用户名: 密码: 验证码:
聚苯胺/碳复合材料的制备及去除水中重金属的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属离子广泛存在于各种水体中,具有痕量致毒、生物放大及在生物体内难以降解等特点,对人体健康危害明显,因而重金属污染控制研究已经成为环境保护研究中的重要课题。
     目前,治理有害重金属污染、净化水质的方法很多,其中,吸附法具有净化效果好、可回收资源、操作简单、实用有效的特点,已得到广泛的应用。吸附法的关键是选择吸附速率快、吸附容量大、再生容易的优良吸附剂。聚苯胺(PANI)是一种新型导电功能聚合物,其分子中含有大量的氨基和亚胺基功能基团,它们对重金属离子具有良好的络合作用,能够对金属离子形成有效络合。这些氨基及亚胺基还具有还原性,可以与一些氧化电位较高的重金属离子发生氧化还原反应吸附。聚苯胺作为重金属吸附剂的这些独特吸附性能,引起了人们的极大兴趣,已经成为国内外研究热点。
     本论文针对PANI不溶于一般有机溶剂、机械强度差、难以加工的缺陷,利用具有大比表面积的碳材料作为载体,制备聚苯胺/碳复合材料,开展了聚苯胺/椰壳活性炭(PANI/GAC)复合材料和聚苯胺/光谱纯石墨(PANI/SPG)复合膜修饰电极的制备及去除污水中重金属的性能研究。
     采用原位化学聚合的方法制备了PANI/GAC复合材料,通过正交实验考察了过硫酸铵/苯胺摩尔比、硫酸浓度、反应温度、反应时间等因素对PANI产率的影响,优化了复合材料的制备条件,利用SEM、FT-IR、XRD和XPS等表征测试手段对PANI/GAC复合材料的形貌结构进行了分析。结果表明,过硫酸铵/苯胺摩尔比是影响PANI产率的首要因素,降低温度,延长反应时间有利于提高产率。PANI/GAC复合材料制备的最优条件为,过硫酸铵/苯胺摩尔比为1:1、硫酸浓度为1.0M、反应温度0℃、反应时间12h。冠状堆积的PANI颗粒均匀分布在GAC的表面,表明PANI/GAC复合材料的成功制备。
     研究了PANI/GAC复合材料对水溶液中Cu2+的吸附性能,考察了pH值,吸附剂用量,吸附时间、金属离子初始浓度和温度等因素对吸附过程的影响以及材料的再生性,对吸附过程进行了动力学和热力学的模拟研究,通过对吸附前后PANI/GAC复合材料进行SEM、EDS、FT-IR、XRD和XPS等表征分析,进行了吸附机理探讨,并与其他常用吸附剂进行了对比。实验结果表明,PANI/GAC复合材料对水中Cu2+的吸附最佳pH为5.5;吸附剂用量2.0g/L;吸附动力学符合二级动力学方程;吸附等温线结果表明,PANI/GAC复合材料对Cu2+的吸附基本符合Langmuir等温吸附方程,根据Langmuir方程计算的饱和吸附量为38.97mg/g与实验得到的数据结果相一致;吸附过程为吸热过程,在15~50℃范围自发进行,并且随着温度的增加,吸附量增大,吸附速率加快;Cu2+是通过化学作用吸附在PANI/GAC复合材料上;吸附了Cu2+的PANI/GAC复合材料可以通过O.lmol/L HCl溶液解吸再生,经过6次循环使用吸附能力降低较少。综上所述,PANI/GAC复合材料充分发挥有机和无机吸附材料的协同作用,具有吸附速率高,成本较低,再生性能良好的特点,是一种高效低成本的吸附剂。
     同时,采用两步电化学氧化法制备了硫酸(H2SO4)和对甲苯磺酸(p-toluenesulfonic acid, pTSA)掺杂的PANI/SPG复合膜修饰电极, SEM表明H2SO4/PANI复合膜具有多孔的形貌和三维网状结构。整个膜由均匀的一维纳米线构成,纤维直径100-200nnm。pTSA/PANI复合膜的形貌相对松散,纤维短而粗,纤维直径300-400nm。电化学降解表明,与H2SO4掺杂的聚合膜相比,pTSA作为大分子酸掺杂的PANI在较低的电极电位(0.2-0.6V)下稳定性并未提高。但在较高的电极电位范围内(0.7-1.0V),pTSA/PANI复合膜表现出了更加优良的稳定性。发生降解后,pTSA/PANI和H2SO4/PANI复合膜的FT-IR谱带发生蓝移,强度降低,EIS结果表明两复合膜的电荷传递电阻均变大,导电性降低。
     利用PANI的电化学氧化还原特性,以H2SO4掺杂的PANI/SPG复合膜修饰电极为阴极,通过电化学还原作用处理水中Cr(VI)。结果表明,与裸SPG电极相比,PANI/SPG复合膜修饰电极对Cr(Ⅵ)的电化学还原去除具有优良的催化性能,PANI的部分氧化态,EM2+是Cr(Ⅵ)与PANI主链之间发生电子转移反应的催化媒介;较负的阴极电位、低电解液pH值、适宜的PANI膜厚和电解液温度可促进Cr(VI)的电还原去除;PANI/SPG复合膜修饰电极上Cr(VI)的还原遵循准一级动力学(k°=2.57×10-2min-1);循环伏安和FT-IR技术表明,电催化还原Cr(Ⅵ)后, PANI/SPG复合膜只发生微小的结构变化,与新制备的复合膜相比,使用后的PANI/SPG复合膜修饰电极仍具有优良的电化学活性。
Heavy metal ions, which are toxic and non-biodegradable, exist in various kinds of aquatic systems. They are stable and can be accumulated into the human body through the food chain, causing a serious threat to human health. Thus, how to control and manage heavy metal pollution has become a great issue in the environmental protection field.
     At present, there are lots of treatment methods for heavy metal removal from water. Among these technologies, adsorption has been widely used because of its high efficiency and simplicity to operate. The excellent adsorbent not only should have fast adsorption rate and high adsorption capacity but also it should be low-cost and easy to regenerate. Polyaniline (PANI) is a new conductive polymer and it contains lots of imine and amine groups, which can react with heavy metal ions to form metal complex. In addition, the imine and amine groups of PANI also have the ability to reduce some heavy metal ions with high oxidation potential. Due to these advantages, PANI has attracted great attention and become a hot topic in the field of waste purification.
     Aiming at the shortcomings of PANI, such as insoluble in common organic solvents, poor mechanical strength and hard to process, granular activated carbon (GAC) with high specific surface area was used to support PANI in this work, and the performance of PANI/GAC composites in heavy metal ions removal was investigated. In addition, doped PANI modified spectroscopically pure graphite (SPG) electrode was prepared and its electro-catalytic properties for heavy metal ions removal were also examined.
     The main research works and conclusions are as follows:
     The PANI/GAC composites were prepared by in situ chemical polymerization. The effect of molar ratio of ammonium persulfate (APS) relative to aniline (AN), sulfuric acid concentration, reaction temperature and reaction time were investigated by orthogonal experiment to optimize the preparation condition. The surface morphology and micro-structure of the PANI/GAC composites were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. Results indicated that the optimal preparation condition were1:1of APS/AN molar ratio,1.0M of sulfuric acid concentration,0℃and12h of reaction. Among these conditions, APS/AN molar ratio was the most primary factor. Meanwhile, the yield of PANI/GAC could be enhanced by lowering the reaction temperature and prolonged the reaction time. The cauliflower-like PANI particles were uniformly attached to the surface of GAC, indicative of the successful preparation of the PANI/GAC composites.
     The adsorption performance of the PANI/GAC composites in Cu(II) ions removal from aqueous solutions was evaluated, and the effects of pH, contact time, dosage of adsorbent, the initial concentration of Cu(II) ions and the reaction temperature on adsorption kinetics and material regeneration performance were investigated. Thermodynamic parameters were also calculated. Various techniques, such as SEM, energy dispersive spectrometer (EDS), FT-IR, XRD and XPS, were used to characterize the PANI/GAC composites before and after adsorption, and the adsorption mechanism was proposed. Experimental results showed that the best pH for Cu(II) ions removal was at around5.5and the dosage of the PANI/GAC composites was2.0g/L corresponding to Cu(II) concentration at400mg/L. The adsorption process followed pseudo second-order kinetics and fitted the Langmuir isotherm excellently. According to the Langmuir equation, the saturated adsorbing capacity of Cu(II) ions on the PANI/GAC composites was calculated as38.97mg/g, which was consistent with experimental data. Thermodynamic results indicated that the adsorption processes was endothermic and could happen spontaneously. Thus, higher temperature favors the adsorption of heavy metal ions. The PANI/GAC composites could be regenerated using0.1M HC1as desorption solution because Cu2+ions were adsorbed on the PANI/GAC composites by chemical reaction. The adsorption capacity of the PANI/GAC composites was with little loss after reused for6times. In summary, the PANI/GAC composites can make full use of the synergistic effect of organic and inorganic materials and have the advantages of high adsorption rate, low cost and good regeneration performance, making it an excellent adsorbent.
     PANI film was also synthesized on SPG surface by a two-step electrochemical polymerization method from sulfonic acid solution and p-toluenesulfonic acid (pTSA) solution. The SEM characterization showed that the morphology of H2SO4/PANI film had porous morphology and three-dimensional textured structure and was composed of uniform ID nanowires with an average diameter of about100-200nm, while pTSA/PANI film was relatively loose and had short and thick fibers with an average diameter of about300-400nm. Electrochemical experiments indicated that the pTSA/PANI film exhibited a better stability than the H2SO4/PANI film at relatively high electrode potential (0.7-1.0V). After degradation, the FT-IR bands of the pTSA/PANI and H2SO4/PANI film were both blue-shift and with a lower intensity. The results of electrochemical impedance spectroscopy (EIS) illustrated that the ion transfer impedances of two modified electrodes were increased and their conductivities were also significantly reduced.
     The electro-reduction of Cr(VI) to much less toxic trivalent state (Cr(III)) was subsequently studied on the H2SO4/PANI modified SPG (PANI/SPG) electrode. Compared to the bare SPG, the PANI/SPG electrode exhibited better electro-catalytic performance in Cr(VI) reduction. The partial oxidation state of PANI, EM2+, could act as the catalytic medium for electron transfer between Cr(VI) and the backbone of PANI. It was found that more negative electrode potential, low electrolyte pH, appropriate thickness of PANI film and suitable temperature were beneficial for the removal of Cr(VI). The reduction of Cr(VI) on the PANI/SPG electrode followed pseudo-first-order kinetics (k°=2.57×10-2min-1). The results of cyclic voltammetry and FT-IR illustrated that the H2SO4/PANI film still possessed excellent electrochemical activity and its structure had little changed after electro-catalytic reduction of Cr(VI).
引文
[1]贾广宁.重金属污染的危害与防治[J].有色矿冶,2004,20(01):39-42.
    [2]Chandra Sekhar K, Chary N S, Kamala C T, et al. Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish[J]. Environment International,2004,29(7): 1001-1008.
    [3]许嘉琳,杨居荣.陆地生态系统中的重金属[M].中国环境科学出版社,1995:333-348.
    [4]肖安东,匡光伟.重金属对畜产品安全的危害与对策[J].中国兽药杂志,2011,45(04):49-51.
    [5]李继强,陈锡永,唐意佳,等.某冶炼厂环境铅污染及其对人群健康影响的研究[J].环境与健康杂志,2001,18(03):151-154.
    [6]Costa M, Klein C B. Toxicity and carcinogenicity of chromium compounds in humans[J]. CRC Critical Reviews in Toxicology,2006,36(2):155-163.
    [7]Costa M. Toxicity and carcinogenicity of Cr (VI) in animal models and humans[J]. CRC Critical Reviews in Toxicology,1997,27(5):431-442.
    [8]唐兆民,张景书.电镀废水的处理现状与发展趋势[J].国土与自然资源研究,2004,2004(02):69-71.
    [9]杨彤,曹文海,许耀生.化学法处理重金属离子废水的改进[J].电镀与精饰,1999,21(05):38-42.
    [10]李军.铁氧体沉淀法处理重金属废水[J].电镀与环保,1999,19(01):30-31.
    [11]李定龙,姜晟.重金属废水处理的方案比较研究[J].工业安全与环保,2005,31(12):18-19.
    [12]Kanzelmeyer T J, Adamas C D. Removal of copper from a metal-complex dye byoxidative pretreatment and ion exchange[J]. Water Environment Research,1996,68(2):222-228.
    [13]吴瀛.含重金属离子废水治理技术的研究进展[J].科技资讯,2010,2010(24):153.
    [14]顾雪芹,益凤娟,戴东.印刷线路板工艺废水的处理[J].上海环境科学,1991,10(03):20-23.
    [15]谢辉玲,叶红齐,曾坚贤.膜分离技术在重金属废水处理中的应用[J].化学与生物工程,2005,2005(05):41-46.
    [16]邵刚.膜法水处理技术[M].冶金工业出版社,2000:1-11.
    [17]Seki H, Suzuki A, Mitsueda S-I. Biosorption of Heavy Metal Ions on Rhodobacter sphaeroidesand Alcaligenes eutrophus H16[J]. Journal of Colloid and Interface Science,1998,197(2):185-190.
    [18]邹照华,何素芳,韩彩芸,等.吸附法处理重金属废水研究进展[J].环境保护科学,2010,36(03):22-24.
    [19]何晓莉,王志盈,袁林江.管式电凝聚法处理印染废水COD的特性研究[J].给水排水,2000,26(05):33-35.
    [20]朱小梅,赵娜,刘晓星,等.高压脉冲电絮凝法处理电镀废水[J].河北大学学报(自然科学版),2007,27(S 1):94-97.
    [21]Yu Z, Admassu W. Modeling of electrodialysis of metal ion removal from pulp and paper mill process stream[J]. Chemical Engineering Science,2000,55(20):4629-4641.
    [22]Schlichter B, Mavrov V, Erwe T, et al. Regeneration of bonding agents loaded with heavy metals by electrodialysis with bipolar membranes[J]. Journal of Membrane Science,2004,232(1-2):99-105.
    [23]Menkouchi Sahli M A, Annouar S, Mountadar M, et al. Nitrate removal of brackish underground water by chemical adsorption and by electrodialysis[J]. Desalination,2008,227(1-3):327-333.
    [24]陈浚,朱润晔,陈建孟,等.用电渗析法纯化回用含铅废水[J].水处理技术,2005,31(06):43-46.
    [25]Schoeman J J. Evaluation of electrodialysis for the treatment of a hazardous leachate[J]. Desalination, 2008,224(1-3):178-182.
    [26]Hinds G, Spada F E, Coey J M D, et al. Magnetic Field Effects on Copper Electrolysis [J]. The Journal of Physical Chemistry B,2001,105(39):9487-9502.
    [27]朱又春,段瑞文.内电解—磁种助凝法处理印染废水的研究[J].广东工学院学报,1996,13(02):34-39.
    [28]Motoyama M, Fukunaka Y, Kikuchi S. Bi electrodeposition under magnetic field[J]. Electrochimica Acta,2005,51(5):897-905.
    [29]郝学奎,王三反.三维电极法处理含铜废水的方法研究[J].兰州铁道学院学报,2002,21(06):96-98.
    [30]王丽,周德瑞.复合三维电极处理含低浓度铜废水研究[J].武汉理工大学学报,2004,26(01):19-21.
    [31]朱又春,方战强,夏志新.废水微电解处理反应材料研究[J].膜科学与技术,2001,21(04):56-60.
    [32]Yang X, Xue Y, Wang W. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis[J]. Bioresource Technology,2009,100(2):649-653.
    [33]许振良,张永锋.络合-超滤-电解集成技术处理重金属废水的研究进展[J].膜科学与技术,2003,23(04):141-150.
    [34]Galloppa A, Catalog F, Campoli F, et al. Influence of Charge Transfer Complex Doping of Polyamide Alignment Film on SSFLC Cell Performance[J]. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals,1996,290(1):129-137.
    [35]Sakai H, Baba R, Hashimoto K, et al. Local Detection of Photoelectrochemically Produced H2O2 with a "Wired" Horseradish Peroxidase Microsensor[J]. The Journal of Physical Chemistry,1995,99(31): 11896-11900.
    [36]Trau M, Yao N, Kim E, et al. Microscopic patterning of orientated mesoscopic silica through guided growth[J]. Nature,1997,390(6661):674-676.
    [37]MacDiarmid A G, Yang L S, Huang W S, et al. Polyaniline:Electrochemistry and application to rechargeable batteries[J]. Synthetic Metals,1987,18(1-3):393-398.
    [38]Pinto N J, Shah P D, Kahol P K, et al. Conducting state of polyaniline films:Dependence on moisture[J]. Physical Review B,1996,53(16):10690-10694.
    [39]景遐斌,唐劲松,王英,等.Molecular chain structure of doped polyaniline[J]. Science in China,Ser.B,1990, (07):787-794.
    [40]Pournaghi-Azar M H, Habibi B. Electropolymerization of aniline in acid media on the bare and chemically pre-treated aluminum electrodes:A comparative characterization of the polyaniline deposited electrodes[J]. Electrochimica Acta,2007,52(12):4222-4230.
    [41]Pron A, Genoud F, Menardo C, et al. The effect of the oxidation conditions on the chemical polymerization of polyaniline[J]. Synthetic Metals,1988,24(3):193-201.
    [42]Chiang J-C, MacDiarmid A G.'Polyaniline':Protonic acid doping of the emeraldine form to the metallic regime[J]. Synthetic Metals,1986,13(1-3):193-205.
    [43]李晓霞,许鹏程.掺杂硫酸浓度对聚苯胺膜性能的影响[J].电子元件与材料,2006,25(03):27-29.
    [44]杨小敏,刘建平,汉京霞,等.化学氧化法制备盐酸掺杂态聚苯胺乳液[J].华东交通大学学报,2006,23(01):161-163.
    [45]Bazzi R, Flores-Gonzalez M A, Louis C, et al. Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles[J]. Journal of Luminescence,2003,102-103(0):445-450.
    [46]Wan M, Li W. A composite of polyaniline with both conducting and ferromagnetic functions[J]. Journal of Polymer Science Part A:Polymer Chemistry,1997,35(11):2129-2136.
    [47]Geng Y, Li J, Sun Z, et al. Polymerization of aniline in an aqueous system containing organic solvents[J]. Synthetic Metals,1998,96(1):1-6.
    [48]Wei Y, Tang X, Sun Y, et al. A study of the mechanism of aniline polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry,1989,27(7):2385-2396.
    [49]Wei Y, Hsueh K F, Jang G-W. Monitoring the chemical polymerization of aniline by open-circuit-potential measurements[J]. Polymer,1994,35(16):3572-3575.
    [50]孙文兵.聚苯胺导电材料的制备及表征[J].化工新型材料,2007,35(04):69-71.
    [51]李永明,万梅香.乳液聚合-萃取法制备掺杂态聚苯胺溶液[J].功能高分子学报,1998,11(03):337-342.
    [52]Kim S G, Lim J Y, Sung J H, et al. Emulsion polymerized polyaniline synthesized with dodecylbenzene-sulfonic acid and its electrorheological characteristics:Temperature effect[J]. Polymer, 2007,48(22):6622-6631.
    [53]Shreepathi S, Holze R. Spectroelectrochemical Investigations of Soluble Polyaniline Synthesized via New Inverse Emulsion Pathway[J]. Chemistry of Materials,2005,17(16):4078-4085.
    [54]刘德峥.微乳液技术制备纳米微粒的研究进展[J].化工进展,2002,21(07):466470.
    [55]程雪坚.微乳液聚合研究新进展[J].化工进展,2003,22(02):195-198.
    [56]Jang J, Ha J, Kim S. Fabrication of polyaniline nanoparticles using microemulsion polymerization[J]. Macromolecular Research,2007,15(2):154-159.
    [57]王臻,力虎林.模板法制备高度有序的聚苯胺纳米纤维阵列[J].高等学校化学学报,2002,23(04):721-723.
    [58]Qiu H, Wan M, Matthews B, et al. Conducting Polyaniline Nanotubes by Template-Free Polymerization[J]. Macromolecules,2001,34(4):675-677.
    [59]Jin Z, Su Y, Duan Y. A novel method for polyaniline synthesis with the immobilized horseradish peroxidase enzyme[J]. Synthetic Metals,2001,122(2):237-242.
    [60]蒋伟春.电化学聚合研究进展[J].上海化工,2004,2004(03):33-35.
    [61]Lee J Y, Ong L H, Chuah G K. Rechargeable thin film batteries of polypyrrole and polyaniline[J]. Journal of Applied Electrochemistry,1992,22(8):738-742.
    [62]Prakash R. Electrochemistry of polyaniline:Study of the pH effect and electrochromism[J]. Journal of Applied Polymer Science,2002,83(2):378-385.
    [63]颜流水,魏治,王承宜,等.聚苯胺膜的电化学合成机理及掺杂行为[J].功能材料,2000,31(05):548-550.
    [64]Genies E M, Tsintavis C. Redox mechanism and electrochemical behaviour or polyaniline deposits[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1985,195(1):109-128.
    [65]孙东豪,穆绍林.苯胺的电聚合研究[J].苏州丝绸工学院学报,1999,19(03):21-25.
    [66]T K, H Y, H T. Polyaniline film-coated electrodes as electrochromic display devices[J]. J. Electroanal. Chem.,1984,161(2):419-423.
    [67]T O, Y O, N O, et al. IR absorption spectroscopic identification of electroactive and electroinactive polyaniline filmsprepared by the electrochemical polymerization of aniline[J]. J. Electroanal. Chem., 1984,161(2):399-405.
    [68]Dai L, Xu Y, Gal J-Y, et al. m-Chloroaniline emulsion polymerization, macromolecular chain structure and electrochemical properties[J]. Polymer International,2002,51(6):547-554.
    [69]焦树强,彭霞辉,周海晖,等.脉冲电流法电解合成聚苯胺[J].高等学校化学学报,2003,24(06):1118-1121.
    [70]Kinyanjui J M, Wijeratne N R, Hanks J, et al. Chemical and electrochemical synthesis of polyaniline/platinum composites[J]. Electrochimica Acta,2006,51(14); 2825-2835.
    [71]Oliveira M M, Castro E G, Canestraro C D, et al. A Simple Two-Phase Route to Silver Nanoparticles/Polyaniline Structures[J]. The Journal of Physical Chemistry B,2006,110(34): 17063-17069.
    [72]Tian S, Liu J, Zhu T, et al. Polyaniline/Gold Nanoparticle Multilayer Films:Assembly, Properties, and Biological Applications[J]. Chemistry of Materials,2004,16(21):4103-4108.
    [73]Athawale A A, Bhagwat S V, Katre P P. Nanocomposite of Pd-polyaniline as a selective methanol sensor[J]. Sensors and Actuators B:Chemical,2006,114(1):263-267.
    [74]Sharma S, Nirkhe C, Pethkar S, et al. Chloroform vapour sensor based on copper/polyaniline nanocomposite[J]. Sensors and Actuators B:Chemical,2002,85(1-2):131-136.
    [75]Chen L, Song Z, Liu G, et al. Synthesis and electrochemical performance of polyaniline-Mn02 nanowire composites for supercapacitors[J]. Journal of Physics and Chemistry of Solids,2013,74(2): 360-365.
    [76]Jacobo S E, Aphesteguy J C, Lopez Anton R, et al. Influence of the preparation procedure on the properties of polyaniline based magnetic composites[J]. European Polymer Journal,2007,43(4): 1333-1346.
    [77]Ma X, Wang M, Li G, et al. Preparation of polyaniline-TiO2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature[J]. Materials Chemistry and Physics,2006,98(2-3):241-247.
    [78]Li Y, Peng H, Li G, et al. Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets[J]. European Polymer Journal,2012,48(8):1406-1412.
    [79]Zimer A M, Bertholdo R, Grassi M T, et al. Template carbon dispersed in polyaniline matrix electrodes:evaluation and application as electrochemical sensors to low concentrations of Cu2+ and Pb2+[J]. Electrochemistry Communications,2003,5(12):983-988.
    [80]毛定文,田艳红.超级电容器用聚苯胺/活性炭复合材料[J].电源技术,2007,32(08):614-619.
    [81]Bleda-Martinez M J, Morallon E, Cazorla-Amoros D. Polyaniline/porous carbon electrodes by chemical polymerisation:Effect of carbon surface chemistry[J]. Electrochimica Acta,2007,52(15): 4962-4968.
    [82]Shao D, Hu J, Chen C, et al. Polyaniline Multiwalled Carbon Nanotube Magnetic Composite Prepared by Plasma-Induced Graft Technique and Its Application for Removal of Aniline and Phenol[J]. The Journal of Physical Chemistry C,2010,114(49):21524-21530.
    [83]Ago H, Kugler T, Cacialli F, et al. Workfunction of purified and oxidised carbon nanotubes[J]. Synthetic Metals,1999,103(1-3):2494-2495.
    [84]Liao Y, Zhang C, Zhang Y, et al. Carbon Nanotube/Polyaniline Composite Nanofibers:Facile Synthesis and Chemosensors[J]. Nano Letters,2011,11(3):954-959.
    [85]Bober P, Stejskal J, Spirkova M, et al. Conducting polyaniline-montmorillonite composites[J]. Synthetic Metals,2010,160(23-24):2596-2604.
    [86]Liu C, Zhou Y, Li S, et al. Preparation and characterization of polyaniline/MMT conductive composites[J]. Polymers for Advanced Technologies,2008,19(12):1693-1697.
    [87]Li X, Li X, Wang G. Fibrillar polyaniline/diatomite composite synthesized by one-step in situ polymerization method[J]. Applied Surface Science,2005,249(1-4):266-270.
    [88]MacDiarmid A G, Epstein A J. The concept of secondary doping as applied to polyaniline[J]. Synthetic Metals,1994,65(2-3):103-116.
    [89]祝宏,李胜松,邝生鲁.原位溶液聚合聚苯胺与聚苯乙烯溶液共混复合材料的制备及表征[J].高等学校化学学报,2010,31(12):2474-2481.
    [90]王辉,郑建邦,吴洪才.电化学法制备聚苯胺/聚乙烯醇导电膜的性能[J].半导体光电,2000,21(01):53-55.
    [91]邓姝皓,王玉.聚苯胺/聚四氟乙烯导电复合膜的电化学制备和表征分析[J].材料导报,2012,26(02):31-39.
    [92]Hosoda M, Hino T, Kuramoto N. Facile preparation of conductive paint made with polyaniline/dodecylbenzenesulfonic acid dispersion and poly(methyl methacrylate)[J]. Polymer International,2007,56(11):1448-1455.
    [93]Deng J, Ding X, Zhang W, et al. Magnetic and conducting FeO4-cross-linked polyaniline nanoparticles with core-shell structure[J]. Polymer,2002,43(8):2179-2184.
    [94]Deng J, Ding x, Peng Y, et al. Hybrid Composite of Polyaniline Containing Carbon Nanotube[J]. Chinese Chemical Letters,2001, (11):1037-1040.
    [95]常雁红,王斌,罗晖,等.聚苯胺/石墨烯纳米复合材料在痕量重金属离子检测中的应用[J].环境污染与大众健康学术会议,2010:1169-1172.
    [96]Zheng Y, Wang W, Huang D, et al. Kapok fiber oriented-polyaniline nanofibers for efficient Cr(Ⅵ) removal[J]. Chemical Engineering Journal,2012,191(0):154-161.
    [97]AbdulAlmohsin S, Li Z, Mohammed M, et al. Electrodeposited polyaniline/multi-walled carbon nanotube composites for solar cell applications[J]. Synthetic Metals,2012,162(11-12):931-935.
    [98]Karatchevtseva I, Zhang Z, Hanna J, et al. Electrosynthesis of Macroporous Polyaniline-V2O5 Nanocomposites and Their Unusual Magnetic Properties[J]. Chem Mater,2006,18(20):4908-4916.
    [99]Katoch A, Burkhart M, Hwang T, et al. Synthesis of polyaniline/TiO2 hybrid nanoplates via a sol-gel chemical method[J]. Chemical Engineering Journal,2012,192(0):262-268.
    [100]Zheng J, Li G, Ma X, et al. Polyaniline-TiO2 nano-composite-based trimethylamine QCM sensor and its thermal behavior studies[J]. Sensors and Actuators B:Chemical,2008,133(2):374-380.
    [101]Han M G, Im S S. Electrical and structural analysis of conductive polyaniline/polyimide blends[J]. Journal of Applied Polymer Science,1999,71(13):2169-2178.
    [102]Gupta R K, Singh R A, Dubey S S. Removal of mercury ions from aqueous solutions by composite of polyaniline with polystyrene[J]. Separation and Purification Technology,2004,38(3):225-232.
    [103]Huang M R, Gu G L, Ding Y B, et al. Advanced Solid-Contact Ion Selective Electrode Based on Electrically Conducting Polymers[J]. Chinese Journal of Analytical Chemistry,2012,40(9): 1454-1460.
    [104]Migdalski J, Blaz T, Lewenstam A. Conducting polymer-based ion-selective electrodes[J]. Analytica ChimicaActa,1996,322(3):141-149.
    [105]Karami H, Mousavi M F. Dodecyl benzene sulfonate anion-selective electrode based on polyaniline-coated electrode[J]. Talanta,2004,63(3):743-749.
    [106]Mousavi M F, Shamsipur M, Riahi S, et al. Design of a New Dodecyl Sulfate-Selective Electrode Based on Conductive Polyaniline[J]. Analytical Sciences,2002,18(2):137-140.
    [107]Khan A A, Inamuddin. Applications of Hg(Ⅱ) sensitive polyaniline Sn(IV) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode[J]. Sensors and Actuators B:Chemical,2006,120(1):10-18.
    [108]Majid S, Rhazi M E, Amine A, et al. Carbon Paste Electrode Bulk-Modified with the Conducting Polymer Poly(1,8-Diaminonaphthalene):Application to Lead Determination[J]. Microchimica Acta, 2003,143(2-3):195-204.
    [109]Akbari A, Mousavi M F, Shamsipur M, et al. A PVC-based 1,8-diaminonaphthalen electrode for selective determination of vanadyl ion[J]. Talanta,2003,60(4):853-859.
    [110]黄美荣,王琳,李新贵.1,8-萘二胺共聚物对铜离子的吸附性[J].环境科学学报,2007,27(08):1317-1319.
    [111]Huang M R, Peng Q Y, Li X G. Rapid and Effective Adsorption of Lead Ions on Fine Poly(phenylenediamine) Microparticles[J]. Chemistry-A European Journal,2006,12(16):4341-4350.
    [112]Li X G, Huang M R, Li S X. Facile synthesis of poly(1,8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization[J]. Acta Materialia,2004, 52(18):5363-5374.
    [113]Dimitriev O P. Doping of Polyaniline by Transition-Metal Salts[J]. Macromolecules,2004,37(9): 3388-3395.
    [114]李新贵,窦强,黄美荣.聚苯胺及其复合物对重金属离子的高效吸附性能[J].化学进展,2008,20(Z1):227-232.
    [115]Shao D, Chen C, Wang X. Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(II)[J]. Chemical Engineering Journal,2012,185-186(0):144-150.
    [116]Sheng G, Li Y, Dong H, et al. Environmental condition effects on radionuclide 64Cu(II) sequestration to a novel composite:polyaniline grafted multiwalled carbon nanotubes[J]. Journal of Radioanalytical and Nuclear Chemistry,2012,293(3):797-806.
    [117]Jiang N, Xu Y, Dai Y, et al. Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake[J]. Journal of Hazardous Materials,2012,215-216(0):17-24.
    [118]Mansour M S, Ossman M E, Farag H A. Removal of Cd (Ⅱ) ion from waste water by adsorption onto polyaniline coated on sawdust[J]. Desalination,2011,272(1-3):301-305.
    [119]Ansari R. Application of Polyaniline and its Composites for Adsorption/Recovery of Chromium (Ⅵ) from Aqueous Solutions[J]. Acta Chimica Slovenica,2006,53:88-94.
    [120]Lii Q-F, Huang M-R, Li X-G. Synthesis and Heavy-Metal-Ion Sorption of Pure Sulfophenylenediamine Copolymer Nanoparticles with Intrinsic Conductivity and Stability[J]. Chemistry-A European Journal,2007,13(21):6009-6018.
    [121]Wei C, German S, Basak S, et al. Reduction of Hexavalent Chromium in Aqueous Solutions by Polypyrrole[J]. Journal of The Electrochemical Society,1993,140(4):L60-L62.
    [122]Wampler W A, Rajeshwar K, Pethe R G, et al. Composites of polypyrrole and carbon black:Part Ⅲ. Chemical synthesis and characterization[J]. Journal of Materials Research,1995,10(07):1811-1822.
    [123]Senthurchelvan R, Wang Y, Basak S, et al. Reduction of Hexavalent Chromium in Aqueous Solutions by Polypyrrole:Ⅱ. Thermodynamic, Kinetic, and Mechanistic Aspects[J]. Journal of The Electrochemical Society,1996,143(1):44-51.
    [124]Pickup N L, Shapiro J S, Wong D K Y. Extraction of silver by polypyrrole films upon a base-acid treatment[J]. Analytica Chimica Acta,1998,364(1-3):41-51.
    [125]Piatnicki C M S, Azambuja D S, Hasse E E S, et al. Removal of Cu(Ⅱ) from dilute solutions at polypyrrole modified electrodes [J]. Separation Science and Technology,2002,37(10):2459-2476.
    [126]Tramontina J, Machado G, Azambuja D S, et al. Removal of Cd2+ from aqueous solutions onto polypyrrole coated reticulated vitreous carbon eletrodes[J]. Materials Research,2001,4:195-200.
    [127]Alatorre M A, Gutie'rrez S, Pa'ramo U, et al. Reduction of hexavalent chromium by polypyrrole deposited on different carbon substrates[J]. Journal of Applied Electrochemistry,1998,28(5):551-557.
    [128]Rodriguez F J, Gutierrez S, Ibanez J G, et al. The efficiency of toxic chromate reduction by a conducting polymer (polypyrrole):influence of electropolymerization conditions[J]. Environmental Science & Technology,2000,34(10):2018-2023.
    [129]Conroy K, Breslin C. Reduction of hexavalent chromium at a polypyrrole-coated aluminium electrode:Synergistic interactions[J]. Journal of Applied Electrochemistry,2004,34(2):191-195.
    [130]Ruotolo L, Gubulin J. Reduction of hexavalent chromium using polyaniline films. Effect of film thickness, potential and flow velocity on the reaction rate and polymer stability [J]. Journal of Applied Electrochemistry,2003,33(12):1217-1222.
    [131]Ruotolo L A M, Liao A A. Reaction rate and electrochemical stability of conducting polymer films used for the reduction of hexavalent chromium[J]. Journal of Applied Electrochemistry,2004,34(12): 1259-1263.
    [132]Ruotolo L A M, Gubulin J C. Chromium(Ⅵ) reduction using conducting polymer films[J]. Reactive and Functional Polymers,2005,62(2):141-151.
    [133]Ruotolo L A M, Gubulin J C. A factorial-design study of the variables affecting the electrochemical reduction of Cr(Ⅵ) at polyaniline-modified electrodes[J]. Chemical Engineering Journal,2005,110(1-3):113-121.
    [134]Ruotolo L A M, Gubulin J C. Optimization of Cr(Ⅵ) electroreduction from synthetic industrial wastewater using reticulated vitreous carbon electrodes modified with conducting polymers[J]. Chemical Engineering Journal,2009,149(1-3):334-339.
    [135]Ruotolo L A M, Gubulin J C. A mathematical model to predict the electrode potential profile inside a polyaniline-modified reticulate vitreous carbon electrode operating in the potentiostatic reduction of Cr(VI)[J]. Chemical Engineering Journal,2011,171(3):1170-1177.
    [136]Ruotolo L A M, Santos-Junior D S, Gubulin J C. Electrochemical treatment of effluents containing Cr(Ⅵ). Influence of pH and current on the kinetic[J]. Water Research,2006,40(8):1555-1560.
    [137]Yang Y-J, Huang H-J. A Polyaniline-Modified Electrode-Based FIA System for Sub-ppb-Level Chromium(VI) Analysis[J]. Analytical Chemistry,2001,73(6):1377-1381.
    [138]Mirmohseni A, Oladegaragoze A. Detection and determination of Cr(VI) in solution using polyaniline modified quartz crystal electrode[J]. Journal of Applied Polymer Science,2002,85(13): 2772-2780.
    [139]Farrell S T, Breslin C B. Reduction of Cr(VI) at a Polyaniline Film:Influence of Film Thickness and Oxidation State[J]. Environmental Science & Technology,2004,38(17):4671-4676.
    [140]Puziy A M, Poddubnaya O I, Martinez-Alonso A, et al. Synthetic carbons activated with phosphoric acid:I. Surface chemistry and ion binding properties[J]. Carbon,2002,40(9):1493-1505.
    [141]Mukhopadhyay M, Noronha S B, Suraishkumar G K. Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass[J]. Bioresource Technology,2007,98(9):1781-1787.
    [142]Donmez G, Aksu Z. The effect of copper(II) ions on the growth and bioaccumulation properties of some yeasts[J]. Process Biochemistry,1999,35(1-2):135-142.
    [143]Hasan S, Ghosh T K, Viswanath D S, et al. Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity[J]. Journal of Hazardous Materials,2008,152(2):826-837.
    [144]Baroni P, Vieira R S, Meneghetti E, et al. Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes[J]. Journal of Hazardous Materials,2008,152(3): 1155-1163.
    [145]Bailey S E, Olin T J, Bricka R M, et al. A review of potentially low-cost sorbents for heavy metals[J]. Water Research,1999,33(11):2469-2479.
    [146]Bhattacharyya K G, Gupta S S. Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution[J]. Separation and Purification Technology, 2006,50(3):388-397.
    [147]Villaescusa I, Fiol N, Martinez M a, et al. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes[J]. Water Research,2004,38(4):992-1002.
    [148]Boonfueng T, Axe L, Xu Y, et al. Nickel and lead sequestration in manganese oxide-coated montmorillonite[J]. Journal of Colloid and Interface Science,2006,303(1):87-98.
    [149]Larous S, Meniai A H, Lehocine M B. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust[J]. Desalination,2005,185(1-3):483-490.
    [150]Kadirvelu K, Namasivayam C. Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution[J]. Advances in Environmental Research,2003,7(2): 471-478.
    [151]Shukla S R, Pai R S. Adsorption of Cu(Ⅱ), Ni(Ⅱ) and Zn(Ⅱ) on dye loaded groundnut shells and sawdust[J]. Separation and Purification Technology,2005,43(1):1-8.
    [152]Dai X, Jeffrey M I, Breuer P L. A mechanistic model of the equilibrium adsorption of copper cyanide species onto activated carbon[J]. Hydrometallurgy,2010,101(3-4):99-107.
    [153]Buga K, Majkowska A, Pokrop R, et al. Postpolymerization Grafting of Aniline Tetramer on Polythiophene Chain:Structural Organization of the Product and Its Electrochemical and Spectroelectrochemical Properties[J]. Chemistry of Materials,2005,17(23):5754-5762.
    [154]Yunus S, Attout A, Bertrand P. Controlled Aniline Polymerization Strategies for Polyaniline Micro-and Nano Self-Assembling into Practical Electronic Devices[J]. Langmuir,2009,25(3):1851-1854.
    [155]Wang J, Deng B, Chen H, et al. Removal of Aqueous Hg(Ⅱ) by Polyaniline:Sorption Characteristics and Mechanisms[J]. Environmental Science & Technology,2009,43(14):5223-5228.
    [156]Yang L, Wu S, Chen J P. Modification of Activated Carbon by Polyaniline for Enhanced Adsorption of Aqueous Arsenate[J]. Industrial & Engineering Chemistry Research,2007,46(7):2133-2140.
    [157]Zhang Y, Li Q, Sun L, et al. High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite[J]. Journal of Hazardous Materials,2010,175(1-3):404-409.
    [158]Wang X-s, Qin Y. Equilibrium sorption isotherms for of Cu2+ on rice bran[J]. Process Biochemistry, 2005,40(2):677-680.
    [159]Demirbas E, Dizge N, Sulak M T, et al. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon[J]. Chemical Engineering Journal,2009,148(2-3): 480-487.
    [160]Shukla A, Zhang Y-H, Dubey P, et al. The role of sawdust in the removal of unwanted materials from water[J]. Journal of Hazardous Materials,2002,95(1-2):137-152.
    [161]Lagergren S. About the theory of so called adsorption of soluble substances[J]. Ksver Veterskapsakad Handl,1898,24:1-39.
    [162]Ho Y S, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999,34(5):451-465.
    [163]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society,1918,40(9):1361-1403.
    [164]Freundlich H. Adsorption in solution[J]. J. Phys. Chem.,1906,57(1906):384-410.
    [165]Kolasniski K W. Surface Science[J]. Wiley,2001.
    [166]Aksu Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (Ⅱ) ions onto Chlorella vulgaris[J]. Process Biochemistry,2002,38(1):89-99.
    [167]Kara M, Yuzer H, Sabah E, et al. Adsorption of cobalt from aqueous solutions onto sepiolite[J]. Water Research,2003,37(1):224-232.
    [168]Dakiky M, Khamis M, Manassra A, et al. Selective adsorption of chromium(Ⅵ) in industrial wastewater using low-cost abundantly available adsorbents[J]. Advances in Environmental Research, 2002,6(4):533-540.
    [169]Wan M W, Kan C C, Rogel B D, et al. Adsorption of copper (Ⅱ) and lead (Ⅱ) ions from aqueous solution on chitosan-coated sand[J]. Carbohydrate Polymers,2010,80(3):891-899.
    [170]Liu Z r, Zhou S q. Adsorption of copper and nickel on Na-bentonite[J]. Process Safety and Environmental Protection,2010,88(1):62-66.
    [171]Basci N, Kocadagistan E, Kocadagistan B. Biosorption of copper (Ⅱ) from aqueous solutions by wheat shell[J]. Desalination,2004,164(2):135-140.
    [172]Annadural G, Juang R, Lee D. Adsorption of heavy metals from water using banana and orange peels[J]. Water Sci. Technol.,2003,47(1):185-90.
    [173]Acar F N, Eren Z. Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions[J]. Journal of Hazardous Materials,2006,137(2):909-914.
    [174]Brown P, Atly Jefcoat I, Parrish D, et al. Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution[J]. Advances in Environmental Research,2000,4(1):19-29.
    [175]Eloussaief M, Jarraya I, Benzina M. Adsorption of copper ions on two clays from Tunisia:pH and temperature effects[J]. Applied Clay Science,2009,46(4):409-413.
    [176]Papandreou A, Stournaras C J, Panias D. Copper and cadmium adsorption on pellets made from fired coal fly ash[J]. Journal of Hazardous Materials,2007,148(3):538-547.
    [177]Ferro-Garcia M A, Rivera-Utrilla J, Rodriguez-Gordillo J, et al. Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by-products[J]. Carbon,1988,26(3):363-373.
    [178]Yavuz O, Altunkaynak Y, GUzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite[J]. Water Research,2003,37(4):948-952.
    [179]Yu B, Zhang Y, Shukla A, et al. The removal of heavy metal from aqueous solutions by sawdust adsorption - removal of copper[J]. Journal of Hazardous Materials,2000,80(1-3):33-42.
    [180]Dhawan S K, Singh N, Rodrigues D. Electromagnetic shielding behaviour of conducting polyaniline composites[J]. Science and Technology of Advanced Materials,2003,4(2):105-113.
    [181]Mortimer R J. Electrochromic materials[J]. Chemical Society Reviews,1997,26(3):147-156.
    [182]Farrell S T, Breslin C B. Reduction of Cr(VI) at a Polyaniline Film:Influence of Film Thickness and Oxidation State[J]. Environ. Sci. Technol.,2004,38(17):4671-4676.
    [183]Olad A, Nabavi R. Application of polyaniline for the reduction of toxic Cr(VI) in water[J]. Journal of Hazardous Materials,2007,147(3):845-851.
    [184]Chen Y, Wang X H, Li J, et al. Polyaniline for corrosion prevention of mild steel coupled with copper[J]. Electrochimica Acta,2007,52(17):5392-5399.
    [185]Wang X H, Li J, Zhang J Y, et al. Polyaniline as marine antifouling and corrosion-prevention agent[J]. Synthetic Metals,1999,102(1-3):1377-1380.
    [186]Karami H, Mousavi M F, Shamsipur M. A new design for dry polyaniline rechargeable batteries[J]. Journal of Power Sources,2003,117(1-2):255-259.
    [187]Huang J, Virji S, Weiller B H, et al. Polyaniline Nanofibers:Facile Synthesis and Chemical Sensors[J]. Journal of the American Chemical Society,2002,125(2):314-315.
    [188]Rahmanifar M S, Mousavi M F, Shamsipur M, et al. A study on the influence of anionic surfactants on electrochemical degradation of polyaniline[J]. Polymer Degradation and Stability,2006,91(12): 3463-3468.
    [189]Mazeikien R, Malinauskas A. Kinetic study of the electrochemical degradation of polyaniline[J]. Synthetic Metals,2001,123(2):349-354.
    [190]Mazeikiene R, Malinauskas A. Electrochemical stability of polyaniline[J], European Polymer Journal, 2002,38(10):1947-1952.
    [191]Mondal S K, Munichandraiah N. The effect of low temperature treatment on electrochemical activity of polyaniline[J]. Journal of Electroanalytical Chemistry,2006,595(1):78-86.
    [192]藤昭,相泽益男,井上.电化学测定方法[M].北京:北京大学出版社,1995:76-81.
    [193]Andrade G d T, Jesus Aguirre M a, Biaggio S R. Influence of the first potential scan on the morphology and electrical properties of potentiodynamically grown polyaniline films[J]. Electrochimica Acta,1998,44(4):633-642.
    [194]Hand R L, Nelson R F. Anodic oxidation pathways of N-alkylanilines[J]. Journal of the American Chemical Society,1974,96(3):850-860.
    [195]Zhang A Q, Cui C Q, Lee J Y. Electrochemical degradation of polyaniline in HClO4 and H2SO4[J]. Synthetic Metals,1995,72(3):217-223.
    [196]Neudeck A, Petr A, Dunsch L. Separation of the Ultraviolet-Visible Spectra of the Redox States of Conducting Polymers by Simultaneous Use of Electron-Spin Resonance and Ultraviolet-Visible Spectroscopy[J]. The Journal of Physical Chemistry B,1999,103(6):912-919.
    [197]Macdiarmid A G, Chiang J C, Richter A F, et al. Polyaniline:a new concept in conducting polymers[J]. Synthetic Metals,1987,18(1-3):285-290.
    [198]Lin S M, Wen T C. Electrochemical synthesis and properties of polyaniline on thermally prepared RuO2 electrodes[J]. Electrochimica Acta,1994,39(3):393-400.
    [199]Mazeikiene R, Malinauskas A. Electrochemical stability of polyaniline[J]. European Polymer Journal, 2002,38(10):1947-1952.
    [200]Mazeikiene R, Malinauskas A. The stability of poly(o-phenylenediamine) as an electrode material[J]. Synthetic Metals,2002,128(2):121-125.
    [201]Simonsson D. Electrochemistry for a cleaner environment[J]. Chemical Society Reviews,1997,26(3): 181-189.
    [202]Xu G, Wang W, Qu X, et al. Electrochemical properties of polyaniline in p-toluene sulfonic acid solution[J]. European Polymer Journal,2009,45(9):2701-2707.
    [203]Trchova M, Sedenkova I, Tobolkova E, et al. FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films[J]. Polymer Degradation and Stability,2004,86(1):179-185.
    [204]Katz S A, Salem H. The Biological and Environmental Chemistry of Chromium[J]. VCH Publishers: New York,1994:51-58.
    [205]Katz S A, Salem H. The toxicology of chromium with respect to its chemical speciation:A review[J]. Journal of Applied Toxicology,1993,13(3):217-224.
    [206]Ke Z, Huang Q, Zhang H, et al. Reduction and Removal of Aqueous Cr (Ⅵ) by Glow Discharge Plasma at the Gas-Solution Interface[J]. Environmental Science & Technology,2011,45(18): 7841-7847.
    [207]Owlad M, Aroua M K, Daud W A W, et al. Removal of hexavalent chromium-contaminated water and wastewater:a review[J]. Water, Air, and Soil Pollution,2009,200(1-4):59-77.
    [208]Almaguer-Busso G, Velasco-Martinez G, Carreno-Aguilera G, et al. A comparative study of global hexavalent chromium removal by chemical and electrochemical processes[J]. Electrochemistry Communications,2009,11(6):1097-1100.
    [209]Ruotolo L A M, Gubulin J C. A factorial-design study of the variables affecting the electrochemical reduction of Cr(Ⅵ) at polyaniline-modified electrodes[J]. Chemical Engineering Journal,2005, 110(1-3):113-121.
    [210]Ruotolo L, Gubulin J. A mathematical model to predict the electrode potential profile inside a polyaniline-modified reticulate vitreous carbon electrode operating in the potentiostatic reduction of Cr (VI)[J]. Chemical Engineering Journal,2011,171:1170-1177.
    [211]Ansari R, Price W E, Wallace G G. Effect of thermal treatment on the electroactivity of polyaniline[J]. Polymer,1996,37(6):917-923.
    [212]Lakshmipathiraj P, Bhaskar Raju G, Raviatul Basariya M, et al. Removal of Cr (VI) by electrochemical reduction[J]. Separation and Purification Technology,2008,60(1):96-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700