用户名: 密码: 验证码:
水稻籽粒铁锌生物强化农艺调控因子及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁、锌是动植物生长发育必需的营养元素,在新陈代谢中起着十分重要的作用。人体铁锌缺乏症在世界普遍存在,影响着全球亿万人的健康、生命质量和生产能力。尤其在以谷类为主的发展中国家,铁锌营养不良尤为严重。近年来,随着人口增长和经济的发展,可利用的水资源日益减少,水资源的可供给量和需求量构成的矛盾是全球面临的另一挑战。我国是世界上水稻生产大国之一,水稻种植面积约占世界稻田面积的20%,传统的淹水栽培,耗水量巨大,且水资源浪费严重,发展节水栽培势在必行。实施农业节水、革新传统农艺是促进水稻高产优质,减少资源消耗,实现可持续发展的重要手段。
     农艺措施仍然是改善谷物中微量元素缺乏问题的一种现实的、经济的和可持续发展的方法。品种的筛选、高效水溶性铁锌肥、不同栽培方式、不同氮肥用量、不同氮肥形态和秸秆还田等对水稻籽粒铁锌的富集均可能产生影响。目前根外喷施试验主要集中在普通水稻品种,叶面喷施水溶性铁锌肥对富铁水稻铁锌营养的调控研究较少。
     有关节水型稻作研究,尤其是覆盖旱作技术进展很快,成为节水灌溉的研究热点。我国已有不少水稻覆膜旱作研究与推广的实例,证明覆膜旱作能提高水分利用率和水稻产量,改善稻米蛋白质、氨基酸等营养品质,但是也有旱种会导致稻米外观和食味品质等变差覆膜旱作稻米质下降等报道。这些研究鲜有涉及覆膜旱作对稻米中铁锌含量的影响方面内容,关于覆膜旱作条件下氮肥用量、氮肥形态等对水稻籽粒铁锌营养的影响研究较少。
     本论文研究了叶面喷施水溶性铁锌肥对富铁水稻、连续覆膜旱作条件下不同氮肥用量、不同氮肥形态、秸秆还田对常规水稻籽粒铁锌营养的调控作用。主要研究结果如下:
     (1)叶面喷施氨基酸铁肥(Fe-AA)能显著提高富铁水稻糙米中铁含量,在Fe-AA中添加1%烟酰胺(FeNA1)能提高富铁水稻糙米中铁、锌含量。与对照喷清水(CK)相比,Fe-AA处理水稻糙米铁含量平均增加了9.1%;FeNA1处理糙米中铁含量平均增加了37.9%。FeNA1处理与Fe-AA处理相比,糙米中铁含量平均值增加了26.4%;锌含量平均值增加了10.6%。
     (2)在Fe-AA中添加0.5%ZnSO4-7H2O (FeZn1)能显著提高富铁水稻糙米中铁和锌含量、精米中蛋白质和总氨基酸含量。与对照喷清水(CK)相比,FeZn1处理糙米中铁和锌、精米中蛋白质和氨基酸含量平均值分别增加了42.4%,77.6%,6.9%和7.1%.FeZnl处理与Fe-AA相比,糙米中铁和锌含量平均值分别增加了30.6%,55.1%。
     (3)长期覆膜旱作,氮肥用量低于135kg N ha-1条件下,水稻产量、精米中蛋白质含量随着施氮量的提高而增加。秸秆还田显著提高覆膜旱作水稻产量、糙米中铁和锌含量,同时增加土壤肥力。2008~2010年,秸秆还田与不还田处理相比,糙米中年平均铁含量分别增加了6.6%,5.1%和5.2%;锌含量分别增加了9.4%,7.9%和7.3%;土壤中年平均有机质含量分别增加6.4%,7.6%和12.2%;有效钾含量分别增加了28.2%,64.0%和52.9%。精米中直链淀粉(AC)受氮肥用量和秸秆还田处理的影响较小,氮肥用量增加和秸秆还田条件下,稻米胶稠度(GC)和糊化温度(ASV)有下降趋势,胶稠度下降使米饭变软,品质相对变优。
     (4)与常规水作(CFC)相比,覆膜旱作(PFMC)能显著增加水稻产量,增产幅度达8.0%,精米中总氨基酸含量下降3.5%,精米中蛋白质,糙米中铁锌含量与CFC处理差异不显著;裸地旱作(NMC)处理产量显著下降5.1%,蛋白质、总氨基酸和铁含量分别下降4.4%、9.3%和11.9%。秸秆还田较不还田处理,CFC条件下,产量增加了113.6kg ha-1;NMC条件下,产量增加142.6kgha-1; PFMC条件下,产量增加522.1k ha-1;三种栽培方式产量平均增加3.3%,糙米中的铁和锌含量平均增加3.1%和6.4%,精米中蛋白质和总氨基酸含量差异不显著。
     (5)树脂包膜尿素在常规水作和覆膜旱作条件下均能显著提高水稻产量。2008~2010年,与普通尿素(PU)处理相比较,树脂包膜尿素(PCU)处理产量的年平均值提高了2.9%,8.4%和9.6%;年平均铁含量分别提高了7.3%,10.1%和17.9%;锌含量分别提高了14.8%,11.3%和8.1%。与对照(CK)相比,PCU处理产量的年平均值增加了22.7%,73.7%和36.8%;铁含量分别提高了17.7%,26.05%和40.1%;锌含量分别提高了34.0%,26.0%和18.6%。
     (6)硫磺树脂双包膜尿素(SPCU)在控释期(90d)的释放量呈S型,与普通尿素(PU)相比,SPCU从第四周开始,在不同质地土壤中均能显著提高水稻生长期植株地上部干物重、地上部吸氮量。水稻生长期氮素营养供给的提高可能是包膜控释尿素提高水稻产量、改善稻米品质的原因之一。
Iron (Fe) and zinc (Zn) are essential micronutrient for all organisms; they play a significant role in metabolism both for plant and animals. However, Fe and Zn deficiency is wide spread all over the world. Malnutrition of Fe and Zn afflicts billions of people and their development, especially in developing countries. A major etiologic factor is the low concentration of Fe and Zn from diets based on the staple cereals.
     In recent decades, because of the growing increase in population in China and other countries, demand for rice is expected to keep increasing. Rice consumes about90%of total irrigation water and is the largest irrigated crop in the world with low water use efficiency. Since fresh water is becoming increasingly scarce, water-saving rice cultivation must be sought to increase the development of sustainable agriculture.
     Agronomic regulation factors such as variety selection, foliar fertilizers, cultivation methods, N fertilizer amounts, N fertilizer forms and rice straw incorporation could affect Fe and Zn accumulation. In those potential approaches discussed and possessed to increase Fe and Zn concentrations of rice grains, the fertilizations via foliar applications could still be a sustainable, low cost-effective and high efficient strategy. Until now, most of foliar Fe and Zn applications were used on common rice cultivars and genotypes, few studies were conducted on iron-rich cultivars.
     Compared with conventional flooded rice cultivation, plastic film mulching cultivation under non-flooded condition (PFMC) arose and prevails in China. Many reports said that PFMC had a striking efficiency in maintenance of soil moisture, increase of soil temperature in the early season and improvement of nutrient transformations and availability. Water use efficiency, rice grain yield, rice quality such as protein and amino acids concentrations were significantly improved. Part of reports proved that PFMC had some negative effect on rice cooking and eating quality. The results were not the same. There were a few reports on rice Fe and Zn nutrition with PFMC. Study on PFMC and its effects on rice quality will make big influence.
     So in this paper, the development of a new high efficient Fe and Zn foliar fertilizer and its role on Fe and Zn biofortification in rice grains were discussed. On the other hand, we studied the effects of PFMC on rice Fe and Zn accumulations; including various N fertilizers rates, different N fertilizer forms and rice straw incorporation under PFMC. The main results are summarized as follows:
     (1) Foliar applications of Fe-AA significantly improved Fe concentrations in Fe-rich rice cultivars; a1%nicotianamine (NA) was added to Fe-AA (FeNAl), Fe and Zn in brown rice were greatly enhanced. Compared to the control (CK), average Fe concentration was increased by9.1%and37.9%under Fe-AA and/or FeNAl, respectively. Compared to Fe-AA, Fe and Zn were significantly improved by26.4%and10.6%with FeNAl, respectively.
     (2) A0.5%ZnSO4·7H2O (FeZnl) was added to Fe-AA, a significant improvement was observed on rice Fe, Zn, protein and amino acids concentrations with four Fe-rich cultivars. Compared to the control (CK), average Fe, Zn, protein and amino acids concentrations of the four cultivars were increased by42.4%,77.6%,6.9%and7.1%separately under treatment FeZnl. Compared to Fe-AA, Fe and Zn were significantly improved by30.6%and55.1%with FeZnl, respectively.
     (3) Under PFMC, when nitrogen fertilizer rates less than135kg ha-1, rice grain yield as well as protein and amino acids concentrations in polished rice increased with increasing nitrogen fertilizer rates. Rice straw incorporation significantly improved rice grain yield, Fe and Zn concentrations in brown rice; soil qualities were also enhanced. Compared with treatment with rice straw incorporation (M2) to treatment without rice straw incorporation (M1) from2008to2010, average Fe was improved by6.6%,5.1%and5.2%; average Zn was improved by9.4%,7.9%and7.3%; average soil organic matter amount was improved by6.4%,7.6%and12.2%; average soil NH4OAc-extractable K was improved by28.2%,64.0%and52.9%. Amylose content (AC) was slightly affected by N fertilizer rates and rice straw incorporation; gel consistency (GC) and alkali spreading value (ASV) in polished rice had a decrease tendency with increasing N fertilizer rates and rice straw incorporation. GC decrease made rice soft which was good for eating.
     (4) Plastic film mulching cultivation (PFMC) under non-flooded condition has been considered as a new water-saving technique in rice production, while yield decline from continuous cropping of aerobic rice is a constraint to the widespread adoption of PFMC. Rice straw incorporation has been proposed to counter this negative effect in recent decades. This study examined the effects of three cultivation methods and rice straw incorporation on rice grain yield and quality using "Liangyoupeijiu"(an indica hybrid cultivar). The three cultivation treatments were: conventional flooding cultivation (CFC); non-flooded plastic film mulching cultivation (PFMC); no mulching cultivation in non-flooded condition (NMC). Compared with that under CFC, average rice grain yield under PFMC from2008to2010was significantly improved by8.0%, while total amino acids content was decreased by3.5%, no obvious effect was observed on rice protein, Fe and Zn concentrations in rice; under NMC, the reduction in yield, protein, total amino acids and Fe concentrations were5.1%,4.4%,9.3%and11.8%respectively. With rice straw incorporation, grain yield was improved by113.6kg ha-1,142.6kg ha-1and522.1kg ha-1under CFC, NMC and PFMC respectively. Average rice grain yield, Fe and Zn contents in brown rice were significantly improved by3.3%,3.1%and6.4%with rice straw incorporation. The results of the three years showed the same trend in rice grain yield and nutrition quality. The results indicated that PFMC could improve not only grain yield, but also part of rice nutrition quality. Rice straw incorporation could significantly improved rice grain yield as well as Fe and Zn concentrations in brown rice, which would be a good method to overcome grain yield decline under long term PFMC.
     (5) In order to assess changes of rice iron (Fe) and zinc (Zn) as affected by polyester resin coated urea (PCU) under conventional flooding cultivation (CFC) and plastic film mulching cultivation (PFMC), a three year field experiment was conducted in Central Zhejiang Province, E China, from2008to2010. Compared with treatment under CFC and/or PFMC, the annual and mean Fe under PFMC in brown rice was improved by9.3%,9.0%and16.2%; Zn was improved by21.8%,16.9%and12.9%, respectively, from2008to2010. Compared treatment applied PCU to treatment using prilled urea (PU), annual and average grain yield was improved by2.9%,8.4%and9.6%; the annual and mean Fe under PCU was improved by7.3%,10.1%and17.9%; Zn was improved by14.8%,11.3%and8.1%, respectively, from2008to2010. Rice production was greatly enhanced by PCU under PFMC and/or CFC. Treatment with PCU had a positive effect on soil alkali-hydrolyzable N compared to treatment with PU. Soil organic matter with PCU was a little lower than that under PU. Different fertilizer types have no obvious effect on soil Olsen P. Non-flooded PFMC made soil organic matter, soil N and K decreased compared to CFC, which suggested that long term PFMC will make soil quality maintenance difficult.
     (6) Our study proved that controlled release fertilizer (CRF) significantly improved rice production as well as Fe and Zn concentrations in brown rice under CFC and/or PFMC, however, the mechanism was still unknown. A pot experiment was conducted to examine the release rates of CRF within the release period; the results showed that CRF could significantly improve rice dry matter weight, plant N uptake amount. CRF provides better nitrogen nutrition in rice growing period could be some explanation for rice production as well as Fe and Zn concentrations improvement.
引文
1. Bughio N., Hirotaka Y., Naoko K., and Hiromi N.. Cloning an iron-regulated metal transporter from rice. Journal of Experimental Botany,2002,374:1677-1682.
    2. Cakmak I., Pfeiffer W. H., and Mcclafferty B.. Biofortification of durum wheat with zinc and iron. Cereal Chemistry,2010,87:10-20.
    3. Cakmak I., Torun A., Millet E., Feldman M., Fahima T., Korol A., Nevo E., Braun H. J., and Ozkan H.. Triticum dicoccoides:an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Science and Plant Nutrition, 2004,50:1047-1054.
    4. Cakmak I.. Enrichment of cereal grains with zinc:agronomic or genetic biofortification. Plant and Soil,2008,302:1-17.
    5. Chen J. L.. Effects of slow-release fertilizer application on rice grain quality at different culture method. Korean Journal of Crop Science,1996,41:286-294.
    6. Cheshire M. V., Bedrock C. N., Williams B. L., Chapman S. J., and Solntseva I.. The immobilization of nitrogen by straw decomposition in soil. Journal of European Soil Science,1999,50:320-341.
    7. Curie C., and Briat J. F.. Iron transport and signaling in plants. Annual Review of Plant Biology,2003,54:183-206.
    8. Curie C., Panaviene Z., Loulergue C., Dellaporta S. L., Briat I. F., and Walker E. L. Maize yellow stripe encodes a membrane protein directly involved in Fe (Ⅲ) uptake. Nature,2001,409:346-349.
    9. Dobermann A., and Fairhurst T. H.. Rice Straw Management. Better Crops International, 2002,16 (special supplement):7-11.
    10. Dutta B. K., and Deb P. R.. Effect of organic and inorganic amendments on the soil and rhizosphere microflora in relation to be the biology and control of Sclerotium rolfsii causing foot rot of soybean. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 1986,93:163-171.
    11. Eggum B. R., and Juliano B. O.. Higher protein content from nitrogen fertilizer application and nutritive value of milled rice protein. Journal of the Science of Food and Agriculture,1975,26:425-427.
    12. Falchuk K. H., Hardy C., Ulpino L., and Vallee B. L.. RNA metabolism, manganese, and RNA polymerase of zinc sufficient and zinc deficient Euglena gracilis. Proceedings of the National Academy of Sciences of the United States of America,1978,75: 4175-4179.
    13. Fan M. S., Jiang R. F., and Liu X. J.. Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice-wheat rotations. Field Crop Research, 2005,91:307-318.
    14. Fan M. S., Liu X. J., Jiang R. F., Zhang F. S., Lu S. H., Zeng X. Z., and Christie P.. Crop yields, internal nutrient efficiency, and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Plant Soil,2005,277:265-276.
    15. Fan X. L., Zhang J. P., and Wu P.. Water and nitrogen use efficiency of low land rice in ground covering rice production system in south China. Journal of Plant Nutrition,2002, 25:1855-1862.
    16. FAO. Food and Agriculture Organization (FAO) of the United Nations.Statistical Databases,2001.
    17. Gazzarrinia S., Lejayb L., Gojonb A., Ninnemann O., Frommer W. B., and Wiren N. V.. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. American Society of Plant Physiologists,1999,11:937-947.
    18. Ge K. Y., and Chang S. Y.. Dietary intake of some essential micronutrients in China. Biomedical and Environmental Science,2001,14:318-324.
    19. Grusak M. A., and Penna D. D.. Improving the nutrient composition of plants to enhance human nutrition and health. Annual Review of Plant Biology and Plant Molecular Biology,1999,50:133-61.
    20. Haydon M. J., and Cobbett C.S.. Transporters of ligands for essential metal ions in plants. New Phytologist,2007,174:499-506.
    21. Hsu H. H., and Ashmead H. D.. Effect of urea and ammonium nitrate on the uptake of iron through leaves. Plant Nutrition,1984,7:291-299.
    22. Ishimaru Y, Suzuki M, Tsukamoto T, Nakazono M, Kobayashi M, Wada Y, Watanable S, Matsuhashi S., Takanishi M., Nakanishi H., Mori S., and Nishizawa N. K.. Rice plants take up iron as Fe3+-phytosiderophore and as Fe2+. Plant Journal,2006,45:335-346.
    23. Iwamoto M., Suzuki T., and Uozumi J.. Analysis of protein and amino acid content in rice flour by Near-Infrared Spectroscopy. Nippon Shokuhin Kogyo Gakkaishi,1986,33: 846-854.
    24. Klatte T., Rao P. N., Martino M., LaRochelle J., Shuch B., Zomorodian N., Said J., Kabbinavar F. F., Belldegrun A. S., and Pantuck A. J.. Cytogenetic Profile Predicts Prognosis of Patients With Clear Cell Renal Cell Carcinoma. American Society of Clinical Oncology,2009,27:746-753.
    25. Kruger C., Berkowitz O., Stephan U. W., and Hell R.. A metal-binding member of the late embryogenes is abundant protein family transports iron in the phloem of Ricinus Communis L. Journal of Biology Chemistry,2002,277:25062-25069.
    26. Kutman U. B., Yildiz B., Ozturk L., and Cakmak I.. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chemistry,2010,87: 1-9.
    27. Lester G. E., and Grusak M. A.. Postharvest application of calcium and magnesium to honeydew and netted muskmelons:effects on tissue ion concentrations, quality, and senescence. American Society of Plant Biologists,1994,104:649-655.
    28. Lim S. J., Kim D. U., Sohn J. K., and Lee S. K.. Varietal variation of amyl gram properties and its relationship with other eating quality characteristics in rice. Korean Journal of Breeding,1995,27:268-275.
    29. Liu X. J., Ai Y. W., Zhang F. S., Lu S. H., Zeng X. Z., and Fan M. S.. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC). Nutrient Cycling in Agroecosystems,2005, 71:289-299.
    30. Liu X. J.,Wang J. C., Lu S. H., Zhang F. S., Zeng X. Z., Ai Y. W., Peng S. B., and Christie P.. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Research,2003,83: 297-311.
    31. Lu X. H., Wu L. H., Pang L. J., Li Y S., Wu J. G, Shi C. H., and Zhang F. S.. Effects of plastic film mulching cultivation under non-flooded condition on rice quality. Journal of Science of Food and Agriculture,2007,87:334-339.
    32. Marschner H., Romheld V., and Kissel M.. Different strategies in higher plants in mobilization and uptake of iron. Journal of Plant Nutrition,1986,9:695-713.
    33. Mu J., Raza W., and Xu Y. C.. Preparation and optimization of amino acid chelated micronutrient fertilizer by hydroxylation of chicken waste feathers and the effects on growth of rice. Journal of Plant Nutrition,2008,31:571-582.
    34. Newton Z. L., Cynthia A. G., Yoong K. S., George W. C., Shabtai B., Sukhdev S. M., and Bernie J. Z.. Soil microbial community response to controlled release urea fertilizer under zero tillage and conventional tillage. Applied Soil Ecology,2010,45:254-261.
    35. Ockerby S. E., and Fukai S.. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Research,2001,69:215-226.
    36. Peng S. B., Shen K. R., Wang X. C., Liu J., Luo X. S., and Wu L. H.. A new rice cultivation technology:plastic film mulching.International Rice Research Notes,1999, 24:9-10.
    37. Ponnamperuma F. N.. Straw as a source of nutrients for wetland rice. Organic Matter and Rice. IRRI, Los Banos, Philippines,1984, pp.117-136.
    38. Preiffer W. H., and Mcclafferty B.. Biofortification:breeding micronutrients-dense crops. In:Kang, M.S., Priyadarshan, P.M. (Eds), Breeding Major Food Staples. Blackwell Science, New York,2007, pp.61-91.
    39. Salvagiotti F., and Mirallels D. J.. Wheat development as affected by nitrogen and sulfur nutrition. Australian Journal of Agriculture Research,2007,58:39-45.
    40. Schonherr J., and Luber M.. Cuticular penetration of potassium salts:effects of humidity, anions, and temperature. Plant and Soil,2001,236:117-122.
    41. Shenker M., and Chen Y.. Increasing Iron Availability to Crops:Fertilizers, Organo-Fertilizers, and Biological Approaches. Soil Science and Plant Nutrition,2005, 51:1-17.
    42. Shi R., Zhang Y., Chen X., Sun Q., Zhang F. S., Romheld V., and Zou C. Q.. Influence of Long term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science,2010,51:165-170.
    43. Stomph T. J., Jiang W., and Struik P. C.. Zinc biofortification of cereals:rice differs from wheat and barley. Trends in Plant Science,2009,14:123-124.
    44. Suzuki R., MatsuuraY.,SuzukiT., AndoA,ChibaJ.,Harada S.,SaitoI., and MiyamuraT. Nuclear localization of the truncated hepatitis C virus core protein with its hydrophobic C terminus deleted. Journal of General Virology,1995,76:53-61.
    45. Tao H. B.,Brueck H.,Ditter K., Kreye C., Lin S., and Sattelmacher B.. Growth and yield formation for rice (Oryza sativa L.)In the water-saving ground cover rice production system (GCRPS). Field Crops Research,2006,95:1-12.
    46. TsutomuN., Falchuk, K. H., and Vallee B.L.. Zinc, iron, and copper contents of Xenopus laevis oocytes and embryos. Molecular Reproduction and Development,1993, 36:419-423.
    47. Uauy C., Distelfeld A., Fahima T., Blechl A., and Dubcovsky J.. ANAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science,2006,314: 1298-1301.
    48. Vert G., Grotz N., Dedaldechamp F., Oaymard F., Guerinot M. L., Briat J. F., and Curie C.. IRT1, all Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell,2002,14:1223-1233.
    49. Wang G. H., Dobermann A., Witt C., Sun Q. Z., and Fu R. X.. Performance of site-specific nutrient management for irrigated rice in southeast China. Agronomy Journal,2001,93:869-878.
    50. Watanabe T., Broadley M. R., Jansen S., White P. J., Takada J., SatakeK., Takamatsu T., Tuah S. J., and Osaki M.. Evolutionary control of leaf element composition in plants. New Phytologist,2007,174:516-523.
    51. Waters B. M., and Grusak M. A., Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytologist,2008,179:1033-1047.
    52. White P. J., and Broadley M. R.. Bio-fortification of crops with seven mineral elements often lacking in human diets iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist,2009,182:49-84.
    53. WHO. The world health report. Reducing risks, promoting healthy life. World Health Organization, Geneva, Switzerland,2002.
    54. Wissuwa M., Ismail A. M., and Graham R. D.. Rice grain zinc concentrations as affected by genotype, native soil-zinc availability and zinc fertilization. Plant Soil,2008, 306:37-48.
    55. Wu J. G., Shi C. H., and Zhang X. M.. Estimating the amino acid composition in milled rice by near-infrared reflectance spectroscopy. Field Crops Research,2002,75:1-7.
    56. Wu L. H., Liang Z. R., and Shi Y. C.. The development of rice film mulching cultivation. Journal of Zhejiang Agriculture University,1999,25:41-42.
    57. Wu L. H., Zhu Z. R., Liang Y. C., and Zhang F.S.. Plastic film mulching cultivation:a new technology for resource saving water N fertilizer and reduced environmental pollution. Plant Nutrition,2002,92:1024-1025.
    58. Wu L. H., Zhu Z. R., Liang Y. C., Shi W. Y., and Zhang L. M.. The development of the rice film mulching cultivation. Journal of Zhejiang Agriculture University,1999,25: 41-42.
    59. Yadav R. L., Dwivedi B. S., Pandey B. S., and Pandy P. S.. Rice-wheat cropping system: assessment of sustainability under green maturing and chemical fertilizer inputs. Field Crops Research,2000,65:15-30.
    60. Zheng S. X., Liu D. L., Nie J., Dai P. A., and Xiao J.. Fate and recovery efficiency of controlled release nitrogen fertilizer in flooding paddy soil. Plant Nutrition and Fertilizer Science,2004,10:137-142.
    61. Zhou Z., Robards K., Helliwell S., and Blanchard C.. Ageing of stored rice:changes in chemical and physical attributes. Journal of Cereal Science,2002,35:65-78.
    62.艾应伟,刘学军,张福锁,毛达如,曾祥忠,吕世华,潘家荣.不同覆盖方式对旱作水稻氮肥肥效的影响.植物营养与肥料学报,2003,9:416-41.
    63.陈文荣.水稻锌高效生理研究进展.杭州:浙江大学博士学位论文.2008.
    64.陈贤友,吴良欢,韩科峰,李金先,应金耀.包膜尿素和普通尿素不同掺混比例对水稻产量与氮肥利用率的影响.植物营养与肥料学报,2010,4:918-923.
    65.陈新红,徐国伟,孙华山,王志琴,杨建昌.结实期土壤水分与氮素营养对水稻产量与米质的影响.扬州大学学报,2003,24:37-41.
    66.迟锡增.微量元素与人体健康.北京,化学工业出版社,1997,34-66.
    67.董明辉,唐成.不同栽培环境对稻米品质的影响.耕作与栽培,2005,3:20-22.
    68.符建荣.控释氮肥对水稻的增产效应及提高肥料利用率的研究.植物营养与肥料学报,2001,2:145-152.
    69.高真伟,王冬梅,展广军,徐久升.水田覆膜对稻作生长的影响.垦殖与稻作,2001,2:11-13.
    70.郭咏梅,穆平,刘家富,卢义宣,李自超.水、旱栽培条件下稻米主要品质性状的比较研究.作物学报,2005,31:1443-1448.
    71.胡继超,姜东,曹卫星,罗卫红.短期干旱对水稻叶水势、光合作用及干物质分配的影响.应用生态学报,2004,15:63-67.
    72.黄义德,张自立,魏凤珍,李金才.水稻覆膜旱作的生态生理效应.应用生态学报,1999,10:305-308.
    73.李春花,梁国实主编.专用复混肥配方设计与生产.北京,化学工业出版社,2001,PP.157-158.
    74.李学刚,赵国玺.表面活性剂与金属离子的相互作用.物理化学学报,1991,7:345-348.
    75.李燕婷,李秀英,肖艳,赵秉强,王丽霞.叶面肥的营养机理及应用研究进展.中国农业科学,2009,1:162-172.
    76.梁国斌.稻米的品质及其影响因素.安康师专学报,2002,14:66-70.
    77.梁永超,胡锋,杨茂成,朱遐亮,王广平,王永乐.水稻覆膜旱作高产节水机理研究.中国农业科学,1999,.1:26-32.
    78.凌启鸿.作物群体质量.北京,上海科学与技术出版社,2000,pp.44-211.
    79.刘铭,吴良欢.覆膜旱作稻田土壤肥力变化的研究.浙江农业学报,2003,15:8-12.
    80.路兴花,吴良欢,刘铭,杨联丰.覆膜旱作对水稻生长发育及某些生理特性的影响.浙江大学学报(农业与生命科学版),2002,28:609-614.
    81.路兴花,吴良欢.庞林江.李永山.张玲.连续覆膜旱作稻氮、磷、钾养分分布特征探讨.土壤通报,2010,41:145-149.
    82.马国辉,周静,龙继锐,陈敏,宋春芳,万宜珍,沈洪昌.缓释氮肥对超级杂交早稻生长发育和产量的影响.湖南大学农业学报,2008,34:95-99.
    83.孟亚利,高如嵩,张嵩午.影响稻米品质的主要气候生态因子研究.西北农业大学学报,1994,22:40-43.
    84.穆杰,徐阳春,朱培淼.氨基酸螯合微肥对旱作水稻苗期生长及生理效应的影响.水土保持学报,2006,20:178-182.
    85.裘凌沧,潘军,段彬伍.有色米及百米矿质元素营养特征.中国水稻科学,1993,7:95-100.
    86.申红芸.植物吸收和转运铁的分子生理机制研究进展.植物营养与肥料学报,2011,17:1522-1530.
    87.沈其荣,徐国华.小麦和玉米叶面标记尿素态15N的吸收和运输.土壤学报,2001,38:38-74.
    88.盛海君,沈其荣,周春霖.旱作水稻产量和品质的研究.南京农业大学学报,2003,26:13-16.汤美玲,程旺大,姚海根,徐民.早稻直播覆膜旱作对灌浆成熟期根叶生理特性及产量的影响.中国农业科学,2005,19:475-478.
    89.唐拴虎,陈建生,徐培智,张发宝,黄旭.生长调控型控释肥对水稻发育及产量的影响研究.广东农业科学,2006,9:9-12.
    90.佟建明.饲料添加剂手册.北京,中国农业大学出版社,2001,55-62.
    91.王玄德,石孝均,宋光煜.长期稻草还田对紫色水稻土肥力和生产力的影响.植物营养与肥料学报,2005,11:302-307.
    92.王振忠,董百舒,吴敬民.太湖稻麦地区秸秆还田增产及培肥效果.安徽农业科学,2002,30:269-271.
    93.王志琴,李国生,杨建昌,刘立军,郎有忠,朱庆森.江苏现用主要粳稻品种对氮素的反应.江苏农业研究,2000,21:22-26.
    94.王自恒,林峰,龚月生.铁元素在动物组织和体液中的营养研究.动物畜牧兽医,2004,23:20-23.
    95.吴平,印莉萍,张立平.植物营养分子生理学.北京,科学出版社,2001,pp.230-237.
    96.吴永常,张蒿午,程方民.齐穗30天温度对稻米品质形成的影响.西北农大学报, 1996,24:21-24.
    97.武美燕.连续覆膜旱作稻田土壤肥力及水稻营养特性研究.杭州,浙江大学博士论文,2008.
    98.奚振邦.现代化学肥料学.北京,中国农业出版社,2003,pp.387-397.
    99.新华网.我国启动粮食作物强化工程解决微量元素缺乏.吉林农业农村经济信心.2005.
    100徐国伟,王朋,唐成,王志琴,刘立军,杨建昌.旱种方式对水稻产量与品质的影响.作物学报,2006,32:112-117.
    101徐明岗,李菊梅,李冬初,丛日环,秦道珠,申华平.控释氮肥对双季水稻生长及氮肥利用率的影响.植物营养与肥料学报,2009,5:1011-1015.
    102杨建昌,王志琴,刘立军,郎有忠,朱庆森.旱种水稻生育特性与产量形成的研究.作物学报,2002,28:11-17.
    103杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究.中国农业科学,1996,29:58-66.
    104杨建昌,王志琴,陈义芳,蔡一霞,刘立军,朱庆森.旱种水稻产量与米质的初步研究.江苏农业研究,2000,21:1-5.
    105姚宝强,刘丽.氨基酸微量元素螯合物的研究与应用.兽药与饲料添加剂,2008,3:19-22.
    106衣文平,谷佳林,王崇旺,李玉泉,李亚星,杨宜斌,徐秋明.包膜尿素氮素释放特性及其采用接触式施肥对春玉米生长的影响.植物营养与肥料学报,2010,16:1497-1502.
    107尹春梅,谢小立.缓释尿素(SCU)对超级杂交中稻产量及土水中氮素的影响研究.农业环境科学学报,2010,10:2011-2016.
    108袁继超,丁志勇,赵超,朱庆森,李俊青,杨建昌.高海拔地区水稻遮光、剪叶和疏花对米质影响的研究.作物学报,2005,31:1429-1436.
    109张亚洁,陈海继,刁少华,林强森,杨建昌.种植方式对陆稻(中旱3号)和水稻(武香粳99-8)生长特性和产量形成的影响.江苏农业学报,2006,22:205-211.
    110张自常,李鸿伟,王学明,袁莉民,王志琴,刘立军,杨建昌.覆草对旱种直播稻产量与品质的影响.作物学报,2011,37:1809-1818.
    111张自常,孙小淋,陈婷婷,刘立军,杨建昌.覆盖旱种对水稻产量与品质的影响.作物学报,2010,36:285-295.
    112赵步洪,张洪熙,陈新红,杨建昌,朱庆森,夏广宏,刘晓斌.不同旱种方式水稻的
    生长发育与产量形成特性.江苏农业学报,2003,19:211-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700