用户名: 密码: 验证码:
水稻分蘖芽萌发与休眠相互转换的激素学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分蘖是水稻的重要农艺性状之一,调控分蘖发生是塑造高质量水稻群体的一个重要手段。本研究采用水培、盆栽、大田等试验方式,通过氮素、外源激素和去穗等处理,构建了一系列水稻分蘖芽萌发与休眠相互转换的材料,研究了分蘖节分蘖芽和伸长节分蘖芽萌发与休眠转换过程中各种内源激素含量和相关基因表达的变化,探讨了外源激素对分蘖相关基因表达、内源激素变化和分蘖芽萌发与休眠相互转换的影响,分析了分蘖芽萌发与休眠转换过程中相关基因表达与激素的关系,从分蘖芽的萌发→休眠、休眠→萌发正反两个方面深入研究了水稻分蘖芽萌发与休眠相互转换的激素学机制。主要研究结果如下:
     (1)内源CTK和IAA参与了对水稻分蘖芽萌发与休眠转换的调控,其中CTK是直接因子,IAA是间接因子。总体来讲,CTK促进分蘖芽萌发,IAA抑制分蘖芽萌发,但水稻分蘖芽萌发与休眠的转换不仅仅受到CTK和IAA绝对浓度的影响,而是受到IAA和CTK平衡的调控,当IAA/CTK值升高时,分蘖芽由萌发向休眠转换;当IAA/CTK值降低时,分蘖芽由休眠向萌发转换。氮素、外源激素、去穗等农艺措施对水稻分蘖芽萌发与休眠的影响主要通过调控CTK和IAA两种内源激素含量及其平衡实现。外源低浓度氮通过抑制CTK含量的提高进而提高IAA/CTK值抑制分蘖芽萌发,而高浓度氮和6-BA通过提高CTK含量进而降低IAA/CTK值促进分蘖芽萌发;去穗通过提高CTK含量、降低IAA含量进而降低IAA/CTK值促进分蘖芽萌发;外源GA3和IAA通过提高IAA含量、降低CTK含量进而提高IAA/CTK值抑制分蘖芽萌发;而外源NAA通过降低CTK含量进而提高IAA/CTK值抑制分蘖芽萌发。除CTK和IAA外,ABA也参与对水稻分蘖芽生长的调控,但在水稻分蘖芽萌发与休眠的转换过程中未起主导作用。
     (2)IAA对水稻分蘖芽萌发与休眠的调控具有明显的位置效应,而且IAA的位置效应与其极性运输特性密切相关。分蘖期水稻基部节间不伸长,分蘖节各节密集在一处,地上部极性运输较弱,向各叶位叶涂抹的IAA均能通过极性运输运至节部通过提高IAA含量、降低CTK含量进而提高IAA/CTK值抑制分蘖节分蘖芽萌发,而根部施用的IAA则无法通过极性运输运输至节部位,所以根部施用IAA对分蘖节分蘖芽的萌发无抑制作用。齐穗后,水稻伸长节间伸长,伸长节彼此分开,地上部极性运输较强。向伸长节分蘖芽上部叶或着生叶涂抹的IAA能够通过极性运输运至节部通过提高IAA含量、降低CTK含量进而提高IAA/CTK值抑制伸长节分蘖芽萌发,而向伸长节分蘖芽下部叶涂抹的IAA则无法通过极性运输运至节部,所以向伸长节分蘖芽下部叶涂抹IAA对伸长节分蘖芽的萌发无抑制作用。与IAA不同,CTK对水稻分蘖芽萌发与休眠的调控没有明显的位置效应,向不同叶位叶和根部涂抹6-BA均能促进分蘖芽的萌发。
     (3)调控水稻分蘖芽萌发与休眠的CTK在节部合成,然后运输至芽,通过调控芽中OsTB1等基因表达来调控水稻分蘖芽生长;外界因素对分蘖芽萌发与休眠的影响主要通过调控节部位CTK的合成进行;除CTK之外,外源IAA等调控措施还可能通过调控OsD3、OsD10和OsD27等基因的表达调控水稻分蘖芽生长。这表明,在水稻体内存在不止一条途径参与调节分蘖芽的萌发与休眠。
Tillering is an important agronomic trait of rice, and the tillering regulation is an effective means for the establishment of excellent population. In the present study, we conducted a series of experiments in the nutrient solution, pot and field, and external nitrogen, external hormones and panicle removal were used to construct a series of rice population which were difference for the tiller buds growth. The hormonal changes and the expression levels of the genes related to rice tiller buds growth were emphatically measured, and the objects of the present study were to investigate the relationship of hormones and genes during the transformation between dormancy and germination of rice tiller buds, and the mechanism of hormonal regulation of the transformation between dormancy and germination of the tiller buds. The main results of the study are listed below.
     (1) The endogenous CTK and IAA play important roles in regulating the tiller buds growth. The CTK is the direct regulator for tiller buds growth, and the IAA is the indirect factor. In general, CTK promoted the growth of rice tiller buds, and IAA inhibited that. However, the transformation of dormancy and germination of tiller bus was not only regulated by the contents of IAA and CTK, but also regulated by the balance of them. The high IAA/CTK ratio promoted the transformation from germination to dormancy of the tiller bus, however, the low IAA/CTK ratio promoted the transformation from dormancy to germination of the tiller buds. The agronomic measures such as nitrogen, hormones and panicle removal all regulated the growth of tiller buds by regulated the contents and balance of the IAA and CTK. The low nitrogen inhibited the growth of tiller buds by inhibited the increasing of CTK and increased the ratio of IAA/CTK, and the promoting effect of high nitrogen and 6-BA on the tiller buds growth was significantly related to the increasing of the CTK contents and the decreasing of the ratio of IAA/CTK. The panicle removal increased the CTK contents and decreased the IAA contents, and then decreased the ratio of IAA/CTK and by this to promote the growth of tiller buds. External application of GA3 and IAA decreased the CTK contents and increased the IAA contents, and then increased the ratio of IAA/CTK and by this to inhibit the growth of tiller buds. The external NAA inhibited the growth of tiller buds by inhibited the increasing of CTK and increased the ratio of IAA/CTK. Besides IAA and CTK, ABA also regulated the growth of rice tiller buds, but ABA may not be the determining factor for the tiller buds growth.
     (2) IAA has a notable positional effect on the regulation of rice tiller bud growth, and the positional effect of IAA was closely related to its polar transport. In tillering stage, the basal internodes of rice are not elongated, and this structural characteristic may lead to a deficiency in polar transport of IAA in the aboveground organs. IAA applied to different leaves all can transport to nodes through polar transport, and then decreased the CTK content and increased the ratio of IAA/CTK, and by this to inhibited the growth of tiller buds. However, the IAA applied to root cannot transport to nodes by polar transport, this lead to that applied IAA to roots has no significant effect on tiller buds growth. Contrary to the basal internodes, the upper internodes elongated after heading and that structural characteristic separate its nodes from one another and lead to an enhance in polar transport of IAA in the aboveground organs. IAA applied to the leaves above the buds or the leaves at which the buds locate can be transported to the node. IAA can then inhibit the increase in CTK levels and increased the ratio of IAA/CTK, thus inhibiting the growth of the bud. However, IAA applied to the leaf below the bud cannot be transported to the node by polar transport; this may be the main reason why applied IAA to the leaf below the bud could not inhibit the growth of the bud. In contrast to IAA, CTK had no positional effect on rice tiller bud growth. Application of 6-BA to different leaves and roots significantly promoted the growth of rice tiller buds at both unelongated and elongated nodes.
     (3) The CTK which promotes the germination of rice tiller buds is biosynthesis mainly in the nodes and delivery to tiller buds, and then regulated the growth of tiller buds by regulated the expression of OsTBl. The agronomic measures such as external applied IAA regulated the growth of tiller buds by regulated the biosynthesis of CTK in nodes. Besides CTK, the external IAA also might have regulated the expression level of OsD3, OsD10 and OsD27 in tiller buds and by this to regulating the tiller bud growth. These results suggested that the rice have more than one ways to regulate the growth of tiller buds.
引文
[1]Du Y, Wang Y, Yang JC. Comparisons of plant type, grain yield, and quality of different Japonica rice cultivars in huanghe-huaihe river area [J]. Acta Agron Sin,2007,33(7):1079-1085
    [2]中国农业年鉴.2009年
    [3]Li XY, Qian Q, Fu ZM, et al. Control of tillering in rice [J]. Nature,2003,422:618-621
    [4]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000
    [5]李学勇,钱前,李家洋.水稻分蘖的分子机理研究[J].中国科学院院刊,2003,(4):274-276
    [6]Ao HJ, Peng SB, Zou YB, et al. Reduction of unproductive tillers did not increase the grain yield of irrigated rice [J]. Field Crops Res,2010,116:108-115
    [7]Wang YH, Li JY. The plant architecture of rice(Oryza sativa) [J]. Plant Mole Bio,2005,59:75-84
    [8]施能浦,焦世纯.中国再生稻栽培[M].北京:中国农业出版社,1999,15-50
    [9]Hiroshi N, Satoshi M. Effects of time of first harvest, total amount of nitrogen, and nitrogen application method on total dry matter yield in twice harvesting of rice [J]. Field Crops Res,2008, 105(1-2):40-47
    [10]蒋彭炎,马跃芳,洪晓富,等.水稻分蘖芽的环境敏感期研究[J].作物学报,1994,20(3):290-296
    [11]刁操铨.作物栽培学各论(南方本)[M].中国农业出版社,2003
    [12]毛礼钟.水稻蘖间养分交流的初步观察[J].浙江师范大学学报(自然科学版),1989,12(2):116-125
    [13]丁艳锋.氮素营养调控水稻群体质量指标的研究[D].南京农业大学,1997,20-24
    [14]凌启鸿,张洪程,苏祖芳,等.稻作新理论-水稻叶龄模式[M].科学出版社,1994
    [15]Yan JQ, Zhu J, He CX, et al. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.) [J]. Theor Appl Genet.,1998,97:267-274.
    [16]Wu WR, Li WM, Tang DZ, et al. Time-related mapping of quantitative trait loci underlying tillering number in rice [J].Genetics,1999,151(5):297-303.
    [17]Xu YB, Shen ZT. Diallel analysis of tiller number at different growth stages in rice (Oryza sativa L.) [J]. Theor Appl Genet,1991,83:243-249
    [18]任翔,翁清妹,祝莉莉,等.水稻分蘖能力QTL的定位[J].武汉大学学报(理学版),2003,49:533-537
    [19]周劲松,梁国华.水稻分蘖性状的分子遗传研究进展[J].江西农业学报,2006,18(1):80-84
    [20]梁康迳,林文雄,王雪仁,等.籼型三系杂交稻茎蘖数的发育遗传研究[J].中国农业科学,2002,35(9):1033-1039
    [21]唐家斌,曾万勇,王文明,等.水稻寡分蘖突变体的遗传分析和基因定位[J].中国科学(C辑),2001,31(3):208-212
    [22]王永胜,王景,蔡业统,等.一种水稻分蘖突变体的初步分析(简报)[J].作物学报,2002,8(2):235-239
    [23]王永胜,王景,段静雅,等.水稻极度分蘖突变体的分离和遗传学初步研究[J].作物学报,2002,(28):235-239
    [24]Yoshimichi F, Etsuko A, Leody E, et al. Identification of a low tiller gene in two varieties, Aikawa I and Shuho in rice (Oryza sativa L.) [A]. Plant& Animal Genome Xii Conference[C].2004.387.
    [25]Ishikawa S, Masahiko M, Tomotsugu A, et al. Suppression of tiller bud activity in tillering dwarf mutant of rice [J]. Plant Cell Physiol,2005,46(1):79-86
    [26]史俊.水稻强分蘖基因MT1的克隆研究[D].扬州大学,2006
    [27]Matsuoka M, Tamaoki M, Tada Y, et al. Expression of rice OSH1 gene is localized in developing vascular strands and its ectopic expression in transgenic rice causes altered morphology of leaf[J]. Plant Cell Rep,1995,14:555-559
    [28]Taito T, Yuko S, Makoto S, et al. The OsTB1 gene negatively regulates lateral branching in rice [J].The Plant J,2003,33:513-520
    [29]Schumacher K, Schmitt T, Rossberg M, et al. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family [J]. Proc Natl Acad Sci USA,1999,96:290-295
    [30]Doebley J, Stec A, Gustus C. Teosinte branched 1 and the origin of maize:evidence for epistasis and the evolution of dominance [J]. Genetics,1995,141:333-346
    [30]Thomas G, Oliver C, Elisabeth S. Molecular analysis of the lateral suppressor gene in tomato reveals a conserved control mechanism for axillary meristem formation [J]. Gene Dev,2003,17: 1175-1187
    [31]Cubas P, Lauter N, Doebley J, et al. The TCP domain:a motif found in protein regulating plant growth and development [J]. Plant J,1999,18:215-222
    [32]Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J,2002,30:337-348
    [33]Petra S, Karin S, Ottolin LHM. MAX1 and MAX2 control shoot lateral branching in Arabidopsis[J]. Development,2002,129:1131-1141
    [34]Lin H, Wang RX, Qian Q, et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth [J]. Plant Cell,2009,21:1512-1525
    [35]袁进成,刘颖慧.高等植物侧芽、侧枝的发生及调控[J].河北北方学院学报(自然科学版)2007,23(5):18-23
    [36]刘瑞华,崔贞玉,冯权,等.水稻分蘖期的温度条件与适宜移栽密度的研究[J].吉林农业科学,1993,3:40-43
    [37]苏祖芳,周兴全,张亚洁,等.搁田始期对水稻成穗率、产量形成和群体质量的影响[J].中国水稻科学,1996.2:178-190
    [38]蒋彭炎.水稻分蘖的发生、控制与茎蘖成穗率的提高[J].中国稻米,1999,4:7-9
    [39]Wang GY, Volker R, Li CJ, et al. Involvement of auxin and CKs in boron deficiency induced changes in apicak dominance of pea plants [J]. J Plant Physiol,2006,163:591-600
    [40]丁艳锋,黄丕生,凌启鸿.水稻分蘖发生与特定部位叶片叶鞘含氮率的关系[J].南京农业大学学报,1995,18(4):14-18
    [41]李成亮,何圆球,王艳玲,等.氮磷钾肥对红壤区水稻增产效应的影响[J].中国水稻科学,2007,2:179-184
    [42]王强盛,甄若宏,丁艳锋,等.钾肥用量对优质粳稻钾素积累利用及稻米品质的影响[J].中国农业科学,2004,10:1444-1450
    [43]谢正苗,黄昌勇.土壤-水稻体系中铅锌砷含量与水稻分蘖的关系[J].浙江农业大学学报,1994,20(1):67-71
    [44]Cline MG. Apical dominance [J]. The Bot Rev,1991,57(4):318-358
    [45]Phillips IDJ.1975. Apical dominance [J]. Ann Rev Plant Physiol,1975,26:341-367
    [46]王国英.缺硼诱导豌豆侧芽生长的机理[D].中国农业大学,2005
    [47]Brian GF. Local and long-rance signaling pathways regulating paint responses to nitrate [J]. Annu Rev Plant Biol,2002,53:203-224
    [48]梁振兴,马兴林.冬小麦分蘖发生过程中内源激素作用的研究[J].作物学报,1998,24(6):788-792
    [49]马兴林,梁振兴.冬小麦分蘖衰亡过程中内源激素作用的研究[J].作物学报,1997,23(2):200-207
    [50]Blake TJ, Reid DM, Rood SB. Ethylene, indoleacetic acid and apical dominance in peas:a reappraisal [J]. Physiol Plant,1983,59:481-487
    [51]Cline MG. Concepts and terminology of apical dominance [J]. Am J Bot,1997,84(9):1064-1069
    [52]Souza BM, Kraus JE, Endres L, et al. Relationships between endogenous hormonal levels and axillary bud development of Ananas comosus nodal segments[J]. Plant Physiol and Biochem,2003, 41:733-739
    [53]Cline MG. The role of hormones in apical dominance:new approaches to an old problem in plant development [J]. Physiol Plant,1994,90:230-237
    [54]Li CJ, Guevara E, Herrera J, et al. Effect of apex excision and replacement by 1-naphthylacetic acid on cytokinin concentration and apical dominance in pea plants [J]. Physiol Plant,1995,94: 465-469
    [55]Chatfield SP, Stimberg P, Forde G, et al. The hormonal regulation of axillary bud growth in Arabidopsis [J]. Plant J,2000,24:159-169
    [56]Bangerth F, Li CJ, Gruber J. Mutual interaction of auxin and cytokinins in regulating correlative dominance [J]. Plant Growth Regul,2000,32:205-217
    [57]Cline MG. Exogenous auxin effects on lateral bud outgrowth in shoots[J]. Ann Bot,1996,78: 255-256
    [58]Symons GM, Murfet IC, Ross JJ, et al. Bushy, a dominant pea mutant characterized by short, thin stems, tiny leaves and a major reduction in apical dominance [J]. Physiol Palnt,1999,107:346-352
    [59]Symons Gm, Ross JJ, Murfet IC. The bushy pea mutant is IAA-deficienct [J]. Physiol Plant,2002, 116:387-352
    [60]Cline MG, Chatfield SP, Leyser O. NAA restores apical dominance in the axr 3-1 mutant of Arabidopsis thaliana [J]. Ann Bot,2001,87:61-65
    [61]Okada K, Ueda J, Komaki MK, et al. Requirement of the auxin polar transports system in early stages of Arabidopsis floral bud formation [J]. Plant Cell,1991,3:677-684
    [62]Van DG, Boot K, Granbom R, Sanderg G, Hooykaas PJ. Increased endogenous auxin production in Arabidopsis thaliana causes both earlier described and Novel auxin-related phenotypes [J]. J Plant Growth Regul,2003,22:240-252:
    [63]Leopold A. The control of tillering in grasses by auxin [J]. Am J Bot,1949,36:437-440
    [64]Harrison M, Kaufman P. Does ethylene play a role in the release of lateral buds(tillers) from apical dominance in oats? [J] Plant Physiol,1982,70:811-814
    [65]陶龙兴,王熹,谈惠娟,等.水稻分蘖功能叶激素水平变化及其与成穗率的关系[J].杂交水稻,2006,21(1):68-71
    [66]李经勇,唐永群,吴毓.稻株内源IAA含量变化与再生芽萌发生长的关系[J].西南农业学报,2003,16:114-116
    [67]Pei Z M, Ghassemian M, Kwak CM. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss [J]. Science,1998,282 (5387):287-290
    [68]王光明,刘保国,陈静,等.内源激素ABA对水稻再生芽萌发的影响[J].西南农业大学学报,1997,19(4):338-342
    [69]Schwar S, Xiao QQ, Loewen M. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching[J]. J Bio Chem,2004,279:46490-46945
    [70]Foo E, Buliier E, Goussot M, et al. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea[J]. Plant Cell,2005,17:464-474
    [71]Snowden K, Simkin A, Janssen B, Templeton K, Loucas H, Simons J. The decreased apical dominance/perunia hybrida carotenoid cleavage dioxygenase8 gene affects branch production and plays a role in leaf senescence, root growth and flower development[J]. Plant Cell,2005,17: 746-759
    [72]Cline MG, OH C. A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance [J]. Ann Bot,2006,98:891-897
    [73]Li CJ, Bangerth F. Stimulatory effect of cytokonins and interaction with IAA on the release of lateral buds of pea plants from apical dominance [J]. J Plant Physiol,2003,160:1059-1063
    [74]Mery RJN, Longnecker NE, Atkins CA. Branch development in lupinus angustifolius L.I. Relationship with endogenous ABA, IAA and cytokinins in axillary and main stem buds [J]. J Exp Bot,1998,49(320):555-562
    [75]Kotova LM, Lotov AA, Kara AN. Changes in phytohormones status in stems and roots after decapitation of pea seedlings [J]. Russ J Plant Physiol,2004,51(1):107-111
    [76]Mader JC, Turnbull CGN, Emery RJN. Transport and metabolism of xylem cytokinins during lateral bud release in decapitated chickpea (Cicer arietinum) seedlings [J]. Physiol Plant,2003,117: 118-129
    [77]Mader JC, Emery RJN, Turnbull CGN. Spatial and temporal changes in multiple hormone groups during lateral bud release shortly following apex decapitation of chickpea (Cicer arietinum) seedlings [J]. Physiol Plant,2004,119:295-308
    [78]Langer R, Prasad P, Laude H. Effects of kinetin on tiller bud elongation in wheat (Triticum aestivum L.) [J]. Ann Bot,1973,37:565-571
    [79]李春喜,赵广才,代西梅,等.小麦分蘖变化动态与内源激素关系的研究[J].作物学报,2000,26(6):963-968
    [80]李经勇,唐永群,黄世龙,等.稻株内源iPA和GAs变化与再生芽的关系[J].西南农业大学学报(自然科学版),2003,25(5):428-431
    [81]Zhang H, Horgan J, Reynolds PHS, et al. Cytokinin and bud morphology in Pinus radiate [J]. Plant Physiol,2003,117:264-269
    [82]Kapchina-Toteva V, Van TJ, Yakimova E. Role of phenylurea cytokinin CPPU in apical dominance release in virto cultured Rosa hybrid L [J]. Plant Growth Regul,2000,19:232-237
    [83]Motyka V, Faiss M, Strnad M, et al. Changes in cytokinin content and cytokinin oxidase activity in response to derepression of Pit gene transcription in transgenic tobacco calli and plants [J]. Plant Physiol,1996,112:1035-1043
    [84]Werner T, Motyka V, Laueou V, et al. Cytokinin — defieient transgenic Arabidopsis Plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity [J]. Plant Cell,2003,15:2532-2550
    [85]Medford JI, Horgan R, EI-Sawi Z, et al. Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene [J]. Plant Cell,1989,1:403-413
    [86]Von SK, Doumas P, Jouanin L, et al. Enhancement of the endogenous cytokinin concentration in poplar by transformation wieth Agrobacterium T-DNA gene ipt [J]. Tree Physiol,1994,14:27-35
    [87]Catterou M, Dubois F, Smets R, et al. hoc:an Arabidopsis mutant overproduting cytokinins and expressing high in vitro organogenic capacity [J]. Plant J,2002,30(3):273-287
    [88]洪晓富,蒋彭炎,郑寨生,等.水稻分蘖期喷施赤霉素(GA3)对控制分蘖和提高成穗率的效果[J].浙江农业科学,1998,1:3-5
    [89]张祖德.提高水稻成穗率的化学调控技术研究[J].福建稻麦科技,2006,6:10-13
    [90]Woodward E, Marshall C. Effects of plant-growth regulators and nutrient supply on tiller bud outgrowth in barley (Hordeum Distichum L) [J]. Ann Bot,1988,61:347-354
    [91]Ma B, Smith D. Chlormequat and ethephon timing and grain production of spring barley [J]. Agron J,1992,84:934-939
    [92]叶燕萍.乙烯利促进甘蔗有效分蘖的生理生化机理研究[D].广西大学,2006
    [93]Arite T, Iwata H, Ohshima K, et al. DWARF 10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice [J]. Plant J,2007,51:1019-1029
    [94]Sorefan K, Booker J, Haurogne K, et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea [J]. Gene Dev,2003,17:1469-1474
    [95]Stirnberg P, Chatfield SP, Leyser HMO. An Arabidopsis AXR in-insensitive mutant acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis [J]. Plant Physiol,1999,121:839-847
    [96]王台,钱前,王小菁,等.2009年中国植物科学若干领域重要研究进展[J].植物学报,2010,45:265-306
    [97]Thimann KV, Skoog F. Studies on the growth hormone of plants. Ⅲ. The inhibiting action of the growth substance on bud development [J]. Proc Natl Acad Sci,1933,19:714-716
    [98]Tucker D. Apical dominance in the tomato:the possible roles of auxin and abscisic acid [J]. Plant Sci Let,1978,12:273-278
    [99]Shimizu SS, Mori H. Control of outgrowth and dormancy in axillary buds [J]. Plant Physiol,2001, 127:1405-1413
    [100]巩鹏涛,李迪.植物分枝发育的遗传控制[J].分子植物育种,2005,3(2):151-162
    [101]Sitbon FB, Hennion S, Sundberg B, et al. Transgenic tobacco plants coexpressing the Agrobacterium Tumefaciens iaaM and iaaH genes display altered growth and indoleacetic-acid metabolism [J]. Plant Physiol,1992,99:1062-1069
    [102]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345
    [103]陆顺生,曾林,万卫东,等.优质籼稻不同品种、密度对其产量及构成因素的影响[J].中国农学通报,2003,19(2):50-52
    [104]谢树德.不同株行距配置对水稻单株分蘖的影响[J].农业科技通讯,2010,5:38-42
    [105]荆爱霞.移栽行距、密度对水稻超高产形成的影响[D].扬州大学,2008
    [106]王英满,张海泉,庞其敬.“武运粳7号”相近基本苗的不同栽插行距对生长效应的影响[J].上海农业科技,1999,5:12-14
    [107]王熹,陶龙兴.大田作物化控技术研究进展与应用前景[J].中国农业科技导报,2000,2:55-57
    [108]Yunde Z, Sioux K, Christensen A. A role for flavin mono oxygenase-like enzymes in auxin biosynthesis[J]. Science,2001,291:306-309
    [109]王绍华,揭水通,丁艳锋,等.控蘖剂调控水稻分蘖发生的效果[J].江苏农业学报,2002,18(1):29-32
    [110]Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones [J]. Nature,2008,455:195-200
    [111]Steven H, Schwart Z, Qin XQ. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching [J]. J Biol Chem,2004,279:46940-46945 [112] Gomez-Roldan V, Fermas S, Brewer PB, et al. Strigolactone inhibition of shoot branching [J]. Nature,2008,455:189-194
    [1]Li XY, Qian Q, Fu ZM, et al. Control of tillering in rice [J]. Nature,2003,422:618-621
    [2]Wang YH, Li JY. The plant architecture of rice(Oryza sativa) [J]. Plant Mole Bio,2005,59:75-84
    [3]蒋彭炎,马跃芳,洪晓富,等.水稻分蘖芽的环境敏感期研究[J].作物学报,1994,20(3):290-296
    [4]丁艳锋.氮素营养调控水稻群体质量指标的研究[D].南京农业大学,1997,20-24
    [5]Leopold A. The control of tillering in grasses by auxin [J]. Am J Bot,1949,36:437-440
    [6]Langer R, Prasad P, Laude H. Effects of kinetin on tiller bud elongation in wheat (Triticum aestivum L.) [J]. Ann Bot,1973,37:565-571
    [7]Harrison M, Kaufman P. Does ethylene play a role in the release of lateral buds(tillers) from apical dominance in oats? [J] Plant Physiol,1982,70:811-814
    [8]洪晓富,蒋彭炎,郑寨生,等.水稻分蘖期喷施赤霉素(GA3)对控制分蘖和提高成穗率的效果[J].浙江农业科学,1998,1:3-5
    [9]Woodward E, Marshall C. Effects of plant-growth regulators and nutrient supply on tiller bud outgrowth in barley (Hordeum Distichum L) [J]. Ann Bot,1988,61:347-354
    [10]梁振兴,马兴林.冬小麦分蘖发生过程中内源激素作用的研究[J].作物学报,1998,24(6):788-792
    [11]叶燕萍.乙烯利促进甘蔗有效分蘖的生理生化机理研究[D].广西大学,2006
    [12]Hiroshi N, Satoshi M. Effects of time of first harvest, total amount of nitrogen, and nitrogen application method on total dry matter yield in twice harvesting of rice [J]. Field Crops Res,2008, 105(1-2):40-47
    [13]王光明,刘保国,陈静,等.内源激素ABA对水稻再生芽萌发的影响[J].西南农业大学学报,1997,19(4):338-342)
    [14]Wang GY, Volker R, Li CJ, et al. Involvement of auxin and CKs in boron deficiency induced changes in apicak dominance of pea plants [J]. J Plant Physiol,2006,163:591-600
    [15]Cline MG, Oh C. A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance [J]. Ann Bot,2006,98:891-897
    [16]Li CJ, Bangerth F. Stimulatory effect of cytokonins and interaction with IAA on the release of lateral buds of pea plants from apical dominance [J]. J Plant Physiol,2003,160:1059-1063
    [17]Yoshida S. Laboratory manual for physiological studies of rice [M]. Beijing:Science Press,1975
    [18]王学奎.植物生理生化实验原理和技术(第二版)[M].北京;高等教育出版社,2006
    [19]缪小建,王绍华,李刚华,等.疏花对杂交水稻灌浆期非结构性碳水化合物运转及稻米品质的影响[J].杂交水稻,2008,23(5):55-59
    [20]Yang JC, Zhang J, Wang ZQ, et al. Hormonal changes in the grains of rice subjected to water stress during grain filling [J]. Plant Physiol,2001,127:315-323
    [21]吴颂如,陈婉芬,周燮.酶联免疫(ELISA)测定内源植物激素[J].植物生理学通讯,1988,(5):53-57
    [22]丁艳锋,黄丕生,凌启鸿.水稻分蘖发生与特定部位叶片叶鞘含氮率的关系[J].南京农业大学 学报,1995,18(4):14-18
    [23]蒋彭炎.水稻分蘖的发生、控制与茎蘖成穗率的提高[J].中国稻米,1999,4:7-9
    [24]李经勇,唐永群,吴毓.稻株内源IAA含量变化与再生芽萌发生长的关系[J].西南农业学报,2003,16:114-116
    [25]Dun EA, Ferguson BJ, Beveridge CA. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? [J] Plant Physiol.2006,142:812-819
    [26]潘瑞炽.植物生理学(第五版)[M].高等教育出版社,2004
    [27]Cline MG, Chatfield SP, Leyser O. NAA restores apical dominance in the axr 3-1 mutant of Arabidopsis thaliana [J]. Ann Bot,2001,87:61-65
    [28]Li CJ, Guevara E, Herrera J, et al. Effect of apex excision and replacement by 1-naphthylacetic acid on cytokinin concentration and apical dominance in pea plants [J]. Physiol Plant,1995,94:465-469
    [29]巩鹏涛,李迪.植物分枝发育的遗传控制[J].分子植物育种,2005,3(2):151-162
    [30]Bangerth F. Response of cytokinin concentration in the xylem exudate of bean (Phaseolus Vulgaris L) plants to decapitation and auxin treatment, and relationship to apical dominance [J]. Planta,1994,194:439-442
    [31]Schmulling T. New insights into the functions of cytokinins in plant development [J]. J Plant Growth Regul,2002,21:40-49
    [32]Tanaka M, Takei K, Kojima M, et al. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance [J]. Plant J,2006,45:1028-1036
    [33]马兴林,梁振兴.冬小麦分蘖衰亡过程中内源激素作用的研究[J].作物学报,1997,23(2):200-207
    [34]刘杨,王强盛,丁艳锋,等.水稻休眠分蘖芽萌发过程中内源激素水平的变化[J].作物学报,2009,35(2):356-362
    [35]Werner T, Motyka V, Laueou V, et al. Cytokinin — defieient transgenic Arabidopsis Plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity [J]. Plant Cell,2003,15:2532-2550
    [36]Pei Z M, Ghassemian M, Kwak CM. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss [J]. Science,1998,282 (5387):287-290
    [37]Tucker D. Apical dominance in the tomato:the possible roles of auxin and abscisic acid [J]. Plant Sci Let,1978,12:273-278
    [38]张祖德.提高水稻成穗率的化学调控技术研究[J].福建稻麦科技,2006,6:10-13
    [1]Harrison MA, Kaufman P. Hormonal regulation of lateral bud (tiller) release in oats (Avena satival L.) [J]. Plant Physiol,1980,66:1123-1127
    [2]Pravat EK, Mohapatra K. Hormonal regulation of tiller dynamics in differentially-tillering rice cultivars [J]. Plant Growth Regul,2007 53(3):215-223
    [3]Liu Y, Ding YF, Wang QS, et al. Effects of nitrogen and 6-benzylaminopurine on rice tiller bud growth and changes in endogenous hormones and nitrogen [J]. Crop Science,2011,51:786-793
    [4]Cline MG. Apical dominance [J]. Bot Rev,1991,57:318-358
    [5]Cline MG. Exogenous auxin effects on lateral bud outgrowth in decapitated shoots [J]. Ann Bot.1996, 78:256-266
    [6]Leyser O. Regulation of shoot branching by auxin [J]. Trends Plant Sci.2003,8:541-545
    [7]Chatfield SP, Stimberg P, Forde G, et al. The hormonal regulation of axillary bud growth in Arabidopsis [J]. Plant J,2000,24:159-169
    [8]Bangerth F. Response of CK concentration in the xylem exudates of bean (Phaseolus vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance [J]. Planta,1994, 194:439-442.
    [9]Faiss M, Zalubilova J, Strnad M, et al. Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants [J]. Plant J,1997,12: 401-415
    [10]Schmulling T. New insights into the functions of CKs in plant development [J]. Plant Growth Regul, 2002,21:40-49.
    [11]丁艳锋,黄不生,凌启鸿.水稻分蘖发生与特定部位叶片叶鞘含氮率的关系[J].南京农业大学学报,1995,18(4):14-18
    [12]陶龙兴,王熹,谈惠娟,等.水稻分蘖功能叶激素水平变化及其与成穗率的关系[J].杂交水稻,2006,21(1):68-71
    [13]Yoshida S. Laboratory manual for physiological studies of rice [M]. Beijing:Science Press,1975
    [14]Yang JC, Zhang J, Wang ZQ, et al. Hormonal changes in the grains of rice subjected to water stress during grain filling [J]. Plant Physiol,2001,127:315-323
    [15]Wang GY, Volker R, Li CJ, et al. Involvement of auxin and CKs in boron deficiency induced changes in apicak dominance of pea plants [J]. J Plant Physiol,2006,163:591-600
    [16]Leopold A. The control of tillering in grasses by auxin [J]. Am J Bot,1949,36:437-440
    [17]Harrison M, Kaufman P. Does ethylene play a role in the release of lateral buds(tillers) from apical dominance in oats? [J] Plant Physiol,1982,70:811-814
    [18]Bangerth F, Li CJ, Gruber J. Mutual interaction of auxin and cytokinins in regulating correlative dominance [J]. Plant Growth Regul,2000,32:205-217
    [19]Cline MG, Chatfield SP, Leyser O. NAA restores apical dominance in the axr3-1 mutant of Arabidopsis thaliana [J]. Ann Bot (London),2001,87:61-65
    [20]Langer R, Prasad P, Laude H. Effects of kinetin on tiller bud elongation in wheat (Triticum aestivum L.) [J]. Ann Bot,1973,37:565-571
    [21]马兴林,梁振兴.冬小麦分蘖衰亡过程中内源激素作用的研究[J].作物学报,1997,23(2):200-207
    [22]刘杨,王强盛,丁艳锋,等.水稻休眠分蘖芽萌发过程中内源激素水平的变化[J].作物学报,2009,35(2):356-362
    [23]Werner T, Motyka V, Laueou V, et al. Cytokinin-defieient transgenic arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell,2003,15:2532-2550
    [24]Tanaka M, Takei K, Kojima M, et al. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance [J]. Plant J,2006,45:1028-1036
    [1]Bangerth F. Response of cytokinin concentration in the xylem exudate of bean (Phaseolus Vulgaris L) plants to decapitation and auxin treatment, and relationship to apical dominance [J]. Planta,1994, 194:439-442
    [2]Schmulling T. New insights into the functions of CKs in plant development [J]. J Plant Growth Regul, 2002,21:40-49
    [3]Tanaka M, Takei K, Kojima M, et al. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance [J]. Plant J,2006,45:1028-1036
    [4]Werner T, Motyka V, Laueou V, et al. Cytokinin-defieient transgenic arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell,2003,15:2532-2550
    [5]Wang GY, Volker R, Li CJ, et al. Involvement of auxin and CKs in boron deficiency induced changes in apicak dominance of pea plants [J]. J Plant Physiol,2006,163:591-600
    [6]Bangerth F, Li CJ, Gruber J. Mutual interaction of auxin and cytokinins in regulating correlative dominance [J]. Plant Growth Regul,2000,32:205-217
    [7]Cline MG. The role of hormones in apical dominance:new approaches to an old problem in plant development [J]. Physiol Plant,1994,90:230-237
    [8]Letham D. Cytokinin as phytohormones-sites of biosynthesis, ranslocation, and function of translocated cytokinin. In Cytokinin:Chemistry, Activity, and Function (Mok D and Mok M eds) [M]. Florida:CRC Press,1994
    [9]Li C, Guevera E, Herrera J, et al. Effect of apex excision and replacement by 1-naphthylacetic acid on cytokinin concentration and apical dominance in pea plants [J]. Physiol Plant,1995,94:465-469
    [10]李合生.现代植物生理学[M].北京:高等教育出版社,2005
    [11]Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases [J]. Plant Cell Physiol,2001,42:677-685.
    [12]Takei K, Sakakibara H, Sugiyama T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana [J]. J Biol Chem, 2001,276:26405-26410.
    [13]Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice [J]. Plant J,2003,33:513-520
    [14]Ishikawa S, Maekawa M, Arite T, et al. Suppression of tiller bud activity in tillering dwarf mutant of rice [J]. Plant Cell Physiol,2005,46(1):79-86
    [15]Arite T, Iwata H, Ohshima K, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice [J]. Plant J,2007,51:1019-1029
    [16]Lin H, Wang RX, Qian Q, Y et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth [J]. The Plant Cell,2009,21: 1512-1525
    [17]Yoshida S. Laboratory manual for physiological studies of rice [M]. Beijing:Science Press,1975
    [18]Dobrev P, Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction [J]. J Chromatogr. A,2002,950:21-29
    [19]Nakagawa H, Jiang C, Sakakibara H, et al. Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms [J]. Plant J,2005,41:512-523
    [20]Miyawaki K, Matsurmoto-Kitano M, Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis:tissue specificity and regulation by auxin, cytokinin, and nitrate [J]. Plant J,2004,37:128-138
    [21]Sakamoto T, Sakakibara H, Kojima M, et al. Ectopic expression of KNOTTED]-like homeobox protein induces expression of cytokinin biosynthesis genes in rice [J]. Plant Physiol,2006,142: 54-62
    [22]Cline MG, Chatfield SP, Leyser O. NAA restores apical dominance in the axr 3-1 mutant of Arabidopsis thaliana [J]. Ann Bot,2001,87:61-65
    [23]Cline MG, Oh C. A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance [J]. Ann Bot,2006,98:891-897
    [24]Thomas G, Oliver C, Elisabeth S. Molecular analysis of the lateral suppressor gene in tomato reveals a conserved control mechanism for axillary meristem formation [J]. Gene Dev,2003,17: 1175-1187
    [25]Cubas P, Lauter N, Doebley J, et al. The TCP domain:a motif found in protein regulating plant growth and development [J]. Plant J,1999,18:215-222
    [26]Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family [J]. Plant J,2002,30(3):337-348
    [27]刘杨,丁艳锋,王强盛,等.水稻分蘖芽生长于植物激素和OsTB1、OsD3、OsD10和OsD27表达的关系[J].植物生理学报,2011,47(4):367-372
    [28]王台,钱前,袁明,等.2009年中国植物科学若干领域重要研究进展[J].植物学报,2010,45:265-306
    [29]Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones [J]. Nature,2008,455:195-200
    [30]Steven H, Schwart Z, Qin XQ. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching [J]. J Biol Chem,2004,279:46940-46945
    [31]Gomez-Roldan V, Fermas S, Brewer PB, et al. Strigolactone inhibition of shoot branching [J]. Nature,2008,455:189-194.
    [32]Stirnberg P, Van De Sande K, Leyser O. MAX1 and MAX2 control shoot lateral branching in Arabidopsis [J]. Development,2002,129:1131-1141
    [33]Sorefan K, Booker J, Haurogne K, et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea [J]. Genes Dev,2003,17:1469-1474
    [34]Foo E, Bullier E, Goussot M, et al. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea [J]. Plant Cell,2005,17:464-474
    [1]Ao HJ, Peng SB, Zou YB, et al. Reduction of unproductive tillers did not increase the grain yield of irrigated rice [J]. Field Crops Res,2010,116:108-115
    [2]Schmulling T. New insights into the functions of cytokinins in plant development. J Plant Growth Regul,2002,21:40-49
    [3]Tanaka M, Takei K, Kojima M, et al. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance [J]. Plant J,2006,45:1028-1036
    [4]Wang GY, Volker R, Li CJ, et al. Involvement of auxin and CKs in boron deficiency induced changes in apicak dominance of pea plants [J]. J Plant Physiol,2006,163:591-600
    [5]马兴林,梁振兴.冬小麦分蘖衰亡过程中内源激素作用的研究[J].作物学报,1997,23(2):200-207
    [6]Emery RJN, Longnecler NE, Atkins CA. Branch development in Lupinus angustifolius L. Ⅱ Relationship with endogenous ABA,IAA and CKs in axillary and main stem buds [J]. J Exp Bot, 1998,49:555-562
    [7]Cline MG, OH C. A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance [J]. Ann Bot,2006,98:891-897
    [8]丁艳锋.氮素营养调控水稻群体质量指标的研究[D].南京农业大学,1997,20-24
    [9]苏祖芳,周兴全,张亚洁,等.搁田始期对水稻成穗率、产量形成和群体质量的影响[J].中国水稻科学,1996,2:178-190
    [10]蒋彭炎,马跃芳,洪晓富,等.水稻分蘖芽的环境敏感期研究[J].作物学报,1994,20(3):290-296
    [11]王英满,张海泉,庞其敬.“武运粳7号”相近基本苗的不同栽插行距对生长效应的影响[J].上海农业科技,1999,5:12-14
    [12]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000
    [13]Woodward E, Marshall C. Effects of plant-growth regulators and nutrient supply on tiller bud outgrowth in barley (Hordeum Distichum L) [J]. Ann Bot,1988,61:347-354
    [14]Ma B, Smith D. Chlormequat and ethephon timing and grain production of spring barley [J]. Agron J,1992,84:934-939
    [15]Cline MG. Exogenous auxin effects on lateral bud outgrowth in shoots [J]. Ann Bot,1996,7: 255-256
    [16]Cline MG, Chatfield SP, Leyser O. NAA restores apical dominance in the axr 3-1 mutant of Arabidopsis thaliana [J]. Ann Bot,2001,87:61-65
    [17]Bangerth F. Response of cytokinin concentration in the xylem exudate of bean (Phaseolus Vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance [J]. Planta,1994,194:439-442
    [18]Bangerth F, Li CJ, Gruber J. Mutual interaction of auxin and cytokinins in regulating correlative dominance [J]. Plant Growth Regul,2000,32:205-217
    [19]Cline MG. The role of hormones in apical dominance:new approaches to an old problem in plant development [J]. Physiol Plant,1994,90:230-237
    [20]王台,钱前,王小菁,等.2009年中国植物科学若干领域重要研究进展[J].植物学报,2010,45:265-306
    [21]Arite T, Iwata H, Ohshima K, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice [J]. Plant J,2007,51:1019-1029
    [22]Lin H, Wang RX, Qian Q, et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth [J]. Plant Cell,2009,21:1512-1525.
    [23]Thimann KV, Skoog F. Studies on the growth hormone of plants. Ⅲ. The inhibiting action of the growth substance on bud development [J]. Proc Natl Acad Sci,1933,19:714-716.
    [24]Shimizu SS, Mori H. Control of outgrowth and dormancy in axillary buds [J]. Plant Physiol,2001, 127:1405-1413.
    [25]王学奎.植物生理生化实验原理和技术(第二版)[M].北京;高等教育出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700