用户名: 密码: 验证码:
聚苯胺纳米纤维的界面聚合法制备及电化学电容特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺(PANI)凭借良好的化学稳定性、导电性和高的赝电容储能特性及成本低廉等优点,成为一种极具发展潜力的超级电容器电极材料。尤其是一维纳米结构的聚苯胺纤维材料,除了具有其他纳米结构的高比表面积的特点之外,还具有高长径比、高孔隙率及优良导电性能,因而在超级电容器领域具有重要的研究价值。
     本文采用新颖的界面聚合法制备聚苯胺纳米纤维材料,系统研究并优化了界面聚合工艺技术条件;研究了聚苯胺纳米纤维电极在硫酸水溶液中的电化学电容特性;对聚苯胺纳米纤维材料进行了锂盐掺杂,研究了所得锂盐掺杂态聚苯胺电极在有机电解液中的电化学电容特性;在此基础上,构造了一种新颖的锂盐掺杂态聚苯胺纳米纤维/自制活性炭混合电容器。获得的主要研究成果和结论如下:
     (1)采用优化后界面聚合工艺条件可制备出尺寸均一、具有良好纳米纤维形貌的聚苯胺材料,纳米纤维直径在50~100nm之间、长度为500nm至几微米不等;有效解决了聚合过程中出现“拥挤效应”导致界面聚合法产率不高的问题,将聚苯胺纳米纤维的产率由10%提高到35%。
     (2)在硫酸水溶液电解液中,所制备的聚苯胺纳米纤维电极具有较高的比电容、较好的功率特性和循环性能,5mA放电电流下单电极比电容可达317F╱g,放电电流从5mA提高到20mA后电极容量只下降5%,500次充放电循环后电极容量衰减小于4%;与采用传统化学聚合法制备的不规则颗粒状结构的聚苯胺电极(放电电流从5mA提高到20mA后电极容量下降11%、500次充放电循环后电极容量衰减33%)相比,聚苯胺纳米纤维在微观形貌与结构上的优势得到充分体现。
     (3)发现锂盐对本征态聚苯胺材料可进行充分有效的类似于无机酸的掺杂,而对已经经过酸掺杂的聚苯胺材料可能仅起一个有限的补充掺杂的作用。锂盐掺杂可将聚苯胺纳米纤维材料在1M LiPF_6有机电解液中的比电容值由49.75F╱g提高到128.05F╱g,同时有效改善材料的循环稳定性能(500次充放电循环的容量衰减由70%减少到30%)和电性能;但是,还存在电压降过大、工作电位上限不够高、有效储能电位区间过窄等问题。
     (4)采用所制备的锂盐掺杂态聚苯胺纳米纤维材料和自制活性炭材料构造了一种新颖的混合电容器,通过对比研究认为Et_4NBF_4╱PC有机溶液比含LiPF_6的有机溶液更适合作为这种混合电容器的电解液;该混合电容器与聚苯胺/聚苯胺对称型相比,可以在保持比容量不降低的前提下,有效储能电位区间由0~1V扩大到0~2V,工作电位上限由2.0V提高到2.5V,同时放电电压降大大减小,循环性能得到进一步改善。
Polyaniline (PANI) has enormous development ability as a kind of electrode material of supercapacitor, because of its desirable chemical stability, good conductivity and high faradic pseudo capacitance, as well as low cost advantage. Especially PANI material with one-dimensional nano-structure, in addition to other nano-structure's high specific surface features, also with high long-diameter ratio, high porosity and excellent electrical properties, thus has important research value in the field of supercapacitor.
     In this paper, PANI nanofiber material was prepared by a novel method of interfacial polymerization. The interfacial polymerization's conditions were investigated and optimized systematically; the behaviors of acquired PANI nanofiber material's electrochemical capacitance in H2SO4 aqueous solution were studied; the electrochemical and capacitive characteristics of the PANI nanofiber of lithium salt doping state in organic electrolyte were studied. On the basis, a novel hybrid capacitor based on the PANI nanofiber of lithium salt doping state and homemade activated carbon was constructed. The main research results and conclusions are as follows:
     (1) The optimal interfacial polymerization process can prepare Polyaniline nanofiber material with uniform size and good morphology. The material's average diameter is about 50-100 nm and length ranges from 500 nm up to several micrometers. Meanwhile, the process effectively solves the problem brought by crowding effect and improves the Polyaniline nanofiber' yield from 10% to 35%.
     (2) In H_2SO_4 aqueous solution, acquired PANI nanofiber material can maintain high specific capacitance, good power characteristic and cycle performance. Its single-electrode specific capacitance can reach as high as 317 F/g in discharge current of 5mA, reducing by 5% when discharge current increases from 5mA to 20mA, and the degradation of capacitance is within only 4% during 500 charge-discharge cycles; compared with PANI material with irregular granular morphology prepared by conventional chemical polymerization (electrode capacitance reduces by 11% when discharge current increases from 5mA to 20mA and degradation of capacitance is about 33% during 500 charge-discharge cycles), the advantages of PANI nanofiber material in morphology and structure are fully performed.
     (3) Lithium salt can dope PANI material in non-doping state fully and effectively, which is similar to the doping of inorganic acid, and may play only a limited and added doping role to PANI material having been doped by acid. Lithium doping increases PANI nanofiber material's capacitance in 1M LiPF_6 organic electrolyte from 49.75F/g to 128.05F/g, and effectively improves recycling stability (degradation of capacitance is within only 30% compared with 70% during 500 charge-discharge cycles) and electricity performance. However, several problems exist, such as excessive voltage drop, low potential ceiling and narrow effective energy storage's potential range.
     (4) A novel hybrid capacitor based on the PANI nanofiber of lithium salt doping state and homemade activated carbon is constructed. It shows that Et_4NBF_4/PC organic solution is more suitable for the organic electrolyte of the hybrid capacitor compared with organic solution concluding LiPF_6. The effective energy storage's potential range widens from 0-1V to 0-2V and potential ceiling increases from 2.0V to 2.5V under the circumstance of constant capacity, compared with the PANI/PANI symmetric capacitor. At the same time, the discharge voltage drop decreases greatly and cycle performance further improves.
引文
[1]Ye Song,Xufei Zhu,Xinlong Wang,et al.Characteristics of ionic liquid-based electrolytes for chip type aluminum electrolytic capacitors[J].Journal of Power Sources,2006,157(1):610-615
    [2]Kwan Sik Jang,Bongjin Moon,Eung Ju Oh,et al.Characteristics of tantalum electrolytic capacitors using soluble polypyrrole electrolyte[J].Journal of Power Sources,2003,124(1):338-342
    [3]Andrew Ritchie,Wilmont Howard.Recent developments and likely advances in lithium-ion batteries[J].Journal of Power Sources,2006,162(2):809-812
    [4]U.Lafont,C.Locati,E.M.Kelder.Nanopowders of spinel-type electrode materials for Li-ion batteries[J].Solid State Ionics,2006,177(35-36):3023-3029
    [5]Rainer Wagner.High-power lead-acid batteries for different applications[J].Journal of Power Sources,2005,144(2):494-504
    [6]T.Horiba,T.Maeshima,T.Matsumura,et al.Applications of high power density lithium ion batteries[J].Journal of Power Sources,2005,146(1-2):107-110
    [7]朱磊,吴伯荣,陈晖,等.超级电容器研究及其应用[J].稀有金属,2003,27(3):385-390
    [8]Gurunathan K,Murugan A V,Marimuthu R,et al.Electrochemically synthesized conducting polymeric materials for applications towards technology in electronics,optoelectronics and energy storage devices[J].Materials Chemistry and Physics,1999,61(3):173-191
    [9]Arbizzani C,Mastragostino M,Meneghello L.Polymer-based redox supercapacitors:A comparative study [J].Electrochimica Acta,1996,41(1):21-26
    [10]A.Celzard,F.Collas,J F.Mareche,et al.Porous electrodes-based double-layer supercapacitors:pore structure versus series resistance[J].Joumal of Power Source,2002,108 (1-2):153-162
    [11]D.Qu,H.Shi.Studies of activated carbons used in double-layer capacitors[J].Journal of Power Source,1998,74(1):99-107
    [12]B.E.Conway.Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage[J].Journal of electrochemical society,1991,6:1439-1448
    [13]杨红生,周啸,姜翠玲,等.电化学电容器最新研究进展Ⅱ氧化还原电容器 [J].电子元件与材料,2003,22(3).38-42
    [14]W G.Pell,B E.Conway,W A.Adams,J.Oliveira.Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications [J].J.Power Source,1999,80(1-2):134-141
    [15]唐致远,徐国祥.电子导电聚合物在电化学电容器中的应用[J].化工进展,2002,21(9):652-655
    [16]王晓峰,孔祥华,解晶莹,等.高分子聚合物超电容器研究[J].电子元件与材料,2001,20(5):24-27
    [17]R.Kotz,M.Carlen,et al.principle and application of electrochemical capacitors[J].Electrochemical Acta,2000,45(15-16):2483-2498
    [18]L.T.Lain,R.Louey.Development of ultra-battery for hybrid-electric vehicle applications[J].Journal of Power Sources,2006,158(2):1140-1148
    [19]J.N.Marie-Francoise,H.Gualous,R.Outbib,et al.42 V Power Net with supercapacitor and battery for automotive applications[J].Journal of Power Sources.2005.143(1-2):275-283
    [20]熊奇,唐冬汉.超级电容器在混合电动车上的研究进展[J].中山大学学报(自然科学版),2003,42(A19):130-133
    [21]Deyang Qu.Studies of the activated carbons used in double-layer supercapacitors [J].Jorunal of power sources,2002,119(2):403-411
    [22]Chang Hun Yun,Ytm Heum Park,Chong Rae Park.Effect of pre-carbonization on porosity development of activated carbons from rice straw[J].Carbon,2001,39(4):559-567
    [23]Centeno T A,Stoeckli F.The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons[J].Electrochimica Acta,2006,52(2):560-566
    [24]LI Jun,WANG Xian-you,HUANG Qing-hua,et al.Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor[J].Journal of Power Sources,2006,158(1):784-788
    [25]Jurewicz K,Babel K,Pietrzak R,et al.Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation[J].Carbon,2006,44(12):2368-2375
    [26]FANG Wei-chuan,HUANG Jin-hua,CHEN Li-chyong,etal.Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxide[J].Journal of Power Sources,2006,160(2):1506-1510
    [27] Lee J K, Pathan H M, Jung K D, et al. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide[J]. Journal of Power Sources, 2006,159(2):1527-1531
    [28] Subramanian V, Zhu H, Wei B. Nanostructured MnO_2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material [J]. Journal of Power Sources, 2006,159(1):361-364
    [29] WU Meng-qiang, GAO Jia-hui, ZHANG Shu-ren, et al. Comparative studies of nickel oxide films on different substrates for electrochemical supercapacitors [J]. Journal of Power Sources, 2006,159(1):365-369
    [30] J H. Park, J M. Ko, O O. Park, et al. Capacitance properties of graphite / polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber[J]. J. Power Source, 2002,105(1): 20-25
    [31]Laforgue A, Simon P, Sarrazin C, et al. Polythiophene-based supercapacitors [J]. Journal of Power Sources, 1999, 80(1-2): 142-148
    [32] Chi-Chang Hu, Wen-Yar Li, Jeng-Yan Lin. The capacitive characteristics of supercapacitors consisting of activated carbon fabric-polyaniline composites in NaNO_3[J].Journal of power source, 2004,137(1):152-157
    [33] Wei-Chih Chen, Ten-Chin Wen. Electrochemical and capacitance properties of polyaniline-implanted porous carbon electrode for supercapacitors [J]. Journal of power Source, 2003,117(1-2): 273-282
    [34] Wei-Chih Chen, Ten-Chin Wen, Hsisheng Teng. Polyaniline-deposited porous carbons electrode for supercapacitor[J] . Electrochimica Acta, 2003,48(6): 641-649
    [35] J.M.Ko, R.Y.song, H.J.Yu, et al. Capacitive performance of the composite electrode consisted of Polyaniline and actived carbons powder in a solid-like acid gel electrolyte[J]. Electrochimica Acta, 2004, 50(2-3): 873-876
    [36] Chi-Chang Hu, Jeng-Yan Lin. Effects of the loading and polymerization temperature on the capacitive performance of Polyaniline in NaNO_3[J]. Electrochimica Acta, 2002,47(25): 4055-4067
    [37]Kwang Sun Ryua, Young-Sik Hong, Yong Joon Park, et al. Polyaniline doped with dimethylsulfate as a polymer electrode for all solid-state power source system[J]. Solid State Ionics, 2004,175(1-4): 759-763
    [38]K. Rajendra Prasad, N. Munichandraiah. Fabrication and evaluation of 450 F electrochemical redoxsupercapacitors using inexpensive and high-performance, polyaniline coated,stainless-steel electrodes[J].Journal of power Source,2002,112(2):443-451
    [39]王永刚,张校刚,刘献明,等.镍离子浓度对聚苯胺膜电容行为的影响[J].电源技术,2004,28(4):231-234
    [40]Shirakawa H,Louis E J,MacDiarmid A G;et al.Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene,(CH)x [J].J Chem Soc,Chem Commun,1977,(16):578-580
    [41]冀勇斌,李铁虎,王小宪,等.导电高分子材料及其应用[J].材料导报,2005,19(F05):274-276
    [42]王科,张旺玺.导电聚苯胺的研究进展[J].合成技术及应用,2004,19(1):23-27
    [43]于黄中,陈明光,贝承训.导电聚苯胺的特性、应用及进展[J].高分子材料科学与工程,2003,19(4):18-21
    [44]马永梅,陈春英,过俊石,等.聚苯胺导电复合物的二次掺杂现象[J].科学通报,1997,42(7):707-709
    [45]陆珉,吴益华,姜海夏.导电聚苯胺的特性及应用[J].化工新型材料,1997,(11):16-20
    [46]Kwang Sun Ryu,Kwang Man Kim,Seong-Gu Kang,et al.The charge/discharge mechanism ofpolyaniline films doped with LiBF4 as a polymer electrode in a Li secondary battery[J].Solid State Ionics,2000,135(1-4):229-234
    [47]Gupta V,Miura N.Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors [J].Electroehimica Acta,2006,52(4):1721-1726
    [48]Zhanghua Zhou,Naicai Cai,Yunhong Zhou.Capacitive of characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon[J].Materials Chemistry and Physics,2005,94(2-3):371-375
    [49]杨红生,周啸,张庆武.以多层次聚苯胺颗粒为电极活性物质的超级电容器的电化学性能[J].物理化学学报,2005,21(4):414-418
    [50]Gupta V,Miura N.Electrochemically deposited polyaniline nanowire's network [J].Electrochemical and Solid-State Letters,2005,8(12):A630-A632
    [51]Gupta V,Miura N.Large-area network of polyaniline nanowires prepared by potentiostatic deposition process[J].Electrochemistry Communications,2005,7(10):995-999
    [52]Girija T C,Sangaranarayanan M V.Investigation ofpolyaniline-coated stainless steel electrodes for electrochemical supercapacitors[J].Synthetic Metals,2006, 156(2-4):244-250
    [53]Girija T C,Sangaranarayanan M V.Polyaniline-based nickel electrodes for electrochemical supercapacitors-Influence of Triton X- 100[J].Journal of Power Sources,2006,159 (2):1519-1526
    [54]Ryu K S,Kim K M,Park N G,et al.Symmetric redox supercapacitor with conducting polyaniline electrodes[J].Journal of Power Sources,2002,103(2):305-309
    [55]Ryu K S,Kim K M,Park Y J,et al.Redox supercapacitor using polyaniline doped with Li salt as electrode[J].Solid State Ionics,2002,(152-153):861-866
    [56]Gupta V,Miura N.Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites[J].Journal of Power Sources,2006,157(1):616-620
    [57]ZHOU Ying-ke, HE Ben-lin,ZHOU Wen-jia,et al.Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites[J].Electrochimica Acta,2004,49(2):257-262
    [58]Jang J,Bae J,Choi M,et al.Fabrication and characterization ofpolyaniline coated carbon nanofiber for supercapacitor[J].Carbon,2005,43(13):2730-2736
    [59]Park J H,Park O O.Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes[J].Journal of Power Sources,2002,111(1):185-190
    [60]WANG Xiao-Feng,RUAN Dian-Bo,WANG Da-Zhi,et al.Hybrid electrochemical supercapacitors based on polyaniline and activated carbon electrodes[J].Acta Phys.-Chim.Sin.,2005,21(3):261-266
    [61]张庆武,周啸.聚苯胺混杂型电化学电容器研究[J].电子元件与材料,2005,24(1):35-40
    [62]Kwang Sun Ryu, Youngil Lee, Kyoo-Seung Han, et al. Electrochemical supercapacitor based on polyaniline doped with lithium salt and active carbon electrodes[J].Solid State Ionics,2004,175(1-4):765-768
    [63]Donghua Zhang,Yangyong Wang.Synthesis and applications of one-dimensional nano-structured polyaniline: An overview[J].Materials Science and Engineering:B,2006,134(1):9-19
    [64]黄美荣,李新贵,曾剑峰,等.导电聚合物纳米纤维的成型[J].现代化工,2002,22(12):10-13
    [65]Barbara Patys,Paulina Celuch.Redox transformations of polyaniline nanotubes:Cyclic voltammetry, infrared and optical absorption studies[J].Electrochimica Acta, 2006, 51(20):4115-4124
    [66]彭霞辉,黄可龙,焦飞鹏,等.聚苯胺的合成及性能[J].中南大学学报(自然科学版),2004,35(6):974-977
    [67]XIONG Shan-xin,WANG Qi,XIA He-sheng.Preparation of polyaniline nanotubes array based on anodic aluminum oxide template[J].Materials Research Bulletin,2004,39(10):1569-1580
    [68]康茹珍,杨善武,贺信莱,等.反应物中氧化剂和掺杂剂浓度对聚苯胺性能和结构的影响[J].北京科技大学学报,2005,27(1):45-49
    [69]Osterholm J E,Cao Y,Klavetter F,et al.Emulsion polymerization of aniline[J].Polymer,1994,35(13):2902-2906
    [70]黄美荣,李新贵.聚苯胺纳米粒子的形成[J].同济大学学报(自然科学版),2005,33(1):83-87
    [71]Zhang X,Chan-Yu-King R,Jose A,et al.Nanofibers of polyaniline synthesized by interfacial polymerization[J].Synthetic Metals,2004,145(1):23-29
    [72]GAO Hai-xiang,JIANG Tao,HAN Bu-xing,et al.Aqueous/ionic liquid interfacial,polymerization for preparing polyaniline nanoparticles[J].Polymer,2004,45(9):3017-3019
    [73]Huang J,Virji S,Weiller B H,et al.Polyaniline nanofibers:Facile synthesis and chemical sensors[J].Journal of the American Chemical Society,2003,125(2):314-315
    [74]辛凌云,张校刚.界面扩散聚合法制备樟脑磺酸掺杂聚苯胺纳米管或纳米纤维及其电化学电容行为研究[J].高分子学报,2005,(3):437-441
    [75]Gupta V,Miura N.High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline[J].Materials Letters,2006,60(12):1466-1469
    [76]徐瑞芬,夏争艳,赵玮婷,等.HCl气相掺杂对聚苯胺电导翠影响规律的探讨[J].化工新型材料,2005,33(10):58-60
    [77]吐尔逊·阿不都热依木,张校刚.温度对固相聚合反应盐酸掺杂聚苯胺的影响[J].功能材料,2004,35(3):330-332
    [78]Huang J,Kaner R B.A general chemical route to polyaniline nanofibers[J].Journal of the American Chemical Society,2004,126(3):851-855
    [79]Huang J,Kaner R B.Nanofiber formation in the chemical polymerization of aniline:a mechanistic study[J].Angewandte Chemie,2004,43(43):5817-5821
    [80]黄美荣,李新贵,杨海军.高含量聚苯胺水性微乳液的制备[J].涂料工业, 2005,35(3):1-6
    [81]任斌,余成.导电聚苯胺的合成及其性能研究[J].光谱实验室,2005,22(1):148-151
    [82]崔绍波,卢忠远,刘德春,等.界面聚合技术及其应用研究进展[J].化工进展,2006,25(1):47-50
    [83]LAI Yan-qing,LI Jing,LI Jie,et al.Preparation and electrochemical characterization of C/PANI composite electrode materials[J].Journal of Central South University of Technology,2006,13(4):353-359
    [84]王晓峰,王大志,梁吉.碳纳米管表面沉积氧化镍及其超电容器的电化学行为[J].无机材料学报,2003,18(2):331-336
    [85]C.Portet,EL,Tabema,Simon.p,et al.Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications[J].Electrochimica Acta,2004,49(9):905-912
    [86]Prabaharan S R S,Vimala R,Zainal Z.Nanostructured mesoporous carbon as electrodes for supercapacitors [J].Journal of Power Sources,2006,161(1):730-736
    [87]Pell W G.B E.Conway et al.Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitance containing sub-optimal electrolyte concentration [J].Journal of electroanalytical chemistry,2000,491:9-21
    [88]陈宏,陈劲松,周海辉,等.纳米纤维聚苯胺在超级电容器上的应用[J].物理化学学报,2004,20(6):593-597
    [89]C.Portet,P.L.Tabema,E Simon,et al.High power density electrodes for Carbon supercapacitor applications[J].Electrochimica Acta,2005,50(20):4174-4181
    [90]I.Bispo-Fonseca,J.Aggar,C.Sarrazin,ea al.Possible improvements in making carbon electrodes for organic supercapacitors[J].Joumal of Power Sources,1999,79(2):238-241
    [91]C.Portet,P.L.Tabema,P.Simon,et al.Influence of carbon nanotubes addition on carbon-carbon supercapacitor performances in organic electrolyte[J].Journal of Power Sources,2005,139(1-2):371-378
    [92]Pierre-Louis Tabema,Geoffroy Chevallier, Patrice Simon,et al.Activated carbon-carbon nanotube composite porous film for supercapacitor applications[J].Materials Research Bulletin,2006,41(3):478-484
    [93]C.K.Jeong,J.H.Jung,B.H.Kim,et al.Electrical,magnetic,and structural properties of lithium salt doped Polyaniline[J].Synthetic Metals,2001,117(1-3):99-103
    [94]Kwang Sun Ryu,Bong Wong Moon,Jinsoo Joo,et al.Characterization of highly conducting lithium salt doped polyaniline films prepare.d from polymer solution [J].Polymer,2001, 42(23):9355-9360
    [95]汪水平,何丽红,翁睿,等.质子酸掺杂聚苯胺导电材料的合成[J].纤维复合材料,2005,22(1):7-9
    [96]V.khomenko,E.Frackowiak,F.Beguin.Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations[J].Electrochimica Acta,2005,50(12):2499-2506
    [97]ArbizzaniC,MastragostinoM,SoaviF.New trends in electrochemical supercapacitors [J].J Power Sources,2001,100 (1-2):164-170
    [98]王晓峰,尤政,阮殿波.聚苯胺在电化学电容器中的应用[J].化学物理学报,2005,18(4):635-640
    [99]周鹏伟,李宝华,康飞宇.超级电容器用有机电解液的研究[J].电池,2005,35(2):97-99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700