用户名: 密码: 验证码:
特高产水稻产量形成机理及定量栽培技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在前人研究基础上,以世界著名的水稻特殊高产生态区涛源水稻高产田为试验参照基地,设置不同生态区水稻比较试验、品种产量潜力鉴定试验、南京和涛源生态区氮肥试验、密度试验和氮肥试验,探讨特高产水稻高产形成机理,同时探讨特高产水稻的精确定量栽培技术原理和途径。主要研究结果如下:
     1、水稻产量形成的生态差异及高产共性特征
     在中国8个典型生态区设置密度试验,共涉及10个当地主推品种,探讨不同生态区水稻的形成的生态差异及高产共性特征。结果表明水稻产量形成的生态差异为:(1)不同生态区水稻在生育期、产量构成、源库大小、粒/叶比、株型特征、干物质积累和分配等方面差异极大;(2)移栽密度对水稻群体质量及产量影响因生态类型不同而异。高产水稻的共性特征为:(1)产量与库容量关系密切,库容量越大,产量越高;建立适宜的LAI,通过提高粒叶比来提高库容量是水稻产量挖潜的主要目标;(2)抽穗前后干物质积累量对产量的贡献率差异极大,但提高干物质积累量,尤其是抽穗后的干物质积累量,有利于产量的提高。
     2、水稻特高产形成机理
     涛源水稻产量高,2006-2007年,涛源平均产量分别比南京高96%和85%,其中涛源2006年协优107产量达18.5t ha-1。涛源水稻特高产形成的机理主要表现在(1)生理学机理:生物产量高,而收获指数无差异;库容大,其中有效穗高是库容量大的主要原因,同时粒数和粒重达到相当水平;叶源大,涛源最大最适LAI达10,比南京高60%左右;氮素积累量高,但百公斤籽粒吸氮量低,比叶氮(SLN)差异不明显。(2)生态学机理:光辐射量大但光能利用率(RUE)差异不明显,而且特高产水稻全生育期温度适宜;(3)形态学机理:水稻单茎叶面积小,叶片短宽、直立、叶角小,比叶重(SLW)高,消光系数低。
     3、特高产水稻穗粒结构等株型指标的基本特征
     2007-2008年在涛源特高产区开展了不同新品种的小区产量比较试验。此外,还选择具备相同高产潜力的两个典型品种,II优107(大穗型品种)和协优107(多穗型品种)为供试材料,分别于2006-2008年在江苏省南京市(普通水稻生态区)和涛源(特殊高产生态区)同时种植,分析水稻新品种的产量潜力、籽粒产量和相关性状的复杂关系,调查品种产量在地点和年际间的稳定性分析。研究结果表明,涛源参试品种的水稻产量呈正态分布,生育期、LAI、单位面积穗数和单位面积颖花数均和产量极显著正相关。产量潜力地点间变异较大但年际间稳定。单位面积穗数和产量的相关系数和通径系数最高,其次是穗粒数、粒重和结实率。稳定性分析表明,株高,穗粒数、结实率和千粒重相对比较稳定,很少受地点和年份的影响,生育期(主要是抽穗前天数)和穗数随地点显著变化。增加抽穗前天数、强源扩库能够提高产量潜力。17t ha-1以上的特高产水稻应该具备以下特征:较长生育期(不少于155天)、适宜的株高(110-125cm)、穗数300-400m2,穗粒数200左右,结实率在90%以上,粒重在29-31mg左右。
     4、特高产水稻需氮生理机理及特高产水稻栽培定量施氮参数
     2008-2009年在南京和涛源水稻特殊高产区设置了施氮量试验,以两生态区均适合种植杂交籼稻品种Ⅱ优107为材料,比较研究氮肥用量对南京和涛源特殊生态区水稻群体质量和产量构成因素的影响,探讨涛源特高产水稻需氮量较高的生理机制,同时为氮肥实地精确定量管理提供依据。结果表明,施氮量对涛源水稻库源大小,株型特征及干物质积累影响效应均超过南京。适量氮肥有利于提高光能利用率(RUE),但生态点间RUE差异不明显。施氮量提高,不同生育阶段SPAD值、氮积累量(NA)和氮积累速率(NAR)均提高,百公斤籽粒吸氮量(NPAG)提高,氮素利用率(NUE)降低,氮素转运率不受影响。涛源特高产水稻各生育阶段NA比南京高,但营养生长期NAR比南京低。涛源特高产水稻氮素农学利用率(AE)和氮素偏生产力(PFP)较高,高产施氮量下涛源AE是南京的2倍,PFP是南京的1.5倍,氮素吸收利用率(RE)和氮收获指数(NHI)差异不明显。南京基础供氮量100kg ha-1,涛源基础供氮量120-150kgha-1,南京高产条件下NPAG为1.90kg,涛源特高产水稻NPAG为1.60kg, RE均为45%。南京施氮量195kg ha-1左右可获得10t ha-1最高产量,涛源施氮量375kg ha-1左右,可获得18t ha-1以上的特高产量。
     5、特高产水稻基本苗定量设计及密度配置对产量的影响
     通过对2005~2006年特殊生态区不同产量水平超高产群体茎蘖动态调查,建立水稻单株成穗数通式和有效分蘖叶位理论分蘖数函数,并确定特高产水稻的秧苗分蘖成活率(s)、本田期分蘖发生率(r)、分蘖缺位数(bn)、适宜等穗期及校正系数(a)等相关参数。结果表明:所有参试品种都遵循n-3的叶蘖同伸规律,有效分蘖叶位理论分蘖数(A)可以表示为有效分蘖叶位数(E)的函数,有效分蘖叶位数(E)与主茎总叶龄(N)、伸长节间数(n)、移栽叶龄(SN)、分蘖缺位数(bn)和校正系数(a)有关,E=(N-n-SN-bn-a);特高产群体的矫正系数(a值)宜取1.5;常规湿润秧移栽大田后有1.5叶的分蘖缺位(bn),带2叶分蘖成活率(s2)和带1叶分蘖成活率(s1)分别为0.8和0.3;穴盘带土移栽,bn=0.5, s2=1.0, s1=0.5;本田期秧苗活棵至等穗期,分蘖发生率(r)80%左右。特高产水稻常规湿润秧本田期有效分蘖叶位E=(N-n-SN-3),单株分蘖成穗数ES=(1+t3+0.8t2)(1+0.8A)+0.3t1,其中t1、t2、t3分别代表秧苗带1叶、2叶和3叶分蘖数;穴盘小苗移栽本田期有效分蘖叶位E=(N-n-SN-2),单株分蘖成穗数ES=(1+t3)(1+0.8A3)+t2(1+0.8A2)+0.5t1,其中A2、A3分别代表2叶分蘖、3叶分蘖及主茎本田期理论分蘖数。通过两年与实际茎蘖动态的比较,公式描述较好。
     中国8个典型生态区共10个主推品种的密度试验结果表明:(1)移栽密度对水稻群体质量及产量影响因生态区不同而异,表明高产栽培应根据生态和品种特点具体设计适宜的移栽密度。(2)宽行窄株的配置方式有利于提高水稻的库容量、抽穗后CGR和干物质积累量,从而提高产量;减少移栽穴数增加单穴苗数的方式不利群体质量优化,因而产量有所降低。
In this paper, a special high yield eco-site, Taoyuan, Yunnan province, was taken as reference field base. A series of field experiments was launched including rice variety comparison, N rate, transplanting density in2005-2008to reveal the yield formation mechanism for high yield at special high-yielding eco-site and the common characteristics of rice for super high yield among different eco-sites. The technique theory and approach of precision quantative cultivation for special high yield eco-site was discussed. Results are as follows:
     1. Difference of yield formation and common characteristics of high yield for different eco-sites
     Different density experiment was carried out at8typical ecosites in China to explore the rice population quantity characteristics. Results showed that growth stage, yield components, source and sink capacity, grain/leaf, plant types, dry matter accumulation and distribution differs greatly between different ecotype rice varieties. Yield was closely positive related with source capacity. Enhancement of source capacity was the main approach to improve yield potential through the increase of grain/leaf and establishment of optimum LAI. Although the contribution of dry matter accumulation around heading to yield varied greatly with varieties, the increase of dry matter accumulation after heading was benefit for the improvement of yield.
     2. Mechanisms of rice yield formation at high yield eco-site
     The yield were higher at Taoyuan than Nanjing, and average yield of all varieties at Taoyuan was96%and85%higher than Nanjing in2006and2007, respectively. The highest yield of18.5t ha-1was achieved by Eryou107at Taoyuan in2006. The higher yield in taoyuan were mainly attributed to:(1) physiological factor, the higher biomass accumulation with equal HI, the larger sink size mainly caused by the greater number of panicles per m2, maximum LAI with10,60%higher than Nanjing; higher N accumulation with lower amounts of N to produce100kg grain (NPAG) and equal SLN with Nanjing;(2) Ecological factor:the intense solar radiation with suitable RUE, the large diurnal temperature range and suitable temperature in whole rice growth stage;(3) morphological factor smaller area per stem, shorter, wider and thicker leaves and smaller leaf angles, low specific leaf weight and light extinction coefficient.
     3. Traits of plant type for high yield rice
     Field experiments with53and48new indica cultivars were carried out in Taoyuan, Yunnan province, in2007and2008, respectively. In addition, two typical indica rice varieties with similar yield potentials, Ⅱyou107as large-panicle-type and Xieyou107as heavy-panicle-type, were planted both there and in Nanjing, Jiangsu province, in2006to2008. The results showed that the yield potential of the tested varieties in2007and2008was normal distributed with average13.69t ha-1and15t ha-1, separately. Growth duration, LAI, panicles per m2and spikelets per m2were all significant and positively correlated with grain yield at0.01level in both years. Yield potential varied greatly with sites but little with years. The correlation and path coefficient with grain yield was the highest for panicle number per m2, then the spikelet per panicle, grain weight and spikelet filling rate. Plant height, spikelets per panicle, spikelets fertile percentage and1000grain weight were stable variety traits, and little affected by site and year, while growth duration (mainly for days before heading) and panicle number were significantly varied with the sites. The yield potential can be improved by increasing the days before heading, strengthening source capacity and enlarging sink size. The optimum traits for super high yield of more than17t ha-1were (1) longer crop growth duration no shorter than155days;(2)110-125cm plant height;(3)300-400panicles per m2;(4)200spikelets per panicle;(5) about90%grain filling;(6)29-31mg grain weight.
     3. Parameter of N rate quantification for high yield
     Different N rate experiment was carried out both at nanjing and Taoyuan in2008and2009with Ⅱyou107to compare the effect of N rate on rice population quality and yield components. Results showed that effect of N rate on sink and source size, plant type and dry matter accumulation at Taoyuan was superior to Nanjing. With the increasing N rate, Leaf SPAD value, N accumulation (NA), N accumulation rate (NAR) and amounts of N to produce100kg grain (NPAG) increased, and NUE decreased, while no change for NAR. NA at different development stage was higher at Taoyuan than Nanjing, but NAR at vegetative stage was lower than Nanjing. Agronomic efficiency of N and partial factor productivity (PFP) was larger at taoyan than Nanjing, and AEN, PFP under high N rate at taoyuan was twice and1.5times of Nanjing, respectively, while recovery efficiency of N (RN) and NHI differs little. Soil N supply at Nanjing was100kg ha-1while120-150kg ha-1at taoyuan. Under high yield cultivation, NPAG was1.90kg100kg-1at Nanjing and1.60kg100kg-1at Taoyuan, but the RN at both sites was same with45%. The maximum yield (10t ha-1at Nanjing and18t ha-1at Taoyuan) could be obtained with N rate of195kg ha-1at Nanjing and375kg ha-1at Taoyuan, respectively.
     4. Basic seedling quantitative model and effect of density on yield formation
     The general formula of panicle number per plant (ES) for rice and establish the function of theoretic number of tillers for effective tillering leaf position, and determine the tiller surviving rate of seedling (s), tiller emerging rate after transplanting (r), missing tiller number after transplanting (bn), and adjusting factor (a) was summarized. Field experiments were performed in the special high-yield area at Taoyuan, Yongsheng County, Yunnan province, and tiller number and grain yield were determined. Five transplanting density treatments were conducted with an Indica hybrid rice variety, Eryou107, in2005; and six Indica hybrid rice varieties, Eryou107, Eryou318, Eryou7954, Eryou084, Eryouhang1hao and Xieyou107, were used for high-yield field experiment in2005and2006respectively. All varieties followed the "n-3" law of synchronously emerging of tiller with leaf. The theoretic number of tillers for effective tillering leaf position (A) was calculated as the function of the number of effective tillering leaf position (E). E was related with the total leaf number (N), leaf age at transplanting (SN), elongated node number (n), missing tiller number after transplanting (bn) and adjusting factor(a), E=(N-n-SN-bn-a). The adjusting factor (a) for super high-yield rice should be taken as1.5. For traditional wet-bed seedling, bn was1.5, surviving rate of tillers with2leaves (s2) was0.8, surviving rate of tillers with1leaf (s1) was0.3; while for seedling tray, bn was0.5, S2was1.0, s1was0.5. From seedling recovering to stage of tiller equal panicle, r was80%or so. For traditional wet-bed seedling, E=(N-n-SN-3), ES=(1+t3+0.8t2)(1+0.8A)+0.3t1; for seedling tray, E=(N-n-SN-2), ES=(1+t3)(1+0.8A3)+t2(1+0.8A2)+0.5t1, where t1, t2, t3represents the tillers with1,2and3leaves respectively, A2, A3represents the emerged tiller number after transplanting for tillers with2and3leaves separately. The comparison of theoretical and actual tiller number showed that the formula well depicted the tiller emergence characteristics in super-high yield rice.
     Effect of transplanting density on rice population quality and yield varied with the variety and ecosites. The design of wide row space and narrow plant space could improve yield through the increase of sink size, CGR after heading and dry matter accumulation. However, reduced transplanting number of hills together with increased seedling numbers per hill could decrease the yield due to the unbalanced population
引文
Ao H., Peng S., Zou Y., et al. Reduction of unproductive tillers did not increase the grain yield of irrigated rice [J]. Field Crops Res,2010,116,108-115.
    Artacho, P., Bonomelli C., Meza F. Nitrogen application in irrigated rice grown in mediterranean conditions:effects on grain yield, dry matter production, nitrogen uptake, and nitrogen use efficiency[J]. Journal of Plant Nutrition,2009,32:1574-1593.
    Arvind K.S, Jagdish K.L, V.K.Singh, et al. Calibration the leaf color chart for nitrogen management in different genotypes of rice and wheat in a systems perspective[J]. Agron. J.,2004,11-12 (96): 1607-1621.
    Balasubramanian A.C. Adaptation of the chlorophyll meter (SPAD) technology for real-time N management in rice:a review [J]. Int. Rice Res. Notes,2000,25(1):4-8.
    BorrellA., Garside A., FukaiS., et al. Season, nitrogen rate, and plant type affect nitrogen uptake and nitrogen use efficiency in rice [J]. Aust. J. Agric. Res.,1998,49:829-843.
    Bouldin D. The chemistry and biology of flooded soils in relation to the nitrogen economy in rice fields [J].Fert Res,1986,9:1-14.
    Boysen-jensen P. Die stoffproduktion der pflangen [J]. Fishei Jena,1932.108.
    Brougham R. Interception of light by the foliage of pure and mixed stands of pasture plants [J]. Aust J Agric Res,1965,7:377-387.
    Bueno C., Lafarge T. Higher crop performance of rice hybrids than of elite inbreds in the tropics:1. Hybrids accumulate more biomass during each phenological phase [J]. Field Crops Res,2009,112: 229-237.
    Casanova D., Goudriaanb J., Catala F., et al. Rice yield prediction from yield components and limiting factors [J]. Eur J Agron,2009,17,41-61.
    Cassman, K.G. Ecological intensification of cereal production systems:yield potential, oiquality, and precision agricrlture [J]. Proc. Natl. Acad. Sci. U.S.A.1999,96:5952-5959.
    Cheng S, Zhuang J, Fan Y, et al. Progress in research and development on hybrid rice:a super-domesticate in China [J]. Annals of Botany,2007,100:959-966.
    Choubey P., Richharia A. Genetic variability, correlation and path coefficients in indica rice [J]. Indian J. Genet.,1993,53,356-360.
    Choudhury P., Deb D. Genetic variability, correlation and path coefficient analysis in deep water rice [J]. J. Agric. Sci. Soc. NE India,1997,10,155-157.
    Cu R., Mew T., Cassman K, et al. Effect of sheath blight on yield in tropical, intensive rice production systems [J]. Plant Dis.1996,80 (10):1103-1108.
    David W. Lawlor. Carbon and nitrogen assimilation in relation to yield:mechanisms are the key to understanding production systems [J]. J. Exp. Bot.2002,53:773-787.
    Dobermann A., Witt C., Dawe D., et al. Site-specific nutrient management for intensive rice cropping systems in Asia [J]. Field Crops Res.2002,74:37-66.
    Donald C. The breeding for crop ideotypes [J]. Euphytic,1968,17:385-403.
    Eagle, Bird J., Hill J., et al. Nitrogen dynamics and fertilizer use efficiency in rice following straw incorporation and winter flooding [J]. Agron J,2001,93:1346-1354.
    Evans L., Fischer R. Yield potential:its definition, measurement, and significance [J]. Crop Sci.1999,39: 1544-1551.
    Fageria N., Baligar V., Clark R. Physiology of crop production-plant canopy architecture [J]. Food products press,2005:8-12.
    Fageria N., Baligar V. Enhancing nitrogen use efficiency in crop plants [J]. Advances in agronomy,2005, 88:97-104.
    Florent T, Beatria D, Matcel D, et al. Leaf blade dimensions of rice (Oryza sativa L. and Oryza glaberrima Steud.) relationships between tillers and the main stem [J]. Annals of Botany,2001,88: 207-511.
    Gao L, Jin Z, Huang Y, et al. Clock model-a computer model to simulate rice development [J]. Agricultural and Forest Meteorology,1992,15(60):1-16.
    Gautier H, Varlet G., Baudry N. Effects of blue light on the vertical colonization of space by white clover and their consequences for dry matter distribution [J].Annals of Botany,1997,80:665-671.
    Geetha S., Sunderaraj K, Giridharan A, et al. Association of component characters of medium duration rice enotypes [J]. Ann. Agric. Res.1994,15,410-412.
    Guindo D, Wells B, Norman, R. Cultivars and nitrogen rate influence on nitrogen uptake and partitioning in rice [J]. Soil Science Society of America Journal,1994,58(3):840-849.
    Guo J., Liu X., Zhang Y, et al. Sinificant acidification in major Chinese croplands [J]. Science,2010, 327:1008-1010.
    Haefelea S., Abbar S., Siopongco D., et al. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels [J]. Field Crops Res,2008,107(2): 137-146.
    Han B, Zhang Q. Rice Genome Research:Current Status and Future Perspectives [J]. The Plant Genome, 2008,1 (2):71-76.
    Heath D, Gregory. The constancy of the mean net assimilationiate and its ecological impoitance [J]. Ann Botany,1938,2:811-818.
    Hirel B, Gouis J, Ney B, et al. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches [J]. J. Exp. Bot,2007,58:1-19.
    Hirose T., a. Development of the Monsi-Saeki Theory on Canopy Structure and Function [J]. Annals of Botany,2005,95 (3):483-494.
    Hirose T., Terashima I., b. Structure and function of plant canopies [J]. Annals of Botany,2005, 95(3):481-482.
    Hiroshi N, Satoshi M, Ikuo H, et al. Effects of planting time and cultivar on dry matter yield and estimated total digestible nutrient content of forage rice in southwestern Japan [J]. Field Crops Res, 2008,105:116-123.
    Hiroshi Nakano, Satoshi Morita. Effects of planting time and nitrogen application on dry matter yield of the forage rice cultivar Tachiaoba in southwestern Japan [J]. Plant Production Science,2009,12: 351-358
    Horie T., Yoshida H., Shiraiwa T., et al. Analysis of genotype by environment interaction in yield formation processes of rice grown under a wide environmental range in Asia.1. Asian Rice Network (ARICENET) research and preliminary results [J]. Japanese Journal of Crop Science, 2003,72:88-89.
    Horie, T., Shiraiwa, T., Homma, K., et al. Can yields of lowland rice resume the increases that they showed in the 1980s [J]? Plant Prod Sci,2005,8,259-274. http://www.sina.com.cn,2006.09.07.
    Hu R, Cao J, Huang J, et al. Farmer participatory testing of standard and modified site-specific nitrogen management for irrigated rice in China [J]. Agricultural Systems,2007,94 (2):331-340.
    Huang J, He F, Cui K, et al. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter [J]. Field Crops Res,2008,105 (1-2):70-80.
    Huang, N., Zhong, X., Wang, F., et al. Root vigor and grain filling characteristics in super hybrid rice [J]. Sci. Agric. Sin.,2006,39:1772-1779.
    Hubbart S., Peng S., Horton P., et al. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966 [J]. J. Exp. Bot.,2007,58:3429-3438.
    Hussain F., Bronson, Yadvinder S, et al. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia [J]. Agron. J.2002,92:875-879.
    IRRI (International Rice Research Institute). Rice Facts [M]. International Rice Research Institute, Los Banos, Philippines,1995.
    Jiang L, Dai T, Jiang D, et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars [J]. Field Crops Res,2004,88,2-3:239-250.
    Jiang L, Dai T, Jiang D, et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars [J]. Field Crops Res,2004,88,2-3:239-250.
    Jing Q. Improving resource use efficiency in rice-based cropping systems:Experimentstion and modeling [D]. Wageningen University.2007
    Jing Q., Bouman B, Keulen H, et al. Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia [J]. Agricultural Systems,2009,98:177-188.
    Jing Q., Spiertzd J., Hengsdijk H, et al. Adaptation and performance of rice genotypes in tropical and subtropical environments [J]. Wageningen Journal of Life Sciences,2010,57:149-157.
    Kasanaga H, Monsi M. On the light transmission of leaves [J]. Jap J Bot,1954,14:304-324.
    Katsura, K., Maeda, S., Horie, T, et al. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China [J]. Field Crops Res,2007,103:170-177.
    Katsura, K., Maeda, S., Lubis, I, et al. The high yield of irrigated rice in Yunnan, China'A cross-location analysis'[J]. Field Crops Res,2008,107:1-11.
    Kazuhiro, Kobayasi, Takeshi H. the drrect of plant nitrogen condition during reproductive stage on the differentiation of spilelets and rachis-branches in rice [J]. JPN. J. Crop. Sci.,1994,63(2):193-199
    Kobavasi K, Horie Y, Imaki T. Relationship between apical dome diameter at panicle initiation and the size of panicle components in rice grown under different nitrogen conditions during the vegetative stage [J]. Plant Prod. Sci.2002,5(1):3-7
    Kobayshi S, Araki E, Osaki M, et al. Localization, validation and characterization of plant-type QTLs on chromosomes 4 and 6 in rice (Oryza sativa L.) [J]. Field Crops Res,1996,96 (11):106-112.
    Kozak M., Singh P K., Verma M R, et al. Causal mechanism for determination of grain yield and milling quality of lowland rice [J]. Field Crops Res,2007,102:178-184.
    Krupnik, J.Six, J.K.Ladha, et al. An assessment of fertilizer nitrogen recovery efficiency by grain crops. Agriculture and the nitrogen cycle [M]. SCOPE,2004.
    Kuroki M, Saito K, Matsuba S, et al. A quantitative trait locus for cold tolerance at the booting stage on rice chromosome [J]. Theoretical and Applied Genetics,2007,115:593-600.
    Kush G S. Modern varieties-their real contribution to food supply and equity [J]. GeoJurnal,1995, 35(3):275-284.
    Ladha, Reddy P. M. Nitrogen fixation in rice system:State of knowledge and future prospects [J]. Plant and Soil,2003,252:151-167.
    Mae, T. Physiological nitrogen efficiency in rice:Nitrogen utilization, photosynthesis, and yield potential [J]. Plant Soil,1997,196:201-210.
    Maman N., Mason S.C., Lyon D.J, et al. Yield components of pearl millet and grain sorghum across environments in the central great plains [J]. Crop Sci.,2004,44:2138-2145.
    Matsushima S, Tsunoda K. Analysis of developmental factors determining yield and its application to yield prediction and culture improvement in lowland rice:XLIX. Effects of irrigation-water temperature and its daily range in different growth-stages upon the growth, grain yield and its constitutional factors in rice plants [J]. Jap J Crop Sci,1959,27 (3):357-358.
    Mohammadi S.A., Prasanna B.M., Singh N.N. Sequential path model for determining interrelationships among grain yield and related characters in maize [J]. Crop Sci.,2003,43:1690-1697.
    Mohammeda A., Tarpley L. High nighttime temperature affect rice productivity through altered pollen germination and spikelet fertility. Agric.ForestMeteorology [J],2009,149 (627):999-1008.
    Moreira Da, Silvam H, Debergh P C. The effect of light quality on the morphogenesis of in vitro cultures of Azorinavidalii (wats). Feer [J]. Plant Cell Tissue& Organ Cultures,1997,51930:187-193.
    Murchie E H., Hubbart S., Chen Y., et al. Acclimation of rice photosynthesis to irradiance under field conditions [J]. Plant physiol,2002,130:1999-2010.
    Normile, Reinventing rice to feed the world [J]. Science,2008,321:330-333.
    Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions [J]. Field Crops Res,2002,74:93-101.
    Ohsumi A, Hamasaki A, Nakagawa H, et al. A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance [J]. Annals of Botany,2007,99(2):265-273.
    Oluwarotimi O. Effect of water management and polyolefin-coated Urea on growth and nitrogen uptake of indica rice [J]. J of plant nutrition.,2002,25:2173-2190.
    Pasuquin E., Lafarge T., Tubana B. Transplanting young seedlings in irrigated rice fields:Early and high tiller production enhanced grain yield [J]. Field Crops Res,2008,15:141-155.
    Peng S, Buresh R., Huang J, et al. Improving nitrogen fertilization in rice by site-specific N management. A review [J]. Agron. Sustain. Dev,2010,24, March, online.
    Peng S, Buresh R., Huang J, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China [J]. Field Crops Res,2006,96:37-47.
    Peng S, Garcia F V, Laza R C, et al. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration [J]. Agron. J.1993,83 (5):926-928.
    Peng S, Garcia F, Laza R C, et al. Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice [J]. Field Crops Res,1996,47:243-252.
    Peng S, Gurdev S. K., Parminder V, et al. Progress in dieotype breeding to increase rice yield potential [J]. Field Crops Res,2008,108:32-38.
    Peng S, Khush G S., Virk P, et al. Progress in ideotype breeding to increase rice yield potential. Field Crops Res,2008,108:32-38.
    Peng S, Tang Q, Zou Y. Current status and challenges of rice production in China [J]. Plant Production Science,2009,12(1):3-8.
    Peng S. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice [J]. Field Crops Res,1996,47:243-252.
    Peng S., Huang J., Sheehy J., et al. Rice yields decline with higher night temperature from global warming [J]. Proc. Natl. Acad. Sci.,2004,101:9971-9975.
    Reddy J.N., De R.N., Suriya Rao A.V. Correlation and path analysis in lowland rice under intermediate (0-50 cm) water depth [J]. Oryza,1997,34:187-190.
    Richards R.A. Selectable traits to increase crop photosynthesis and yield of grain crops [J]. J. Exp. Bot, 2000,51:447-458.
    Robertson GW.Abiometerological time scale for a cereal crop involving day and night temperature and photoperiod.International [J]. Journal of Biometerology,1968,12:191-223.
    Ros C., Bell R.W., White P.F. Seedling vigor and the early growth of transplanted rice (Oryza sativa) [J]. Plant and soil,2003,252:325-337.
    Rosegrant M.W., Sombilla M.A., Perez N. Global food projections to 2020:implications for investment, [C]. Food, agriculture and the environment discussion paper No.5. IFPRI, Washington, DC.
    Samonte S, Wilson L T, Tabien R E. Maximum node production rate and main culm node number contributions to yield and yield-related traits in rice [J]. Field Crops Res,2006,96:313-319.
    Samonte S., Wilson L., McClung A. Path analyses of yield and yield-related traits of fifteem diverse rice genotypes [J]. Crop Sci.1998,38:1130-1136.
    Samonte S., Wilson L., Medley J, et al. Nitrogen utilization efficiency:Relationships with grain yield, grain protein, and yield-related traits in rice [J]. Agron J,2006,98:168-176.
    Sarawgi A K., Rastogi N K., Soni D K. Correlation and path analysis in rice accessions from Madhya Pradesh [J]. Field Crops Res,1997,52,161-167.
    Sheehy J., Dionora M., Mitchell P, et al. Critical nitrogen concentrations:implications for high-yielding rice (Oryza sativa L.) cultivars in the tropics [J]. Field Crops Res,1998,59:31-41.
    Sheehy J., Dionoraa M., Mitchell P. Spikelet numbers, sink size and potential yield in rice. Field Crops Res,2001,71:77-85.
    Sinebo, W. Yield relationships of barleys grown in a tropical highland environment [J]. Crop. Sci,2002, 42:428-437.
    Stanley O. Samonte, Lloyd T, et al. Maximum node production rate and main culm node number contributions to yield and yield-related traits in rice [J]. Field Crops Res,2006,96:313-319.
    Takai T, Matsuura S, Nishio T, et al. Rice yield potential is closely related to crop growth rate during late reproductive period [J]. Field Crops Res,2006,96:328-335.
    Takanari. Contribution of nitrogen absorbed during ripening period to grain filling in a high-yielding rice variety [J]. Plant Production Science,2009,12(2):176-184.
    Tanaka I. Climatic influence on photosynthesis and respiration of rice, Climate and Rice [M]. The international rice research institute,1976:162-183.
    Thiyagarajan T.M. Assessing genotypic variation in N requirements of rice with a chlorophyll meter [J]. Int. Rice Res, Notes.2000,25(1):23-24.
    Timothy W., Jason A., Brian V, et al. Hybrid rice response to nitrogen fertilization for midsouthern United States rice production [J]. Agron J,2008,100:381-386.
    Tivet F, Pinheiro B D S, de Raǐssac M, et al. Leaf blade dimensions of rice (Oryza sativa L. and Oryza glaberrima Steud.) relationships between tillers and the main stem [J]. Annals of Botany,2001,88: 207-511.
    Tsunoda K. Studies on the effects of water temperature on the growth and yield in rice plants [J]. Bull Natl Inst Agric Sci, A,1964:11.
    Wright, S. Correlation and causation [J]. J. Agric. Res. (Wash., DC),1921,20,557-585.
    Yang J, Zhang J, Wang Z, et al, b. Postant hesis water deficit s enhance grain filling in two-line hybrid rice [J]. Crop Sci,2003,43 (6):2099-2108.
    Yang J, Zhang J, Liu L, et al. Carbon remobilization and grain filling in japonica/indica hybrid rice subjected to postant hesis water deficits [J]. Agron J,2002,94:102-109.
    Yang J, Zhang J, Wang Z, et al, a. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water st ress during filling [J]. Field Crops Res.,2003,81:69-81.
    Yang J., Zhang J. Grain-filling problem in'super'rice [J]. J. Exp. Bot.2010,61:1-5.
    Yang W, Peng S, Dionisio-Sese, et al. Grain filling duration, a crucial determinant of genotypic variation of grain yield in field-grain tropical irrigated rice [J]. Field Crops Res,2008,105:221-227.
    Yang W, Peng S, Laza R, et al. Grain yield and yield attributes of new plant type and hybrid rice [J]. Crop Sci,2007,47,1393-1400.
    Yin X., Kropff M. The effect of temperature on leaf appearance in rice [J]. Annals of Botany,1996,77: 215-221.
    Yin X., Lantinga E., Schapendonk A, et al. Some quantitative relationships between leaf area index and canopy nitrogen content and distribution [J]. Annals of Botany,2003,91:893-903.
    Ying J, Peng S, He Q, et al. Comparison of high-yield rice in tropical and subtropical environments I. Determinaitons of grain and dry matter yields [J]. Field Crops Res,1998,57:71-84.
    Ying J, Peng S, Yang G, et al. Comparison of high-yield rice in tropical and subtropicalenvironments Ⅱ. Nitrogen accumulation and utilization efficiency [J]. Field Crops Res,1998,57:85-93.
    Ying, J., Peng, S., Yang, G, et ala. Comparison of high-yield rice in tropical and subtropical environments I. Determinations of grain and dry matter yields. Field Crops Res.,1998,57:71-84.
    Yoshida H, Horie T, Katsura K, et al. A model explaining genotypic and environmental variation in leaf area development of rice based on biomass growth and leaf N accumulation [J]. Field Crops Res, 2007,102:228-238.
    Yoshida H, Horie T. A model for simulating plant N accumulation, growth and yield of diverse rice genotypes grown under different soil and climatic conditions [J]. Field Crops Res,2010, 117:122-130.
    Yoshida H., Horie T., Shiraiwa T. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia [J]. Field Crops Res,2006,97:337-343.
    Yoshida S. Effects of temperature on growth of the rice plant in a controlled environment [J]. Soil Sci and Plant Nutri,1973,19 (4):299-310.
    Yoshida S. Physiological aspects of grain yield. Annual Review of Plant Physiology,1972,23:437-464.
    Zhang B, Yamagishi J. Response of spikelet number per panicle in rice cultivars to three transplanting densities [J]. Plant Production Science,2010,13:279-288.
    Zhang Y., Fan J., Zhang Y, et al. N accumulation and translocation in four Japonica rice cultivars at different N rates [J]. Pedosphere,2007,17:792-800.
    Zhang Y., Tang Q., Zou Y, et al. Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions [J]. Field Crops Res,2009,114:91-98.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:44-49.
    蔡争昆,骆世明.不同生育期遮光对水稻生长发育和产量形成的影响[J].应用生态学报,1999,10(2):193-196.
    曹卫星.农业信息学.北京:中国农业出版社,2005.
    陈建军,祖艳群,陈海燕,等.UV-B辐射增强对20个豆品种生长与生物量分配的影响[J].农业环境科学学报,2004,23(1):29-33.
    陈温福,徐正进,张步龙.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,1995.6994.
    陈温福,徐正进,张文忠,等.水稻新株型创造与超高产育种[J].作物学报,2001,27(5):665-672.
    陈友订,万邦惠,张旭.华南双季超高产水稻抽穗期理想株型结构研究[J].中国水稻科学,2005,19(1):52-58.
    程建峰,蒋海燕,刘宜柏,等.氮高效水稻基因型鉴定与筛选方法的研究[J].中国水稻科学,2010,24(2):175-182.
    程建峰,蒋海燕,潘晓云,等.施氮量对不同氮效率水稻花后干物质和氮积累与转运的影响[J].中国农学通报,2010,26(6):150-156.
    邓江明,宾金华,潘瑞炽.光质对水稻幼苗初级氮同化的影响[J].植物学报,2000,42(3):234-238
    丁艳锋,黄丕生,凌启鸿.水稻分蘖发生及与特定部位叶片叶鞘含氮率的关系[J].南京农业大学学报,1995,18(4):14-18.
    丁艳锋,刘胜环,王绍华,等.氮素基、蘖肥用量对水稻氮素吸收与利用的影响[J].作物学报,2004,30(8):739-744.
    杜士云,王守海,李成荃,等.超级稻育种进展及存在的问题[J].中国农学通报,2006,8,195-198
    杜永,王艳,王学红,等.黄淮地区不同粳稻品种株型、产量与品质的比较分析[J].作物学报,2007, 33(7):1079-1085.
    范建.最新发现与创新:我国超级稻再次刷新世界高产纪录.科技日报,2006,09,07.
    范燕萍,刘国斌,颜育民,等.气候生态因子对水稻品种产量的影响[J].湖南农业大学学报,1985,21(4):327-331.
    冯阳春,魏广彬,李刚华,等.水稻主茎出叶动态模拟研究[J].中国农业科学,2009,42(4):1172-1180.
    高亮之,金之庆,黄耀,等.水稻计算机模拟模型及其应用之一:水稻钟模型一水稻发育动态的计算机模型[J].中国农业气象,1989,(2):3-10.
    高亮之,金之庆,黄耀,等.水稻钟模型一水稻发育动态的计算机模型.水稻栽培计算机模拟优化决策系统[M].北京:中国农业科学出版社,1991,93-103.
    高亮之.农业系统学基础[M].江苏科技出版社,1993:383-387.
    高永刚,张凌云,姚克敏.我国水稻生育期的生态规律及其区划[J].1998,21(2):181-188.
    龚金龙,张洪程,李杰,等.水稻超高产栽培模式及系统理论的研究进展[J].中国水稻科学,2010,24(4):417-424
    顾伟,李刚华,杨从党,等.特殊生态区水稻超高产生态特征研究[J].南京农业大学学报,2009,32(4):1-6.
    顾伟.特殊生态区水稻超高产生理生态特征研究[D].南京农业大学,2009,6.
    郭业宏,任新明,李会如.早稻播谷育秧生育特点的研究[J].杂交水稻,1994,2:14-17.
    何金旺.实现水稻超高产的重要途径—三围立体强化栽培技术[J].科学种养,2009(1):12-13.
    黄庆宇,李刚华,杨从党,等.高产环境下水稻精确定量栽培技术初探[J].西南农业学报,2006,z1:23-24.
    黄耀祥.水稻超高产育种研究[J].作物杂志,1990,(2):1-2.
    霍中洋,叶全宝,李华,等.水稻源库关系研究进展[J].中国农学通报,2002,18:72-77.
    江立庚,王维金,徐竹生.籼型水稻品种物质生产与产量演变规律的研究[J].华中农业大学学报,1995,14(6):549-554.
    姜丽霞,季生太,李帅,等.黑龙江省水稻空壳率与孕穗期低温的关系[J].应用生态学报,2010,21(7):1725-1730.
    蒋开锋,郑家奎,文宏灿.杂交早稻主要性状分析及高产育种探索[J].四川农业大学学报,1996,14(2):162-166.
    蒋彭炎,洪晓富,冯来定,等.水培条件下氮浓度对水稻氮素吸收和分蘖发生的影响研究[J].作物学报,1997,20(3):191-199.
    蒋彭炎,洪晓富.水稻三高一稳栽培法(Ⅰ)[J].农技服务,1996(9):10-12.
    蒋彭炎,马跃芳,洪晓富,等.水稻分蘖芽的环境敏感期研究[J].作物学报,1994,23(2):191-199.
    蒋彭炎,姚长溪,任正龙.春粮田早稻稀少平促高产栽培法的研究[J].浙江农业科学,1980(2)51-55.
    蒋彭炎,姚长溪,任正龙.水稻稀播少本插高产技术的研究[J].作物学报,1981,7(4):241-248.
    蒋彭炎.从水稻稀少平栽培法的高产效应看栽培技术与株型的关系[J].中国水稻科学,1987,1(2):111-117.
    金学泳,金正勋,李荣田,等.寒地水稻宽中深控超高产栽培技术[J].中国稻米,1999,5:23-24
    金学泳.寒地水稻“三超”栽培的效应与技术[J].中国稻米,2006,2:35.
    金学泳.寒地水稻三超技术[J].中国稻米,2000,6:21-22.
    兰华雄,王建明,杨居钿.水稻高产气象生态分析[J].亚热带农业研究,2005,1:51-54.
    李德全,赵会杰,高辉远.植物生理学[M].中国农业科技出版社,1999.12:168-169.
    李刚华,丁艳锋,薛利红,等.利用叶绿素计(SPAD一502)诊断水稻氮素营养和推荐追肥的研究进展[J].植物营养与肥料学报,2005,11:412-416.
    李刚华,王绍华,杨从党,等.超高产水稻适宜单株成穗数的定量计算[J].中国农业科学,2008,19(11):1027-1032.
    李刚华,张国发,陈功磊,等.超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应[J].作物学报,2009,35(6):1106-1114.
    李刚华,王惠芝,王绍华,等.水稻穗分化期碳氮代谢及其与颖花数的关系[J].南京农业大学学报,2010,33(1):1-5
    李刚华,薛利红,尤娟,等.水稻氮素和叶绿素(spad)的叶位分布特点及氮素诊断的叶位选择[J].中国农业科学,2007,40(6):1127-1134.
    李豪喆.低温对水稻籽粒不同灌浆阶段的影响[J],植物生理学通讯,1985(3):20-21.
    李杰,张洪程,钱银飞,等.水稻超高产栽培研究进展[J].杂交水稻,2008,23(5):1-6.
    李景蕻,李刚华,杨从党,等.增加土壤温度对高海拔生态区水稻分蘖成穗及产量形成的影响[J].中国水稻科学,2010.24(1):36-42.
    李景蕻,李刚华,张应贵,等.2009.精确定量栽培对高海拔寒冷生态区水稻株型及产量的影响[J].中国农业科学,42(9):3067-3077.
    李立华,李静英,熊朝晖,等.湘晚籼11号逆V字型减氮栽培示范[J].作物研究,2006,20(4):351-352.
    李韶山,潘瑞炽.蓝光对水稻幼苗生长效应的研究[J].中国水稻科学,1994,8(2):115-118.
    李训贞,梁满中,周广洽,等.水稻开花时的环境条件对花粉活力和结实的影响[J].作物学报,2002,28(3),417-420.
    李永健.光温条件对水稻幼穗分化的影响[J].广西气象,1992,(2):23-25.
    利思主编.物候学与季节模式的建立[M].颜邦倜等译,北京,科学出版社,1984.
    梁光商.水稻生态学[M].北京:中国农业出版社,1983.
    凌启鸿,苏祖芳,张海泉.水稻成穗率与群体质量的关系及其影响因素的研究[J].作物学报,1995,21(4):463-469.
    凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11
    凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    凌启鸿,张洪程,丁艳锋,等.水稻高产技术的新发展—精确定量栽培[J].中国稻米,2005,(1):3-7.
    凌启鸿,张洪程,黄丕生,等.水稻高产氮肥合理施用的运筹新探索[J].土壤学报,2002,39:26-40.
    凌启鸿,张洪程,苏祖芳,等.水稻叶龄模式[M].北京:科学出版社,1994:69-215.
    凌启鸿,张洪程,苏祖芳.稻作新理论—水稻叶龄模式[M].北京:科学出版社,1994
    凌启鸿.中国特色水稻栽培理论和技术体系的形成与发展[J].江苏农业学报,2008,24(2):101-103.
    凌启鸿.中国特色作物栽培科学不可替代[J].中国农技推广,2003,6:1-4.
    凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2001.44-107.
    凌启鸿著.水稻精确定量栽培理论与技术[M].中国农业出版社,2007,76-91.
    刘军,余铁桥,贺汉林.超高产水稻产量形成的气候生态特点研究[J].湖南农业大学学报,1996,22(4):326-332.
    刘立军,徐伟,桑大志,等.实地氮肥管理提高水稻氮肥利用效率[J].作物学报,2006,32(7):987994.
    刘立军,薛亚光,孙小淋,等.水分管理方式对水稻产量和氮肥利用率的影响[J].中国水稻科学,2009,23(3):282-288
    刘小军,曹静,汤亮,等.基于模型和GIS的水稻生产管理决策支持系统构建与应用[J].中国水稻科学,2010,24(3):297-302
    刘兆晔,于经川,姜鸿明,等.粒叶比在小麦育种上的应用[J].中国农学通报,2010,26(9):146-150.
    刘振宇.水稻品种光温生态研究[J].华南农业大学学报,1989,10(3):24-33.
    刘志民,杨甲定,刘新民.青藏高原几个主要环境因子对植物的生理效应[J].中国沙漠,2000,20(3):309-313.
    娄伟平,孙永飞,张寒,等.温度对水稻每穗颖花数的影响[J].浙江农业学报,2005,17(2):101-105.
    吕世华,曾祥忠,任光俊,等.水稻覆膜节水综合高产技术[J].四川农业科技,2009,(02):23-24.
    莫惠栋.关于稻麦理论分蘖数计算公式的一些补充[J].作物学报,1992,18(4):312-316.
    莫家让.杂交水稻生理基础[M].北京:农业出版社,1982.50.
    倪德祥,张丕方,陈刚,等.光质对锦葵愈伤组织生长和发根的效应[J].上海农业学报,1:985,1(3):39-46.
    倪文.光对稻苗根系生长及其生理活性的影响[J].作物学报,1983,(3):199-204.
    宁加朝,雷树仙,李德安,等.水稻特高产区精确定量设计栽培技术要点[J].中国稻米,2009,4:52-53.
    潘瑞炽,董愚德.植物生理学(上册)[M].北京:高等教育出版社,1983,118.
    潘晓飚,何道根,屈为栋.杂交早稻不同组合主要农艺性状分析及高产育种途径探讨[J].浙江农业学报,1998,10(2):57-61
    彭俊华,李有春.水稻籼、粳两亚种产量构成特点的剖析[J].四川农业大学学报,1990,8(3):162168.
    彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    蒲高斌,刘世琦,刘磊,等.不同光质对番茄幼苗生长和生理特性的影响[J].园艺学报,2005,32(3):420-425.
    任正隆.小麦的叶面积、穗粒重和各叶比的基因效应[J].作物学报,1983(3):185.
    上海植物生理研究所光合作用室.杂种优势生理基础浅析[J].上海农业科技,1977,(8):8-9.
    沈国权.影响作物发育速率的非线性温度模式[J].气象,1980,6:9-11.
    盛大海,刘元英,李广宇.水稻源库关系研究进展与应用[J].东北农业大学学报,2009,40(5):]17-122.
    时向东,蔡恒,焦枫,等.光质对作物生长发育影响研究进展[J].植物生理科学,2008,24(6):226-230.
    史宏志,韩锦峰,管春云,等.红光和蓝光对烟叶生长碳氮代谢和品质的影响[J].作物学报,1999,25(2):215-220.
    水稻光温生态协作组.中国水稻光温生态研究[M].北京:科学出版社,1978.
    松岛省三(庞诚译).稻作的理论与技术[M].北京:中国农业出版社,1981.249-250.
    苏宝林.水稻栽培技术[M].北京:金盾出版社,1991.27-30.
    孙丙耀,顾福根,袁云香,等.水稻Ds插入双分蘖突变体形成机理的分析[J].作物学报,2007,33(1):97-101.
    孙旭初.水稻叶型的类别及其与光合作用关系的研究[J].中国农业科学,1985,18(4):19-22.
    汤圣详.水稻与感光性(综述)[J].水稻文摘,1991,10(6):I-4.
    唐锡花,倪彭寿,童本仙,等.在控制条件下不同稻种日长和温度反应发育特性的研究[J].植物生理学报,1978,4(2):153-168.
    唐锡华,李文安.水稻光温发育阶段的研究:I水稻光温阶段发育的开始与结束[J].植物学报,1964,12(2):166-189.
    田中明.水稻生理生态.上海:上海科技出版社,1981.
    王丹英,章秀福,李华,等.利用农垦58衍生系研究浙江省晚粳产量与植株形态的改良[J].中国农业科学,2007,40(12):2903-2909.
    王丹英,章秀福,邵国胜,等.高土壤肥力环境下不同类型粳稻品种产量对氮肥用量的响应[J].作物学报,2008,34(9):1623-1628.
    王丰,张国平,白朴.水稻源库关系评价体系研究进展与展望[J].中国水稻科学,2005,19(6):556560
    王夫玉,黄丕生.水稻群体源库特征及高产栽培策略研究[J].中国农业科学,1997,30(5):26-33.
    王龙,秦德荣.杂交水稻高产栽培的群体质量特征及其调控技术[J].杂交水稻,1995,(6):21-23.
    王尚明,胡逢喜,张崇华,等.空气温湿度对水稻灌浆及空壳率的影响研究[J].中国农学通报,2006,22(9):158-162.
    王绍华,曹卫星,王强盛等.水稻叶色分布特点与氮素营养诊断[J].中国农业科学,2002,35(12):1461-1466
    王绍华,刘胜环,王强盛,等.水稻产量形成与叶片含氮量及叶色的关系[J].南京农业大学学报,2002,25(4):1-5
    王淑红,邹应斌.超级稻干物质积累特性研究进展作物研究[J].作物研究,2004,S1:312-314.
    王勋.不同生态环境下水稻产量、品质和氮素利用特性的比较研究[D].南京农业大学,2004
    王余龙,姚友礼,李昙云,等.水稻不同粒位籽粒的结实能力[J].作物学报,1995,21(4):434-441.
    魏金连,潘晓华,邓强辉.夜间温度升高对双季早晚稻产量的影响[J].生态学报,2010,30(10):2793-2798.
    魏金连,潘晓华.夜间温度升高对双季水稻秧苗素质的影响[J].中国农学通报,2009,25(14):134-137
    翁晓燕,蒋德安,陆庆,等.影响水稻叶片光合日变化因素的分析[J].中国水稻科学,1998,12(2):105-108.
    翁晓燕,蒋德安.生态因子对水稻Rubisco和光合日变化的调节[J].浙江大学学报(农业与生命科学版),2002,28(4):387-391.
    吴桂成,张洪程,钱银飞,等.粳型超级稻产量构成因素协同规律及超高产特征的研究[J].中国农业科学,2010,43(2):266-276.
    吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究[J].中国农业科学,2007,40(2):250-257.
    武志海,徐克章,赵颖君,等.吉林省47年来粳稻品种遗传改良过程中某些农艺性状的变化[J].中国水稻科学,2007,21(5):507-512.
    西山岩男.日本高产水稻品种的生理特性.中国水稻研究所.灌溉稻研究进展和前景[C].杭州:中国水稻研究所,1988,105-114.
    谢立勇,冯永祥.田间配置方式对不同穗型水稻生理特性的影响[J].沈阳农业大学学报,2003,34(6):406-409.
    徐大勇,杜永,方兆伟,等.江淮稻区不同穗型粳稻品种主要农艺和品质特性的比较分析[J].作物学报,2006,32(3):379-384.
    徐福荣,戴陆园,张红生,等.“Ⅱ优084”在永胜涛源创世界水稻单产新高的栽培模式探讨[J].西南农业学报,2004,17:44-48.
    徐茂,吴昊,王绍华,等.江苏省不同类型土壤基础供氮能力对水稻产量的影响[J].南京农业大学学报,2006,29(4):1-5.
    徐正进,陈温福,张步龙,等.不同穗型水稻群体生态环境的比较研究[J].植物生理学通讯,1996,32(3):191-195.
    闫川,丁艳锋,王强盛,等.行株距配置对水稻茎秆形态生理与群体生态的影响[J].中国水稻科学,2007,21(5):530-536.
    闫湘,金继运,何萍,梁鸣早.提高肥料利用率技术研究进展[J].中国农业科学,2008,41(2):450-459.
    严定春,朱艳,曹卫星,等.水稻群体生长指标动态的知识模型研究[J].中国农业科学,2005,38(1):38-44.
    颜振德.论杂交水稻超高产栽培.傅相全.杂交水稻国际学术讨论会论文集[C].北京:学术期刊出版社,1988.201-207.
    晏娟,沈其荣,尹斌.施氮量对氮高效水稻种质4007的氮素吸收、转运和利用的影响[J].土壤学报,2010,107-114.
    杨惠杰,李义珍,杨高群.超高产水稻的分蘖特性观察[J].福建农业学报,2003,18(4):205-208.
    杨惠杰,李义珍.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270.
    杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析[J].福建农业学报,2000,15(3):1-8.
    杨惠杰,杨仁崔.水稻超高产的决定因素[J].福建农业学报,2002,17(4):199-203.
    杨建昌,杜永,刘辉.长江下游稻麦周年超高产栽培途径与技术[J].中国农业科学,2008,41(6):1611-1621.
    杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7): 1336-1345.
    杨建昌,何杰生,朱庆森,等.中低产田水稻群体粒叶比与产量关系的研究[J].江苏农学院学报,1993,14(增):11-13.
    杨建昌,王朋,刘立军,等.中籼水稻品种产量与株型演进特征研究[J].作物学报,2006,32(7):945-955.
    杨建昌,朱庆森,王志琴,等.土壤水份对水稻籽粒增重过程的影响[J].江苏农学院学报,1994,15(3):9-14.
    杨建昌,朱庆森,王志琴.温光条件对亚种间杂交稻结实和籽粒充实的影响.水稻高产高效理论与新技术——第五届全国水稻高产与技术研讨论文集[C].中国农业科技出版社.1995
    杨仁崔.IRRI超级稻研究进展[J].世界农业,2000,1:26-27.
    杨仁崔.国际水稻研究所的超级稻育种[J].世界农业,1996,(2):25-27.
    杨守仁,张龙步,陈温福.水稻超高产育种的理论和方法[J].沈阳农业大学学报,1996,27(1):1-7.
    杨守仁.水稻超高产育种的新动向—理想株型与优势利用相结合[J].浓阳农业大学学报,1987,1:58.
    杨守仁.水稻理想株型育种的理论和方法初论[J].中国农业科学,1984,(1):6-13.
    杨守仁.水稻株型研究进展[J].作物学报,1982,8(2):205-209.
    杨益花,张亚洁,苏祖芳.施氮量对杂交水稻产量构成因素和干物质积累的影响[J].天津农学院学报,2005,12(1):5-8.
    杨志敏,颜景义,郑有飞.紫外线辐射增加对大豆光合用和生长的影响[J].生态学报,1996,16(2):154-159.
    姚立生.江苏省五十年代以来中籼稻品种产量及性状的演变[J].江苏农业学报,1990,6(3):38-44.
    殷春渊,张庆,魏海燕,等,.不同产量类型水稻基因型氮素吸收、利用效率的差异[J].中国农业科学,2010,43(1):39-50.
    殷新佑.水稻发育温度效应的非线性模型及其应用[J].作物学报,1994,20(6):692-698.
    袁继超,杨世民,王明田,等.攀西地区水稻生育期的垂直变化特点及其积温效应[J].作物学报,2008,34(2):247-253.
    袁江,王丹英,徐春梅,等.水稻品种演变的研究进展[J].中国稻米,2009,5:15-18
    袁隆平.水稻强化栽培技术[J].杂交水稻,2001,16(4):1-3.
    袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,12(6):1-3.
    袁平荣,孙传清,杨从党,等.云南籼稻每公顷15吨高产的产量及其结构分析[J].作物学报,2000,26(6):756-762.
    张富存,何雨红,郑有飞,等.UV2B辐射增加对小麦影响[J].南京气象学院学报,2003,26(4):545-551.
    张洪程,吴桂成,吴文革,等.水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式[J].中国农业科学,2010,43(13):2645-2660.
    张洪松,岩田忠寿.粳型杂交稻与常规稻的物质生产及营养特性的比较[J].西南农业学报,1995,8(4):11-16.
    张鸿新,吴建中,商兆堂,等.小麦粒叶比与产量结构的关系分析[J].农业科技通讯,2008,10:48- 50.
    张效忠,苏泽胜.温度对水稻幼穗大小影响的研究[J].安徽农业科学,1998,26(3):207-208.
    张效忠,苏泽胜.温度对幼穗大小影响的研究[J].安徽农业科学,1998,(3):207-208.
    张旭,邱润恒,刘彦卓,等.高产早稻的透光率及始穗后对低光强的适应性[J].热带亚热带植物学报,1999(增Ⅱ):44-48.
    章秀福,王丹英,邵国胜.垄畦栽培水稻的产量、品质效应及其生理生态基础[J].中国水稻科学,2003,17(4):343-348
    赵全志,丁艳锋,黄丕生,等.水稻植株含氮量与穗粒重的关系[J].南京农业大学学报,1999,22(4):13-18.
    郑建初,张彬,陈留根,等.抽穗期高温对水稻产量构成要素和稻米品质的影响及其基因型差异[J].江苏农业学报,2005,21(4):249-254.
    郑景生,黄育民.中国稻作超高产的追求与实践[J].分子植物育种,2003,1(5-6):585-596.
    郑志广.光温条件对水稻结实及干物质生产的影响[J].北京农学院学报,2003,18(1):13-16.
    中国农业部.中国超级稻育种—背景、现状和展望.农业部“新世纪农业曙光计划”项目,1996.
    钟代彬,罗利军,梅捍卫,等.水稻主茎总叶龄及其相关形状的QTL分析[J].中国水稻科学,2001,15(1):7-12.
    钟旭华,黄农荣,郑海波,等.水稻“三控”施肥技术规程[J].广东农业科学,2007,5:13-15
    仲晓春,王云,高辉,等.县域水稻精确栽培决策支持系统研究与开发——以姜堰市为例[J].中国农学通报,2008,24:485-489.
    周瑞庆,陈开铁,李合松,等.应用15N示踪技术研究水稻对氮素的吸收利用[J].湖南农学院学报,1991,17(4):665-669.
    朱德峰,章秀福,许立,等.水稻主茎叶片出生与温度关系[J].生态学杂志,1998,17(5):71-73.
    朱德峰,程式华,张玉屏,等.全球水稻生产现状与制约因素分析[J].中国农业科学2010,43(3):474-479.
    朱德峰,林贤青,陈苇,等.超级稻协优9308营养特性与施肥技术[J].中国稻米.2002,2:18-19
    朱德峰.国际水稻研究所水稻新株型的研究现状与新动向[J].作物研究,1996,10(4):35-36.
    朱兆良,文启孝.中国土壤氮素[M].南京:江苏科技出版社,1992,44-45I.
    邹应斌,敖和军,王淑红,等.超级稻“三定”栽培法研究I.概念与理论依据[J].中国农学通报,2006,5:158-162
    邹应斌,周上游,唐起源.中国超级杂交水稻超高产栽培研究的现状与展望[J].中国农业科技导报,2003,5(1):31-35.
    邹应斌.水稻超高产栽培的理论与技术策略——兼论壮秆重穗栽培法[J].农业现代化研究,1997,18(1):31-35.
    佐藤尚雄.水稻超高产育种研究[J].国外农学·水稻,1984,(2):1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700