteristics of a field database for developing evaluating quantitative stratigraphic models.In cross,T.A.,(ed),Quantitative Dynamic Stratigraphy,Prentics Hall,New York,1990
    [87]洪世铎.油藏物理基础.石油大学出版社,1995
    [88]Bathrust,R.G.C,1971,Carbonate Sediments and their diagenesis.Developments in Sedimentology 12.(First Edition)Elsevier/Amsterdam,658pp
    [89]Bathrust,R.G.C,1980,Deep crustal diagenesis in limestone,Rvista del Institutode Investigaciones Geoligicas:Universidad de Barcelona,34:89-100
    [90]唐泽尧等.四川盆地低孔低渗碳酸盐岩油气藏特征.石油天然气工业(专辑),1985
    [91]王树华 穆玉庆等.伊朗卡山探区 Aran 背斜圈闭的地球物理综合评价.油气地球物理,2004,2(1):29-32
    [92]郭海洋,徐国强,夏在连,等.伊朗地区新生代前陆盆地构造演化特征[J].桂林工学院学报2005,25(1):9-14
    [93]于俊峰,夏斌,王世虎,等.伊朗盆地卡山地区第三系库姆组碳酸盐岩储层特征[J].石油实验地质,2005,27(4):378-382
    [94]Jonesce,Jenkynshc.Seawater strontium isotopes,oceanic anoxic events,and seafloor hydrothermal activity in the Jurassic and Cretaceous.American[J].Journal of Science,2001,301:112-149.
    [95]E.M.斯麦霍夫著,陈定宝等译.裂缝性油气储集层勘探的基本理论与方法.石油工业出版社,1985
    [96]Nelson,Geologic Analysis of Naturally Fractured Reservoirs Gulf Professional 2001
    [97]Murray G.H.,Quantitative Fracture Study,Sanish pool,Fracture controlled Production:AAPG Bulletin Reprint Series 21,1977
    [98]Salvini,F,and F.Storti,2004,Active-hinge-folding-related deformation and its role in hydrocarbon exploration and evelopment-Insights from HCA modeling,in K.R.McClay,ed.,Thrust tectonics and hydrocarbon systems:AAPG Memoir 82,p.453-472.
    [99]Jamison,W.R.,1997,Quantitative evaluation of fractures on Monkshood Anticline,a detachment fold in the Foothills of western Canada:AAPG Bulletin,v.81,p.1110-1132.
    [100]Suppe,J.,1983,Geometry and kinematics of fault-bend folding:American Journal of Science,v.283,p.684-721.
    [101]A.G.McGRATH and I.DAVISON,Damage zone geometry aroud fault tips,Journal of Structural Geology,1995:7(17),p.1001-1023
    [102]Young-Seog Kim,David C.P.Peacock,David J.Sanderson,Fault damage zones,Journal of Structural Geology 2004:26,p.503-517
    [103]Young-Seog Kim,David C.P.Peacock,David J.Sanderson,Mesoscale strike-slip faults and damage zones at Marsalforn,Gozo Island,Malta,Journal of Structural Geology 2003:25,p.793-812
    [104]D.C.P.Peacock.Propagation,interaction and linkage in normal fault systems.Earth-Science eviews 2002:121-142
    [105]李春林,刘立,王丽.辽河坳陷东部凹陷火山岩构造裂缝形成机制.吉林大学学报(地球科学版).2004,340:46-50
    [106]童亨茂,曹戴勇.柴达木盆地西部裂缝的成因机制和分布模式.石油与天然气地质.2004,6(25):640-645
    [107]邢振辉等.鄂尔多斯盆地北部塔巴庙地区上古生界致密砂岩气藏天然裂缝形成机理浅析.地质力学学报.2005,1(11):33-42
    [108]丁文龙等.古龙凹陷泥岩非构造裂缝的形成.石油与天然气地质.2003,1(24):51-55
    [109]李元奎.南翼山裂缝性油气藏特征及分布规律探讨.天然气工业.2000,3(20):22-26
    [110]邢玉忠.测井资料在潜山油藏综合研究中的应用.石油地球物理勘探,2004,2(39):173-179
    [111]刘翠荣.川西坳陷喜山期构造应力场数值模拟及裂缝预测.天然气工业.2002,3(22):11-17
    [112]朱成宏.裂缝预测技术在松南工区应用效果分析.石油物探.2001,4(40):62-68
    [113]尹兵祥.辽河坳陷黄沙坨油田沙三段粗面岩储层地震预测.石油学报.2005,3(26):33-36
    [114]甘其刚.宽方位AVA 裂缝检测技术应用研究.天然气工业.2005,5(25):39-43
    [115]康义逵.极值主曲率法预测天然裂缝发育带的方法与实践.油气井测试.2002,4(11):23-26
    [116]罗省贤.基于横波分裂的地层裂缝预测方法与应用.成都理工大学学报(自然科学版)2003,1(30):52-59
    [117]疏壮志.贵州宝元构造嘉五1储层裂缝预测.天然气工业.2004,3(24):61-65
    [118]蔡正旗.构造裂缝预测的曲率法改进及效果评价.西部探矿工程.2005,2:78-80
    [119]彭立才.尕斯库勒油田跃灰1井区E_3~2 灰层裂缝预测.石油与天然气地质.2003,4(24):392-396
    [120]胡宗全.分砂层地质曲率分析在裂缝预测中的应用.石油实验地质.2002,5(24):451-456
    [121]宋惠珍.脆性岩储层裂缝定量预测的尝试.地质力学学报.1999,1(5):76-84
    [122]宋惠珍.储层构造裂缝预测方法及其应用.地震地质.1999,3(21):206-215
    [123]黄新武.柴达木盆地油泉子油田储层构造裂缝定量预测.钻采工艺.2002,5(25):89-94
    [124]蔡正旗.铜锣峡构造中南段长兴组裂缝性储层综合预测.石油学报.2003,3(24):42-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700