用户名: 密码: 验证码:
氮高效利用基因型水稻(Oryza sativa)氮素吸收分配特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面临人口问题和粮食安全的挑战,如何实现养分资源的高效利用及作物的高产、优质且环境友好已成为当今农业发展的重要研究课题。但实际工作中,两者之间的矛盾却未能得到很好的协调,因此选育养分高效吸收利用的作物品种,从基因型的角度进行品种改良是提高作物养分利用效率的主要研究方向。本研究以目前我国种植规模最大的水稻以及肥料投入量最大的氮素为出发点,从296个水稻品种(Oryza sativa)中选取在产量和氮素利用效率等方面具有显著基因型差异的26个品种为试验材料,通过上培、水培和大田试验,系统研究了高效基因型对氮素的吸收、积累、分配和转运特性,从而为揭示该类型水稻对氮素高效利用的机理,提出协同提高水稻产量和氮素利用效率可行的调控措施提供科学依据。主要结果如下:
     (1)以产量、氮素籽粒生产效率、氮素收获指数为评价指标,通过聚类分析,将26个水稻品种划分3个类型:高效基因型(美国谷、IR31892-100-3-3-3、IRIT216等品种),中间类型(IR25692、B5996-MR-B-1-5等品种),低效基因型(加早935、IR32429等品种)。其中高效基因型产量、氮素籽粒生产效率和氮素收获指数较低效基因型分别高20.90%、14.96%和6.23%,差异显著。在拔节期和抽穗期,干物质量、氮积累量与籽粒产量和氮素利用效率均呈显著或极显著正相关,表明,抽穗前的物质积累和氮的吸收显著影响水稻产量和氮素利用效率的提高。
     (2)在正常施氮水平下(200mg kg-1),高效和低效基因型水稻干物质量和氮素积累量差异显著。高效基因型干物质量积累高峰期出现在抽穗—成熟阶段,而低效基因型出现在分蘖—拔节阶段,其中高效基因型干物质量在分蘖—拔节、拔节—抽穗、抽穗—成熟阶段分别是低效基因型的1.12、1.49和5.85倍。高效基因型在分蘖期(移栽后32d)进入氮素高速积累时期,并在48d时积累速率达到最高(美国谷、IR31892-100-3-3-3和IRIT216分别为11.32、12.36和15.83mg d-1plant-1),且持续时间长达49d;而低效基因型也是在分蘖期进入氮素高积累时期,并在37d时积累速率达到最高(加早935和1R32429分别为9.31和7.25mg d-1plant-1),但维持高积累速率的时间较高效基因型短12d。抽穗—成熟阶段水稻干物质量和氮素积累量对产量的影响程度最大,分别为62.65%和47.42%;对氮素籽粒生产效率影响程度分别为14.51%和8.77%,对氮素收获指数影响程度分别为22.14%和15.90%。表明,抽穗至成熟阶段水稻干物质积累和氮素的积累与产量和氮素利用效率的提高关系密切。
     (3)就根系形态和活力来看,高效基因型在低氮水平下(20mg L-1)的品种优势更为突出,表现为:细分枝根根长在苗期、分蘖期、拔节期和抽穗期分别比低效基因型高32.09%、14.66%、14.40%和12.69%;粗分枝根表面积在拔节期和抽穗期分别比低效基因型高94.70%和64.38%,体积分别高90.24%和58.18%;不定根的根长、表面积和体积在拔节期比低效基因型高40.84%、44.90%和51.02%;根系总吸收面积、活跃吸收面积、氧化力、还原力在拔节后分别为低效基因型的1.3~2.1倍、1.1~3.2倍、1.0~3.0倍、1.4~2.2倍。其中,根系形态指标中以粗分枝根的根长、表面积和体积对氮素积累量的影响程度最大,达47.1%~78.4%。表明,粗分枝根的发育情况可直接影响氮素的吸收,进而对水稻产量的形成和氮素利用效率的提高产生重要影响。
     (4)高效基因型根系分泌的有机酸以草酸为主,占有机酸总量的80%以上,其次是乙酸和柠檬酸,且有机酸分泌总量在不同供氮水平下均显著低于低效基因型:高效基因型根系分泌的氨基酸以丙氨酸为主,占氨基酸总量的50%以上,其次是丝氨酸、谷氨酸、天冬氨酸、苯丙氨酸、甘氨酸和苏氨酸,且分泌总量在低氮水平下(10和20mg L-1)也显著低于低效基因型。在分蘖期和拔节期,水稻根系分泌有机酸和氨基酸总量与氮素利用效率均呈显著或极显著负相关,其中草酸和天冬氨酸的分泌量与氮素利用效率也呈显著或极显著负相关。表明,有机酸和氨基酸过多的分泌不利于氮素利用效率的提高,减少有机酸(特别是草酸)和氨基酸(特别是天冬氨酸)的分泌,有利于氮素利用效率的提高。
     (5)对比低效基因型水稻,高效基因型在氮肥用量降低为正常施氮水平(200mgkg1)的50%后,仍能保持较高的产量和氮素利用效率,其氮肥利用率高达50.88%,而低效基因型仅为36.44%。不同施氮水平下,氮在高效基因型不同器官的分配比例为扬花期:叶(38.19%)>茎鞘(35.33%)>根(18.94%)>穗(7.55%),灌浆期:穗(43.51%)>叶(24.80%)>茎鞘(22.38%)>根(9.30%),成熟期:穗(64.90%)>茎鞘(15.15%)>叶(13.85%)>根(6.10%);且低氮水平(100mg kg-1)更有利于提高氮素在高效基因型穗部的分配量,表现为穗部积累量在扬花期、灌浆期和成熟期分别增加了34.20%、2.51%和0.51%,而低效基因型的穗部积累量在灌浆期和成熟期却降低了23.47%和15.57%。在低氮和正常施氮水平下,高效基因型氮素转运效率分别为60.83%和60.34%,为低效基因型的1.67和1.55倍,且高效基因型氮素转运量表现为叶>茎鞘>根,而低效基因型表现为茎鞘>叶>根。表明,抽穗后叶片较高的转运效率为籽粒的灌浆结实奠定了良好基础。
     (6)叶绿素相对含量(SPAD值)与叶片氮含量呈极显著正相关,SPAD值的动态变化可反映水稻不同部位叶片氮素的变化情况。在大田试验条件下,高效基因型顶3叶SPAD值在不同施氮水平下均从扬花期开始急剧下降,而顶1叶仅在低氮水平下(60kg hm-2)并在灌浆后期才有所降低。灌浆后期顶1叶SPAD值急剧下降,可表征环境中供氮不足。SPAD值衰减指数可反映水稻花后叶片中氮向穗部转运的状况。在低氮水平下,高效基因型SPAD值衰减指数表现为顶3叶>顶2叶>顶1叶,扬花后25d,不同叶位叶片SPAD值衰减指数达到最高。低氮水平下,高效基因型顶1、2、3叶共有40%-60%的氮素转移到了穗部,因而该水平下产量、氮素籽粒生产效率和氮肥农学效率分别为低效基因型的1.43、1.07和1.46倍,氮肥利用率也达到45.99%。
With the increase of population and the decrease of arable land, it has been an important way to increase crop yields and use of limited resources efficiently for the sustainable development of agriculture in China. Nitrogen plays important roles in promoting plant growth and development. Thus, selecting and breeding genotypes with high nitrogen utilization efficiency have become the main research directions to improve nitrogen utilization efficiency in rice. But in practical production, the contradiction between rice yield and nitrogen utilization was not well coordinated, and the mechanism of nitrogen absorption and utilization was even not clear. In this paper, the pot, field and hydroponics experiments were carried out on the farm of Sichuan Agricultural University, Sichuan province, China in2007to2012, by using rice genotype with high nitrogen utilization efficiency as the experimental materials, rice genotype with low nitrogen utilization efficiency as the contrast materials, which selected from296rice cultivars (Oryza sativa). The purpose of this article was to ascertain the mechanism of nitrogen efficient utilization through the analysis of nitrogen absorption, accumulation, distribution and translocation characteristics, besides propose possible control measures to synergistically improve rice yield and nitrogen utilization efficiency. The main results were as follows:
     (1) Rice genotype with high and low nitrogen utilization efficiency was obtained through hierarchical cluster analysis by using yield, nitrogen grain production efficiency and nitrogen harvest index as evaluation indexes. Rice genotype with high nitrogen utilization efficiency (high NUE) contains11cultivars, including Meiguogu, IR31892-100-3-3-3, IRIT216, while rice genotype with low nitrogen utilization efficiency (low NUE) contains8cultivars, including Jiazao935, IR32429. Grain yield, nitrogen utilization efficiency and nitrogen harvest index of high NUE were20.90%,14.96%and6.23%higher than those of low NUE respectively. Dry matter weight, nitrogen accumulation were significantly or extremely significantly positive correlation to grain yield, nitrogen utilization efficiency and nitrogen harvest index in jointing stage and heading stage. Therefore, matter accumulation and nitrogen absorption significantly affect rice yield and nitrogen use efficiency before heading, especially in the jointing stage and heading stage.
     (2) Dry matter weight and nitrogen accumulation of high NUE were significantly higher than those of low NUE in each growth stage. The peak of dry matter weight and nitrogen accumulation of high NUE appeared in heading to mature stage, and jointing to heading stage respectively, while The peak of Low NUE only appeared in tillering to jointing stage. Nitrogen accumulation rate of high NUE growth faster in the early stage, and achieved maximum in30~50d after transplanting, then slow down. Nitrogen maximum accumulation rate of Meigugu, IR31892-100-3-3-3and IRIT216calculated through second derivative method was11.32,12.36and15.83mg d-1plant-1, which was935,1.22,1.33and1.70times higher than Jiazao935,1.56,1.70and2.18times higher than IR32429of low NUE respectively. High NUE can maintain higher rate of nitrogen accumulation average duration of49days from tillering stage to heading stage, but low NUE was12days shorter than that of high NUE. Dry matter weight and nitrogen accumulation seriously affected rice yield in heading to mature stage, and the degree were62.65%,47.42%respectively. Degree of influence on nitrogen grain production efficiency were14.51%,8.77%, while degree of influence on nitrogen harvest index were22.14%,15.90%respectively.
     (3) Under the low nitrogen treatment, there has be significant difference in different types of root morphological characteristics between high NUE and low NUE. Fine lateral root length of high NUE is32.09%,14.66%,14.40%and12.69%higher than low NUE at seeding, tillering, jointing and heading stage, respectively. Coarse lateral root surface area of high NUE is94.70%and64.38%higher than low NUE at jointing and heading stage, while root volume is90.24%and58.18%higher. Adventitious root length, surface area and volume of high NUE is40.84%,44.90%and51.02%higher than those of low NUE at jointing stage. Root total absorbing surface area, active absorbing surface area and reducing capacity of high NUE are decreased significantly with the nitrogen treatment increase at different growth stages. Under the same nitrogen treatment, root total absorbing surface area, active absorbing surface area, oxidation ability and reducing capacity of high NUE are1.3~2.1times,1.1~3.2times,1.0~3.0times and1.4~2.2times higher than those of low NUE. Under the low nitrogen treatment, length, surface area and volume of coarse lateral root have the greatest influence on nitrogen accumulation, the influence degree is47.1%~78.4%.
     (4) As the main kind of organic acids of the high NUE, the secretion volume of oxalate acid accounts for more than80%of the total organic acid, and those of acetic acid and citric acid are followed. Under the same nitrogen level, the total organic acid secretion of the high NUE is significantly lower than that of the low NUE. As the main kinds of amino acid of the high NUE, the secretion volume of alanine accounts for more than50%of the total amino acid, and is followed by serine, glutamic, aspartic, phenylalanine, glycine and threonine acids. Total amino acids' secretion and all components of amino acid secretion are decreased with the nitrogen level decrease. Under the low nitrogen levels of10and20mg L-1, the total amino acids secretion of the high NUE is significantly lower than that of the low NUE. At the tillering and jointing stages, the total organic acid and oxalate acid are significant or very significant negative correlated with the nitrogen utilization efficiency, and amino acid secretion and aspartic acid as the same.
     (5) High NUE was not sensitive as low NUE to nitrogen fertilizer treatment, for reducing nitrogen fertilizer that high NUE can still maintain high yield and nitrogen utilization efficiency, nitrogen recovery efficiency was especially as high as50.88%of high NUE, while low NUE was only36.44%. Nitrogen accumulation in vegetative organs of root, stem, and leaf of high NUE significantly reduced at the condition of low nitrogen level compared with normal nitrogen level, but increased by34.20%,2.51%and0.51%in panicle of high NUE in flowering, filling and mature stage, while decreased by23.47% and15.57%in panicle of low NUE in flowering, filling and mature stage respectively. Nitrogen accumulation distribution in different organs of high NUE manifested as leaf> stem> root> panicle, panicle> leaf> stem> root, panicle> stem> leaf> root in flowering, filling and mature stage respectively. With the advancement of growth period, nitrogen accumulation distribution ratio in root, stem, leaf were significantly reduced, but that in panicle increased from flowering stage (8.22%) to mature stage (65.79%). Nitrogen transfer amount in different organs of high NUE manifested as leaf> stem> root, while low NUE manifested as stem> leaf> root. Nitrogen transfer efficiency of high NUE were60.83%,60.34%under the condition of low and normal nitrogen level, which was1.67and1.55times higher than that of low NUE respectively.
     (6) Under the condition of field experiment, rice yield of high NUE increased significantly and then decreased with the nitrogen application levels raise, while nitrogen utilization efficiency decreased significantly only. Nitrogen recovery efficiency of high NUE was as high as45.99%, whose yield was42.51%higher than low NUE, nitrogen grain production and nitrogen recovery efficiency was1.07and1.46times higher than low NUE under low nitrogen application level of60kg hm-2. SPAD value of L3(leaf of top3) was starting to fall sharply from flowering stage under different nitrogen levels, but that of L1was starting to fall sharply only after filling stage under low nitrogen levels. Leaf SPAD value of top1fell sharply after filling stage can be characterized for nitrogen deficiency in the environment. SPAD attenuation index in leaves of high NUE manifested as L3> L2> L1under low nitrogen application level, and SPAD attenuation index reached to the highest in the filling stage. SPAD value attenuation index can reflect the nitrogen transshipment from leaves to panicle after flowering under low nitrogen application level.
引文
[1]Anandacoomaraswamy A, Costa D, Tennakoon P L K. The physiological basis of increased biomass partitioning to roots upon nitrogen deprivation in young clonal tea[J]. Plant and Soil,2002, 238(1):1-9.
    [2]Balihar V C, Fageria N K, Li H Z. Nutrient utilization efficiency of crops [J]. Communication in Soil Science and Plant Analysis,2001,32:921-950.
    [3]Barneix A J, Arnozis P A, Guitman M R. The regulation of nitrogen accumulation in the grain of wheat plants (Triticum aestivum L.) [J]. Journal of Plant Physiology,1992,86:609-615.
    [4]Barneix A J, Guitman MR. Leaf regulation of the nitrogen concentration in the grain of wheat plants[J]. Journal of Experimental Botany,1993,44:1607-1612.
    [5]Barneix A J, James D M, Watson E F, et. al. Some effects of nitrate abundance and starvation on metabolism and accumulation of nitrogen in barley (Hordeum vulgare cv. Sonja)[J]. Planta,1984, 162:465-476.
    [6]Barneix A J. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain[J]. Journal of Plant Physiology,2007,164:581-590.
    [7]Buchanan B B, Gruissem W, Jones R L. Biochemistry and molecular biology of plants[M].Rockville: American Society of Plant Physiologists,2000,815-824.
    [8]Buchanan W V, Earl S, Harrison E, et. al. The molecular analysis of leaf senescence-a genomics approach[J]. Plant Biotechnology Journal,2003,1:3-22.
    [9]Cao Y, Fan X R, Sun S B, et. al. Effect of nitrate on activities and transcript levels of nitrate reductase and glutamine synthetase in rice[J]. Pedosphere,2008,18(5):664-673.
    [10]Caputo C, Barneix A J. Amino acids export to the phloemin relation to N supply in wheat (Triticum aestivum L.) plants[J]. Journal of Plant Physiology,1997,101:853-860.
    [11]Caputo C, Fatta N, Barneix A J. The export of amino acid to the phloem is altered in wheat plants lacking the short arm of chromosome 7B[J]. Journal of Experimental Botany,2001,52:1761-1768.
    [12]Cassman K G, Dobermann A, Walters D T. Agroecosystems, nitrogen-use efficiency, and nitrogen management[J]. Journal of the Human Environment,2002,31 (2):132-140.
    [13]Cassman K G, Kropff M J, Gaunt J, et. al. Nitrogen use efficiency of rice reconsidered:what are the key constraints? [J]. Plant and Soil,1993,155/156:359-362.
    [14]Chen X P, Cui Z L, Vitousek P M, et. al. Integrated soil-crop system management for food security[J]. Proceedings of the National Academy of Sciences,2011,108(16):6399-6404.
    [15]Clarkson R B. and Duncan R R. Improvement of plant mineral nutrition through breeding [J]. Field Crops Research,1991,27:219-240.
    [16]Courtois B, Ahmadi N, Khowaja F, et. al. Rice root genetic architecture:meta-analysis from a drought QTL database[J]. Rice,2009,2(2):115-128.
    [17]Cui Z L, Chen X P, Miao Y X, et al. On-farm evaluation of the improved soil Nmin-based nitrogen management for summer maize in North China plain[J]. Agronomy Journal,2008,100:517-525.
    [18]De Datta S H, Broadbent F E. Development changes related to nitrogen-use efficiency in rice[J]. Field Crops Research,1993,34:47-56.
    [19]De Datta S H, Broadbent F E. Nitrogen-use efficiency of 24 rice genotypes on an N-deficient soil[J]. Field Crops Research,1990,23:81-92.
    [20]De Dorlodot S, Forster B, Pagcs L, et. al. Root system architecture:opportunities and constraints for genetic improvement of crops[J]. Trends in Plant Science,2007,12(10):474-481.
    [21]Fageria N K, Baligar V C. Lowland rice response to nitrogen fertilization[J]. Communications in Soil Science and Plant Analysis,2001,32:1405-1429.
    [22]FAO. FAOStat. FAO, Rome, available at:http:/faostat. fao.org/Accessed 2009.
    [23]Follett R H, Follett R F. Use of a chlorophyll meter to evaluate the nitrogen status of dryland winter wheat[J]. Communation in Soil Science and Plant Analysis,1992,23:687-697.
    [24]Gan S, Amasino RM. Making sense of senescence:molecular genetic regulation and manipulation of leaf senescence[J]. Journal of Plant Physiology,1997,113:313-319.
    [25]Guindo D, Norman R J, Wells B R. Accumulation of fertilizer nitrogen-15 by rice at different stages of development[J]. Soil Science Society of America Journal,1994,58:410-415.
    [26]Haefele S M, Jabbar S M A, et. al. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels[J]. Field Crops Research,2008,107(2): 137-146.
    [27]Hawkins J A, Sawyer J E, Barker D W, et. al. Using relative chlorophyll meter values to determine nitrogen application rates for corn[J]. Agronomy Journal,2007,99:1034-1040.
    [28]Himmelbauer M, Loiskandl, A, Kastanek, A. Estimating length, average diameter and surface area of roots using two different image analyses systems[J]. Plant and soil,2004.260(1):111-120.
    [29]Hiroyuki S, Tohru Y, Ryuichi I. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice [J]. Field Crops Research,2006.95:291-304.
    [30]International Fertilizer Association. IFA database. Available at:http://www.ifa.com/Accessed March 5,2010.
    [31]Kade M, Barneix AJ, Olmos S, et. al. Nitrogen uptake and remobilization in tetraploid Langdon durum wheat and a recombinant substitution line with the high grain protein gene Gpc-B1[J]. Plant Breeding,2005,124:343-349.
    [32]Khush G S. Green revolution:preparing for the 21 st century[J]. Genome,1999,42,646-655.
    [33]Kirk G J D. Plant-mediated processes to acquire nutrients:nitrogen uptake by rice plants[J]. Plant and Soil,2001,232:129-134.
    [34]Kumar A, Silim S N, Okamoto M. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporter in roots of Oryza sativa sub-pecies indica[J]. Plant Cell and Environment,2003,26(6):907-914.
    [35]Kumar R, Sarawgi A K, Ramos C, et. al. Partitioning of dry matter during drought stress in rainfed lowland rice[J]. Field Crops Research,2006,98:1-11.
    [36]Ladha J K, Kirk G J D, Bennett J, et. al. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm[J]. Field Crops Research,1998,56:41-71.
    [37]Ladha J K, Pathak H. Efficiency of fertilizer nitrogen in cereal production:retrospects and prospects[J]. Advances in Agronomy,2005,87:85-156.
    [38]Lawlor D W. Carbon and nitrogen assimilation in relation to yield:mechanisms are the key to understanding production systems[J]. Journal of Experimental Botany,2002,53:789-799.
    [39]Li B Z, Mike M, Li S M, et. al. Molecular basis and regulation of ammonium transporter in rice[J]. Rice Science,2009,16(4):314-322.
    [40]Lin C M, Koh S, Stacey G, et. al. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice[J]. Plant Physiology,2000,122:379-388.
    [41]Liu B, Wu F Z, Yang Y, et. al. Amino acids in watermelon root exudates and their effect on growth of Fusarium oxysporum f. sp. nevium[J]. Allelopathy Journal.2009,23(1):139-148.
    [42]lnthapanya P. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilized conditions [J]. Field Crop Research,2000,65: 57-68.
    [43]Lynch J M, Whipps J M. Substrate flow in the rhizosphere [J]. Plant and Soil,1990,129(1):1-10.
    [44]Lynch J M, Whipps J M. Substrate flow in the rhizosphere[J]. Plant and Soil.1990,129(1):1-10.
    [45]Matson P A, Lohse K, Hall S. The globalization of nitrogen deposition:consequences for terrestrial ecosystems[J]. Amnio,2002,31:113-119.
    [46]Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops[J]. Journal of Experimental Botany,2002,53:979-87.
    [47]Noode'n L D, Guiame't J J, John I. Senescence mechanisms[J]. Journal of Plant Physiology,1997, 101:746-753.
    [48]Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions[J]. Field Crops Research,2002,74(1):93-101.
    [49]Ohnishi M, Horie T, Homma K, et. al. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand[J], Field Crops Research,1999,64:109-120.
    [50]Okamoto M, John V J, Glass A D M. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana:responses to nitrate provision[J]. Plant and Cell Physiology,2003,44(3):304-317.
    [51]Peltonen J, Virtanen A, Haggren E. Using a chlorophyll meter to optimize nitrogen fertilizer application for intensively-managed small cereals[J]. Journal of Agronomy and Crop Science,1995, 174:309-318.
    [52]Peng S B, Buresh R J, Huang J L, et. al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China[J]. Field Crops Research,2006,96:37-47.
    [53]Peng S, Cassman K. G. Upper threshholds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice[J]. Agronomy Journal,1998,90(2):178-185.
    [54]Pretty J, William J, Sutherland, et. al. The top 100 questions of importance to the future of global agriculture[J]. International Journal of Agricultural Sustainability,2010,8(4):219-236.
    [55]Prost L, Jeuffroy M H. Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N status[J]. Agronomy for Sustainable Development,2007,27:1-10.
    [56]Przulj N, Momcilovic V. Genetic variation for dry matter and nitrogen accumulation and translocation in two-rowed spring barley Ⅱ, Nitrogen translocation[J]. European Journal of Agronomy,2001,15:255-265.
    [57]Reeves D W. Determination of wheat nitrogen status with a hand-held chlorophyll meter:Influence of management practices[J]. Journal of Plant Nutrition,1993,16:781-796.
    [58]Scharf P C, Brouder S M, Hoeft R G. Chlorophyll meter readings can predict nitrogen need and yield response of corn in the North-Central USA[J]. Agronomy Journal,2006,98:655-665.
    [59]Shi W M, Chino M, Youssef R A, et. al. The occurrence of mugineic acid in the rhizosphere soil of barley plant[J]. Soil Science and Plant Nutrition,1988,34(4):585-592.
    [60]Shimizu A, Kato K, Komatsu A, et. al. Genetic analysis of root elongation induced by phosphorus deficiency in rice (Oryza sativa L.):fine QTL mapping and multivariate analysis of related traits[J]. Theoretical and Applied Genetics,2008,117(6):987-996.
    [61]Sinebo W, Gretzmacher R, Edelbauer A. Genotypic variation for nitrogen use efficiency in Ethiopian barley[J]. Field Crops Research,2004,85(1):43-60.
    [62]Singh U, Ladha J K, Castillo E G, et. al. Genotypic variation in nitrogen use efficiency in medium and long-duration rice[J]. Field Crop Research,1998,58:35-53.
    [63]Sonoda Y, Ikeda A, Saiki S, et. al. Distinct expression and function of three ammonium transporter genes (OsAMT1.1-1.3) in rice[J]. Plant and Cell Physiology,2003,44(7):726-734.
    [64]Tilman D, Cassman KG, Matson PA, et. al. Agricultural Sustainability and Intensive Production Practices[J]. Nature,2002,418:671-677.
    [65]Tirol P A, Ladha J K, Singh U, et. al. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency [J]. Field Crop Research,1996, 46:127-143.
    [66]Triboi E, Triboi-Blondel AM. Productivity and grain or seed composition:a new approach to an old problem[J]. European Journal of Agronomy,2002,16:163-86.
    [67]Uddling J, Gelang J, Piikki H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyllmeter readings[J]. Photosynth Research,2007,91:37-46.
    [68]Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea:how can it occur? [J]. Biogeochemistry,1991,13:87-115.
    [69]Wada W, Wada G. Varietal difference in leaf senescence during ripening period of advanced Indica rice[J]. Crop Science Society of Japan,1991,60(4):529-536.
    [70]Wood C W, Reeves D W, Duffield R R, et. al. Field chlorophyll measurement for evaluation of corn nitrogen status[J]. Journal of Plant Nutrition,1992,15:487-500.
    [71]Wopereis P M M, Watanabe H, Moreira J, et. al. Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley[J]. European Journal of Neuroscience, 2002,17:191-198.
    [72]Wu F, Wu L, Xu F. Chlorophyll meter to predict nitrogen sidedress requirements for short-season cotton(Gossypium hirsutum L.)[J]. Field Crops Research,1998,56:309-314.
    [73]Wu P, Tao Q N. Genotypic response and selection pressure on nitrogen-use efficiency in rice under different nitrogen regimes [J]. Plant Nutrition,1995,18(3):487-500.
    [74]Yamaya T, Obara M, Nakajima H, et. al. Genetic manipulation and quantitative trait loci mapping for nitrogen recycling in rice[J]. Journal of Experimental Botany,2002,53:917-25.
    [75]Zeng F, Chen S, Miao Y, et. al. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress[J]. Environmental Pollution,2008,155(2):284-289.
    [76]Zhang H, Xue Y G, Wang Z Q, et. al. Morphological and physiological traits of roots and their relationships with shoot growth in "super" rice[J]. Field Crops Research,2009.113(1):31-40.
    [77]Zhong X H, Peng S B, Arnel L, et. al. Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice[J]. Journal of Plant Nutrition,2004,26(6):1203-1222.
    [78]Zhou Q F, Wang J H. Comparison of upper leaf and lower leaf of rice plants in response to supplemental nitrogen levels[J]. Journal of Plant Nutrition,2003,26:607-617.
    [79]Ziadi N, Brassard M, Belanger G, et. al. Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status[J]. Agronomy Journal,2008,100:1264-1273.
    [80]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中国农业科学,2008,41(7):1927-1936.
    [81]蔡昆争,骆世明,段舜山.水稻根系的空间分布及其与产量的关系[J].华南农业大学学报(自然科学版),2003.24(3):1-4.
    [82]曹翠玲,李生秀.供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响[J].植物学通报,2003,20(3):319-324.
    [83]曹树青,陆巍,张荣铣,等.用水稻苗期叶绿素含量相对稳定期估算水稻剑叶光合功能期的方法研究[J].中国水稻科学,2001,15(4):309-313.
    [84]曹玉,李素梅,施卫明,等.水稻吸铵基因OsAMT1.2和OsAMT3.3在不同生育期中的表达量差异及其在酵母细胞中吸铵功能初析[J].土壤,2009,41(4):612-619.
    [85]常二华,杨建昌.根系分泌物及其在植物生长中的作用[J].耕作与栽培,2006,(5):13-16.
    [86]常二华,张耗,张慎凤,等.结实期氮磷营养水平对水稻根系分泌物的影响及其与稻米品质的 关系[J].作物学报,2007,33(12):1949-1959.
    [87]常二华,张慎凤,王志琴,等.结实期氮磷营养水平对水稻根系和籽粒氨基酸含量的影响[J].作物学报,2008,34(4):612-618.
    [88]陈晓波,饶鸣钿,许旭明.施N量对超级稻Ⅱ优明86水稻产量形成与氮、磷、钾吸收的影响[J].宜春学院学报,2010,32(8):87-89.
    [89]陈晓远,高志红,刘振华.供氮形态和水分胁迫对水稻生长及氮素积累和分配的影响[J].华北农学报,2009,24(6):116-122.
    [90]程建峰,戴廷波,荆奇,等.不同水稻基因型的根系形态生理特性与高效氮素吸收[J].土壤学报,2007,44(2):266-272.
    [91]程建峰,蒋海燕,刘宜柏,等.氮高效水稻基因型鉴定与筛选方法的研究[J].中国水稻科学,2010,24(2):175-182.
    [92]程建峰.水稻高效氮素营养的种质鉴定及生理基础[D].江苏:南京农业大学,2005.
    [93]单玉华,王海候,龙银成,等.不同库容量类型水稻在氮素吸收利用上的差异[J].扬州大学学报(农业与生命科学版),2004,25(1):41-45.
    [94]单玉华,王余龙,山本由德,等.不同类型水稻在氮素吸收及利用上的差异[J].扬州大学学报(自然科学版),2001,4(3):21-26.
    [95]单玉华,王余龙,山本由德,等.常规釉稻与杂交釉稻氮素利用效率的差异[J].江苏农业研究,2001,1:12-15.
    [96]丁艳锋,刘胜环,王绍华,等.氮素基、蘖肥用量对水稻氮素吸收与利用的影响[J].作物学报,2004,30(8):739-744.
    [97]董桂春,王余龙,周娟,等.不同氮素籽粒生产效率类型籼稻品种氮素分配与运转的差异[J].作物学报,2009,35(1):149-155.
    [98]董桂春,于小风,董燕萍,等.不同库容量类型常规籼稻品种氮素吸收与分配的差异[J].中国农业科学,2009,42(10):3432-3441.
    [99]樊剑波,沈其荣,谭炯壮,等.不同氮效率水稻品种根系生理生态指标的差异[J].生态学报,2009,29(6):3052-3058.
    [100]樊剑波,张亚丽,万小羽,等.水稻根系与氮素吸收利用之研究进展[J].中国农学通报,2007,23(2):236-240.
    [101]范淑秀,陈温福,王嘉宇.高产水稻品种干物质生产特性研究[J].辽宁农业科学,2005,(3):6-8.
    [102]冯跃,曹立勇,吴伟明,等.水稻苗期不同阶段与低氮耐性相关的QTL分析[J].植物营养与肥 料学报,2010,16(4):880-886.
    [103]高飞,肖靖,谷运红,等.利用小麦叶片SPAD值预测成熟期籽粒蛋白质含量的研究[J].光谱学与光谱分析,2012,32(5):1350-1354.
    [104]顾东祥,汤亮,曹卫星,等.基于图像分析方法的水稻根系形态特征指标的定量分析[J].作物学报,2010,36(5):810-817.
    [105]顾东祥,汤亮,徐其军,等.水氮处理下不同品种水稻根系生长分布特征[J].植物生态学报,2011,35(5):558-566.
    [106]郭玉春,林文雄,梁义元,等.新株型水稻物质生产与产量形成的生理生态Ⅰ.新株型水稻物质生产与灌浆特性[J].福建农业大学学报,2001,30(1):1-8.
    [107]韩晓增,乔云发,严君,等.缺磷条件下低分子量有机酸对大豆氮积累和结瘤固氮的影响[J].应用生态学报,2009,20(5):1079-1084.
    [108]贺帆,黄见良,崔克辉,等.实时实地氮肥管理对不同杂交水稻氮肥利用率的影响[J].中国农业科学,2008,41(2):470-479.
    [109]黄爱缨,代先祝,王三根,等.低磷胁迫对玉米白交系苗期根系分泌有机酸的影响[J].西南大学学报(自然科学版),2008,30(4):73-77.
    [110]霍中洋,杨雄,张洪程,等.不同氮肥群体最高生产力水稻品种各器官的干物质和氮素的积累与转运[J].植物营养与肥料学报,2012,18(5):1035-1045.
    [111]贾良良,陈新平,张福锁.叶绿素仪与植株硝酸盐浓度测试对冬小麦氮营养诊断准确性的比较研究[J].华北农学报,2007,22(6):157-160.
    [112]江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].中国农业科学,2004,37(4):490-496.
    [113]江立庚,戴廷波,韦善清,等.南方水稻氮素吸收与利用效率的基因型差异及评价[J].植物生态学报,2003,27(4):466-471.
    [114]江立庚,甘秀芹,韦善清,等.水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系[J].应用生态学报,2004,15(21):226-230.
    [115]姜继萍,杨京平,杨正超,等.不同氮素水平下水稻叶片及相邻叶位SPAD值变化特征[J].浙江大学学报(农业与生命科学版),2012,38(2):166-174.
    [116]金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响[J].中国农业科学,1999,32(4):55-62.
    [117]匡艺,李廷轩,张锡洲,等.小黑麦氮利用效率基因型差异及评价[J].植物营养与肥料学报, 2011,17(4):845-851.
    [118]李刚华,丁艳锋,薛利红,等.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展[J].植物营养与肥料学报,2005,11:412-416.
    [119]李刚华,薛利红,尤娟,等.水稻氮素和叶绿素SPAD叶位分布特点及氮素诊断的叶位选择[J].中国农业科学,2007,40(6):1127-1134.
    [120]李敏,张洪程,李国业,等.水稻氮效率基因型差异及其机理研究进展[J].核农学报,2011,25(5):1057-1063.
    [121]李敏,张洪程,马群,等.不同氮肥群体最高生产力类型粳稻品种的氮素吸收利用特性[J].中国水稻科学,2012,26(2):197-204.
    [122]李敏,张洪程,杨雄,等.水稻高产氮高效型品种的根系形态生理特征[J].作物学报,2012,38(4):648-656.
    [123]李素梅,施卫明.不同氮形态对两种基因型水稻根系形态及氮吸收效率的影响[J].土壤,2008,39(4):589-593.
    [124]李廷轩,马国瑞,张锡洲,等.籽粒苋不同富钾基因型根系分泌物中有机酸和氨基酸的变化特点[J].植物营养与肥料学报,2005,11(5):647-653.
    [125]李廷轩,马国瑞.张锡洲.富钾基因型籽粒苋主要根系分泌物及其对土壤矿物态钾的活化作用[J].应用生态学报,2006,17(3):368-372.
    [126]李廷轩,马国瑞.籽粒苋富钾基因型的根系形态和生理特性[J].作物学报,2004,30(11):1145-1151.
    [127]李志宏,张云贵,刘宏斌,等.叶绿素仪在夏玉米氮营养诊断中的应用[J].植物营养与肥料学报,2005,11(6):764-768.
    [128]梁天锋,徐世宏,刘开强,等.栽培方式对水稻氮素吸收利用与分配特性影响的研究[J].植物营养与肥料学报,2010,16(1):20-26.
    [129]凌启鸿,苏祖芳,张海泉.水稻成穗率与群体质量的关系及其影响因素的研究[J].作物学报,1995,21(4):463-469.
    [130]凌启鸿.作物群体质量[M].上海:上海科技出版社,2000。
    [131]刘红江,陈留根,朱普平,等.农田施用水葫芦对水稻干物质生产与分配的影响[J].应用与环境生物学报,2011,17(4):521-526.
    [132]刘立军,常二华,范苗苗,等.结实期钾,钙对水稻根系分泌物与稻米品质的影响[J].作物学报,2011,37(4):661-669.
    [133]刘贞琦,刘振业,马达鹏.水稻叶绿素含量及其与光合速率关系的研究[J].作物学报,1984,10(1):57-61.
    [134]陆大雷,刘小兵,赵久然,等.玉米氮素吸收利用的基因型差异[J].植物营养与肥料学报,2008,14(2):258-263.
    [135]马群,杨雄,李敏,等.不同氮肥群体最高生产力水稻品种的物质生产积累[J].中国农业科学,2011,44(20):4159-4169.
    [136]聂军,肖剑,戴平安,等.控释氮肥对水稻氮代谢关键酶活性及糙米蛋白质含量的影响[J].湖南农业大学学报(自然科学版),2003,29(4):318-321.
    [137]潘兴书,冯跃华,赵田径,等.不同施氮条件下2个超级杂交稻干物质生产特性[J].江苏农业学报,2009,25(4):726-730.
    [138]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [139]戚吕翰.水稻增粒、增重的适宜期、临界期与促控技术[J].江西农业科技,1982,(1):5-6.
    [140]任红旭,陈雄,王亚馥.抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化[J].植物生态学报,2001,25(6):709-715.
    [141]石元亮,王玲莉,刘世彬,等.中国化学肥料发展及其对农业的作用[J].土壤学报,2008,45(5):852-864.
    [142]宋飞,李世清,王辉.施氮对灌浆期冬小麦不同叶片SPAD值及光合速率的影响[J].麦类作物学报,2006,26(6):172-174.
    [143]宋桂云,徐正进,王芳,等.不同氮素水平对不同穗型水稻品种物质生产的影响[J].内蒙古民族大学学报(自然科学版),2002,17(5):413-415.
    [144]宋文静,金晶晶,哈丽哈什,等.不同硝响应型水稻品种苗期根系生长对增硝营养的响应[J].土壤学报,2011,48(5):1006-1012.
    [145]孙静文,陈温福,曾雅琴,等.氮素水平对粳稻根系形态及其活力的影响[J].沈阳农业大学学报,2003,34(5):344-34.
    [146]孙永健,孙园同,李旭毅,等.水氮互作对水稻氮磷钾吸收、转运及分配的影响[J].作物学报,2010,36(4):655-664.
    [147]田永超,朱艳,曹卫星,等.利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉积累[J].中国农业科学,2004,37(6):808-813.
    [148]童淑媛,宋凤斌,徐洪文.玉米不同叶位叶片SPAD值的变化及其与生物量的相关性[J].核农学 报,2008,22(6):869-874
    [149]汪洪,高翔,陈磊,等.硝态氮供应下植物侧根生长发育的响应机制[J].植物营养与肥料学报,2011,17(4):1005-1011.
    [150]汪建匕,沈其荣.有机酸代谢在植物适应养分和铝毒胁迫中的作用[J].应用生态学报,2006,17(11):2210-2216.
    [151]王东升,张亚丽,陈石,等.不同氮效率水稻品种增硝营养下根系生长的响应特征[J].植物营养与肥料学报,2007,13(4):585-590.
    [152]王绍华,揭水通,丁艳锋,等.控蘖剂调控水稻分蘖发生的效果[J].江苏农业学报,2002,18(1):29-32.
    [153]王彦荣,华泽田,陈温福,等.粳型超级杂交稻辽优3225根系生理特性研究[J].中国水稻科学,2003,17(1):37-41.
    [154]魏海燕,张洪程,戴其根,等.不同水稻氮利用效率基因型的物质生产与积累特性[J].作物学报,2007,33(11):1802-1809.
    [155]魏海燕,张洪程,杭杰,等.不同氮素利用效率基因型水稻氮素积累与转移的特性[J].作物学报,2008,34(1):119-125.
    [156]魏海燕,张洪程,马群,等.不同氮肥利用效率水稻基因型剑叶光合特性[J].作物学报,2009,35(12):2243-2251.
    [157]魏海燕,张洪程,马群,等.不同氮肥吸收利用效率水稻基因型叶片衰老特性[J].作物学报,2010,36(4):645-654
    [158]魏海燕,张洪程,张胜飞,等.不同氮利用效率水稻基因型的根系形态与生理指标的研究[J].作物学报,2008,34(3):429-436.
    [159]吴桂成,张洪程,钱银飞.粳型超级稻产量构成因素协同规律及超高产特征的研究[J].中国农业科学,2010,43(2):266-276.
    [160]吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究[J].中国农业科学,2007,40(2):250-257.
    [161]谢崇华,杨国涛,张玲,等.高产优质水稻品种B优827干物质积累与分配特性研究[J].西南大学学报(自然科学版),2007,29(6):62-67.
    [162]邢宏燕,王二明,李滨,等.有效利用土壤磷的小麦种质筛选方法研究[J].作物学报,2000,26(6):839-844.
    [163]熊庆娥.植物生理学实验教程[M].成都:四用科学出版社,2003.
    [164]徐福荣,汤翠凤,余藤琼,等.利用叶绿素仪SPAD值筛选耐低氮水稻种类[J].分子植物育种,2005,3(5):695-700.
    [165]徐富贤,熊洪,谢戎,等.水稻氮素利用效率的研究进展及其动向[J].植物营养与肥料学报,2009,15(5):1215-1225.
    [166]徐富贤,熊洪,张林,等.杂交中稻齐穗后叶片SPAD值衰减对再生力的影响[J].中国农业科学,2009,42(10):3442-3450.
    [167]徐海荣,谷俊涛,路文静,等.水稻硝酸盐转运蛋白基因OsTNrt2.1的编码蛋白特征和表达[J].作物学报,2007,33(5):723-730.
    [168]徐克章,黑田荣喜,平野贡.水稻开花后叶片含氮量与光合作用的动态变化及其关系[J].作物学报,1995,21(2):171-175.
    [169]徐其军,汤亮,顾东祥,等.基于形态参数的水稻根系三维建模及可视化[J].农业工程学报,2010,26(10):188-194.
    [170]闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地’下水的影响[J].土壤学报,2005,42(3):440-446.
    [171]闫湘,金继运,何萍,等.提高肥料利用率技术研究进展[J].中国农业科学,2008,41(2):450-459.
    [172]晏娟,尹斌,张绍林,等.不同施氮量对水稻氮素吸收与分配的影响[J].植物营养与肥料学报,2008,14(5):835-839.
    [173]阳显斌,张锡洲,李廷轩,等.不同产量水平小麦的氮吸收利用差异[J].核农学报,2010,24(5):1073-1079.
    [174]杨从党,周能,袁平荣,等.高产水稻品种的物质生长特性[J].西南农业学报,1998(增刊3):89-94.
    [175]杨从党,朱德峰,辕玉萍,等.不同生态条件下水稻产量及其构成因子分析[J].西南农业学报,2004,17(增刊):35-39.
    [176]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345.
    [177]杨建昌.水稻根系形态生理与产量,品质形成及养分吸收利用的关系[J].中国农业科学,2011,44(1):36-46.
    [178]杨文钰,屠乃美.作物栽培学各论[M].北京:农业出版社,2003:46-49.
    [179]杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制的研究[J].土壤学报,1992,29(1): 73-79.
    [180]叶利庭,宋文静,吕华军,等.不同氮效率水稻生育后期氮素积累转运特征[J].土壤学报,2010,47(2):303-310.
    [181]殷春渊,魏海燕,张庆,等.不同氮肥水平下中熟籼稻和粳稻产量、氮素吸收利用差异及相关系[J].作物学报,2009,35(2):348-355.
    [182]殷春渊,张庆,魏海燕,等.不同产量类型水稻基因型氮素吸收、利用效率的差异[J].中国农业科学,2010,43(1):39-50.
    [183]印莉萍,黄勤妮,吴平.植物营养分子生物学及信号转导[M].北京:科学出版社,2006.1-8.
    [184]雍太文,陈小容,杨文钰,等.小麦/玉米/大豆三熟套作体系中小麦根系分泌特性及氮素吸收研究[J].作物学报,2010,36(3):477-485.
    [185]于亚利,贾文凯,王春宏,等.春玉米叶片SPAD值与氮含量及产量的相关性研究[J].玉米科学,2011,19(4):89-92,97.
    [186]曾建敏,崔克辉,黄见良,等.水稻生理生化特性对氮肥的反应及与氮利用效率的关系[J].作物学报,2007,33(7):1168-1176.
    [187]张辰明,徐烨红,赵海娟,等.不同氮形态对水稻苗期氮素吸收和根系生长的影响[J].南京农业大学学报,2011,34(3):72-76.
    [188]张福锁,王激清,张卫峰,等.中国主要粮食作物氮肥利用效率现状与提高途径[J].十壤学报,2008,45(5):915-924.
    [189]张洪程,马群,杨雄,等.水稻品种氮肥群体最高生产力及其增长规律[J].作物学报,2012,38(1):86-98.
    [190]张洪程,王秀芹,戴其根,等.施氮量对杂交稻两优培九产量、品质及吸氮特性的影响[J].中国农业科学,2004,37(4):2003,36(7):800-806.
    [191]张洪程,吴桂成,戴其根,等.水稻氮肥精确后移及其机制[J].作物学报,2011,37(10):1837-1851.
    [192]张均华,刘建立,张佳宝,等.施氮量对稻麦干物质转运与氮肥利用的影响[J].作物学报,2010,36(10):1736-1742.
    [193]张锡洲,李廷轩,王永东.植物生长环境与根系分泌物的关系[J].土壤通报,2007,38(4):786-789.
    [194]张锡洲,阳显斌,李廷轩,等.小麦氮素利用效率的基因型差异[J].应用生态学报,2011,22(2):369-375.
    [195]张宪政.植物叶绿素含量测定:丙酮乙醇混合液法[J].辽宁农业科学,1986,3(5):26-28.
    [196]张亚洁,林强森,孙斌,等.种植方式对水稻和陆稻氮素吸收利用的影响[J].中国水稻科学,2005,19(6):539-544.
    [197]张亚丽,樊剑波,段英华,等.不同基因型水稻氮利用效率的差异及评价[J].土壤学报,2008,45(2):267-273.
    [198]张振华,刘强,宋海星,等.水稻生长、根系生理特性和ABA含量的基因型差异与耐盐性的关系[J].植物营养与肥料学报,2011,17(5):1035-1043.
    [199]章明清,李娟,孔庆波,等.水稻根长增长和养分吸收动态及其模拟模型[J].植物营养与肥料学报,2011,17(53):554-562.
    [200]赵海波,林琪,刘义国,等.氮磷配施对超高产小麦花后衰老特性及产量的影响[J].华北学报,2009,24(4):158-162.
    [2011赵全志,陈静蕊,刘辉,等.水稻氮素同化关键酶活性与叶色变化的关系[J].中国农业科学,2008,41(9):2607-2616.
    [202]赵全志,黄玉生,凌启鸿.水稻群体光合速率和茎鞘贮藏物质与产量关系的研究[J].中国农业科学,2001,34(3):304-310.
    [203]赵士诚,何萍,仇少君,等.相对SPAD值用于不同品种夏玉米氮肥管理的研究[J].植物营养与肥料学报2011,17(5):1091-1098.
    [204]赵首萍,赵学强,施卫明.不同铵硝比例对水稻铵吸收代谢基因表达的影响[J].土壤学报,2006,4(3):436-442.
    [205]赵田径,冯跃华,韩钢钢,等.不同施氮量对免耕移栽杂交水稻干物质积累与运转的影响[J].安徽农业科学,2009,37(4):1641-1643.
    [206]中科院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].北京,科学出版社,2004.
    [207]周明,涂书新,孙锦荷,等.富钾植物籽粒苋(Amaranthus spp.)对土壤矿物钾的吸收利用研究[J].核农学报,2005,19(4):291-296.
    [208]左宝毛,李世仪,匡廷云.玉米不同层位叶片叶绿体的超微结构和叶绿素含量变化[J].作物学报,1987,13(3):213-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700