用户名: 密码: 验证码:
磁场环境中聚苯胺的掺杂行为及其性能的研究与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺(PAn)具有单体价格低廉、合成简便、稳定性良好、较高电导率等优异的特性,引起了人们的广泛关注。用小分子无机酸掺杂的聚苯胺虽然具有较高的电导率,但其溶解性和稳定性较差,极大的限制了它的实用化进程。大分子磺酸具有沸点高,既含有极性基团又含有非极性基团,其稳定性也优于小分子无机酸,因此探讨采用大分子磺酸作为掺杂剂,以提高掺杂态聚苯胺的电导率及应用性具有一定的现实意义。
     由于磁场能改变分子取向,控制化学反应速度,改变产物结构并提高其性能,因此研究磁场作用对苯胺聚合行为及其性能的影响已经成为人们感兴趣的热点领域之一,并取得了一定成果。但到目前为止,关于在磁场中用大分子酸掺杂聚苯胺的研究尚鲜见报道。
     本文探讨了在磁场作用下采用微乳液法制备高性能聚苯胺的工艺。研究了以下工艺条件:掺杂酸的种类及用量、乳化剂的种类及用量、氧化剂的种类及用量和掺杂时间,并通过正交实验确定了最佳工艺条件。采用数字式四探针电导率仪、电化学工作站、红外光谱仪、X-射线衍射仪、热重分析仪、紫外-可见光谱仪、激光粒度分析仪等现代化分析测试手段,对产品的电导率、腐蚀电位、微观结构、结晶性、热稳定性、粒径分布等性能进行了分析和表征。研究了磁场对聚苯胺性能的影响。
     实验结果表明,同等条件下与无磁场作用相比,其红外光谱各个特征峰值变化很小,X射线衍射的衍射峰增强,表明磁场对聚苯胺分子链的单元结构影响不大,但对PAn分子的取向性和规整性有明显的影响。
     本文在外加磁场作用下,通过一系列条件实验的结果显示:磁场能缩短反应时间、减少掺杂剂的用量、提高产物的电导率。反应时间从3 h减少到2 h;掺杂酸浓度(CSSA)从0.4 mol·L~(-1)减小到0.3 mol·L~(-1);乳化剂与苯胺单体的摩尔比(nSDBS/nAn)从0.6减少到0.45;氧化剂与苯胺单体的摩尔比(nAPS/nAn)从0.8减少到0.6;电导率从1.65×10~(-1)S·cm~(-1)提高到为10.54×10~(-1)S·cm~(-1)。另外,聚苯胺的腐蚀电位提高了31%,热分解温度提高了6%。在磁场环境中采用本文工艺合成的聚苯胺在导电性、粒径、热稳定性、防腐性、规整性、成本等各方面与无磁场作用的产品相比都有明显的优势,具有广阔的市场开发与应用前景。
Polyaniline (PAn) is one of the most important conducting polymers because of its simple synthesis methods, particular doping mechanism, excellent environmental stability, as well as wide application. At present polyaniline has become one of the hottest focuses in conductive polymer area. With small molecular inorganic acid doping polyaniline has a higher conductivity, but its solubility and the stability are worse, limit its practical advancement. The macromolecular sulfonic acid has higher boiling point, both including the polar groups and the non-polar groups, its stability also surpasses the small molecular inorganic acid, therefore, using the macromolecular sulfonic acid to dope polyaniline can enhance the conductivity and the application, which has the certain practical significance.
     As a result of magnetic field can change molecular orientation and control rate of chemical reaction and change product structure and enhance its performance, therefore, study on the synthesis and properties of doped polyaniline in magnetic field has become one of the hottest focuses. But, to our knowledge, no systematic study with respect to the properties of doped polyaniline by sulfonic acid in magnetic field has yet been published.
     In this article the technology of high performance polyaniline under the circumstances of microemulsion in magnetic field were synthesized. Some technologic conditions were researched: such as the category and dosage of doped acid the category and dosage of emulsifier agent, the category and dosage of oxidant and reaction time; then, the best technologic conditions were confirmed through the orthogonal experiment. The polyaniline’s conductivity, microstructure, anticorrosion, crystallization, thermal stability, particle size and others properties were analyzed and characterized by modern testing methods, such as IR, XRD, TGA, UV, and so on. Finally, through the comparison of synthesized products without magnetic field, the optimal or the improved collocations were worked out. According to such collocations that the effect of doped polyaniline in magnetic field.
     In comparison with out magnetic field, the results indicated that the change of characteristic peak values of polyaniline at their infrared spectrum is not obvious, the X-ray diffraction peaks of polyaniline becomes very intense, which showed the microstructure of polyaniline was not influenced in magnetic field, but the orientation and regularity of polyaniline is obviously improved in magnetic field.
     Under magnetic field, based on the data from the experiment in lab condition, the results indicate that the time of the polymerization and the dosage of doped agent were reduced and the conductivity of polyaniline is enhanced in the presence of magnetic filed. The polymerization time decreased from 3 h to 1 h; the concentration of doped acid(CSSA)decreased from 0.4 mol·L~(-1) to 0.3 mol·L~(-1); the mole ratio of emulsifier and aniline monomer (nSDBS/nAn) decreased from 0.6 to 0.45; the mole ratio of oxidant and aniline monomer (nAPS/nAn) decreased from 0.8 to 0.6; the conductivity of polyaniline increased from 1.65×10~(-1)S·cm~(-1) to 10.54×10~(-1)S·cm~(-1) in magnetic field. The corrosition potential of polyaniline has increased by 31%, the thermal decomposition temperature has increased by 6%. Compared with the present polyaniline without magnetic field, the polyaniline synthesized by this improved technology has evident advantages in certain properties, such as conductivity, particle size, thermal stability, anticorrosion, uniform arrangenent, synthetical cost and son on, therefore, possessing bright prospects in marketing development and application.
引文
[1] Macdiarmid A G, Chiang J C, Halpern M, et al. “Polyaniline”: Interconversion of metallic and insulated forms [J]. Mol.Cryst.Liq.Cryst. 1985, 121:173-180
    [2] Macdiarmid A G, Mu S L, Wu W Q, et al. Electrochemical characteristies of “polyaniline” cathodes and anodes in aqueous electrolytes [J]. Mol.Cryst.Liq.Cryst. 1985, 121:187-190
    [3] Macdiarmid A G, Chiang J C, Huang W S, et al. ilne: Protonic acid doping to the metallic regime [J]. Mol.Cryst.Liq.Cryst. 1985, 125:309-318
    [4] Chiang J C, Macdiarmid A G. “Polyaniline”: Protonic acid doping of the emeraldine form to the metallic regime [J]. Synth. Met. 1986, 13:193-205
    [5] Macdiarmid A G, Chiang J C, Richter A F. “Polyaniline”: A new concept in conducting polymers [J]. Synth. Met. 1987, 18:285-290
    [6] 井新利,郑茂盛,蓝立文.反相微乳液法合成导电聚苯胺纳米粒子[J].高分子材料科学与工程,2000,16(2):23-25
    [7] Kim B J, Oh S G, Ham M G, et al, Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium [J]. Langmuir, 2000, 16(14):5841-5845
    [8] Kinlen P J, Liu J, Ding Y, et al. Emulsion polymerization process for organically soluble and electrically conducting polyaniline [J]. Macromolecules, 1998, 31: 1735 -1744
    [9] 南 军 义 , 林 薇 薇 , 田 永 辉 . 共 聚 物 酸 掺 杂 接 枝 聚 苯 胺 的 研 究 [J]. 功 能 高 分 子 学报,2000,13(3):297-300
    [10] Huang J, Wan M X. In situ doping polymerization of polyaniline microtubules in the presence of β -naphthalenesulfonic acid [J]. Polym Sci A: Polym Chem, 1999, 37:151-157
    [11] Wei Z, Zhang Z, Wan M. Formation mechanism of self-assembled polyaniline micro/nanolubes [J]. Langmuir, 2002, 18:917-921
    [12] Zhang L, Wan M. Synthesis and characterization of self-assembly polyaniline nanotubes doped with D-10-camphorsulfonic acid [J]. Nanotechnology, 2002, 13(10):750-755
    [13] Zhang L, Wan M. Self-assembly of polyaniline from nanotubes to bollow microspheres [J]. Adv Funct Mater, 2003, 13(10):815-820
    [14] 阳范文,唐建斌. 导电聚苯胺的微乳液聚合[J].桂林工学院学报,2000,20(3):264-266
    [15] 朱 新 生 , 王 新 波 , 孙 东 豪 . 微 乳 液 法 制 备 导 电 聚 苯 胺 的 研 究 [J]. 合 成 技 术 及 应用,2002,17(3):5-7
    [16] Zhang Qinghua, Wang Xianhong, Chen Dajun, et al. Preparation and properties of conductive polyaniline/poly-ω -aminoundecanoyle fibers [J]. Journal of Applied Polymer Science, 2002,85:1459
    [17] Wang H L, Romero R J, Mattes B R, et al. Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber [J]. Journal of Polymer Science, 2000, 38:194-195
    [18] 钟汉权,刘维锦. 聚苯胺导电纤维的研究动态[J]. 纺织科学研究,2000,(2):20
    [19] 夏林,宁平. 可溶导电聚苯胺材料的合成研究[J]. 合成材料老化与应用,2002(4):17
    [20] Sun Z C, Wang X H, Li J, et al. Preparation and properties of water-based conducting polyaniline [J]. Synthetic Metals, 1999, 102:1224
    [21] Genies E M, Bolye A, Lapkowske M, et al. polyaniline: A historical survey [J]. Synth Met, 1990, 36:139
    [22] Yoshizawa K. Magnetic properey of soluble poly (m-aniline) [J]. Solid State Commun. 1993, (87):935-937
    [23] 封伟,韦玮,吴洪才.有机磺酸掺杂聚苯胺的光电性能[J]. 半导体光电.1999, 20(4):265-268.
    [24] Burrongnes T H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347:539-541
    [25] Cao J, Smith P, Heeger A J. Counter-ion induced processibility of conducting polyaniline [J]. Synthetic. Metals, 1993, 57(1):3514-3519
    [26] 裴启兵,杨阳,李永舫.共轭聚合物及其电致发光器件,海外高分子科学的新进展[M]. 北京:北京化学工业出版社,1997,76
    [27] 刘昆鹏,苏力军,闫国婷,等.导电聚苯胺的研究进展[J]. 河北化工,2005,6:9-11
    [28] 王保成,许并社. 导电聚苯胺现状评述[J]. 太原理工大学学报, 2002(33):54-56
    [29] Palaniappan S, Chandra S R. Transesterification of ketoesters with alcohols using polyaniline salts as catalysts [J]. Polymers for advanced technologies 2004; 2(2):140–143
    [30] 於黄中,陈明光,黄河.不同类型的酸掺杂对聚苯胺结构和电导率的影响[J]. 华南理工大学学报(自然科学版),2003,31(5):23
    [31] 王辉,郑建邦,曹猛,等. 低能离子注入对 PAN/Si 异质结太阳电池的改性研究[J]. 真空科学与技术.2000, 20(5):336-339
    [32] 郑建邦,王辉,刘效增,等.低能离子注入对聚苯胺薄膜的改性研究[J]. 真空科学与技术.2000, 20(3):197-199
    [33] Forrest S R, Kaplan M L, Schmidt P H. Large conductivity change in ion deam irradiated organic thin films [J]. Appl Phys Lett, 1982, 41:708-710
    [34] 封伟,刘效增,曹猛,等.低能离子注入聚苯胺薄膜结构性能研究[J]. 西安交通大学学报.2000, 34(2):33-36
    [35] 瞿茂林,伊敏,哈鸿飞.高分子材料辐射加工技术及发展[M].北京:化学工业出版社,2004:327
    [36] 封伟,吴洪才.离子注入技术改性聚合物薄膜的研究进展[J].真空科学与技术.2000, 20(1):51-54
    [37] Yong C, Paul S, Alan J H. Processible forms of electrically conductive polyaniline [P]. US 5624605. 1997
    [38] Patrick J. Emulsion-polymerization process and electrically conductive polyaniline [P]. US 5863465. 1999
    [39] Chen C C. Miscible forms of electrically conductive polyaniline [P]. US 5670607, 1997
    [40] Jie Huang, Meixiang Wan. Polyaniline doped weith different sulfonic acids by in situ doping polymerization [J]. A. G. J Polym Sci Part A: Polym Chem, 1999, 37:1277-1284
    [41] Sun L F, Yang S C, Liu J M. Template guided synthesis of conducting polymers molecular complex of polyaniline and polyelectrolyed [J]. Polymer Prepprints, 1992, 33:397-380
    [42] Jie Huang, Meixiang Wan. In situ doping polymerization of polyaniline microtubules in the presence of β -naphthalenesulfonic acid [J]. A. G. J Polym Sci Part A: Polym Chem, 1999, 37:151-157
    [43] Meixiang Wan, Junchao Li. Microtubules of polyaniline doped with HCl and HBF4 [J]. A. G. J Polym Sci Part A: Polym Chem, 1999, 37:4605-4609
    [44] Jaroslav S. Polyaniline prepared in the presence of various acids: a conductivity study [J]. Polymer International 2004, 20(2):294-300
    [45] 曾幸荣,龚克成.盐酸掺杂聚苯胺的热稳定性的研究[J].合成材料老化与应用.2004, (4):8
    [46] 刘郁杨,邵颖惠.掺杂态聚苯胺的 XPS 研究[J].高分子材料科学与工程.2002, 18(4):191-193
    [47] 张柏宇,苏小明,邓祥. 聚苯胺导电复合材料研究进展及其应用[J].石化技术与应用.2004, 20(6):461-466
    [48] 刘春宁,李侃社.磺酸掺杂聚苯胺导电复合材料的研究进展[J].现代塑料加工应用.2004, 15(6):64-67
    [49] 苏静,王庚超,邓惠山,范晓青.杂质子酸的类型对聚苯胺结构和电导率的影响[J].功能高分子学报.2002, 15(2):122-125
    [50] Gustavo. Synthesis and characterization of single-wall-carbon-nanotube-doped emeraldine salt and base polyaniline nanocomposites [J]. Journal of Polymer Science: Part A: Polymer Chemi-stry, 2005, 43(9):815–822
    [51] Wan M, Absorption spectra of polyaniline [J]. Polym Sci Part A, 1992, 30:543
    [52] 康茹珍,杨善武,贺信莱,等.反应物中氧化剂和掺杂剂浓度对聚苯胺性能与结构的影响[J]. 北京科技大学学报,2005,27(1):45
    [53] 孙建平,李宝铭,吴洪才.十二烷基苯磺酸掺杂聚苯胺的性能研究[J].精细化工. 2002, 19(10):578
    [54] 汪水平 , 何丽红 , 翁睿等 . 质子酸掺杂聚苯胺导电材料的合成 [J]. 纤维复合材料,2005,1(1):7-9
    [55] 杨胜林,潘玮,李光等.掺杂率对乳液聚合植被聚苯胺结构性能的影响[J].功能高分子学报. 2003, 16(2):.203-206
    [56] 孙祖信,彭志强.导电高分子材料聚苯胺及其开发前景[J].材料开发和应用.1995, 2(1):20-22.
    [57] 刘丹丹,宁平,夏林. 导电聚苯胺的研究进展及应用开发前景[J].合成材料老化与应用.2004(3):43-47
    [58] Rokhinson E. Grak E. Agricultural magnetic treatment for seeds and water [J]. International Agrophsics, 1994, 8(2):83-87.
    [59] 丁岗.磁化钻井液应用性实验研究 [J]. 石油大学学报(自然科学版),1995,4(9):35-40
    [60] 张淑仙,汤鸣,谢文蕙.磁场对乙酸乙酯反应的影响[J]. 化学通报,1996,(5):25-26
    [61] 陈子瑜,朱晓莉,周朝华.磁场对共聚反应影响研究[J]. 兰州大学学报(自然科学版),1995,31(2):160
    [62] 胡奇林,王有贤,王淑华.磁场对正丁醇与酸酯化反应的影响[J]. 宁夏大学学报(自然科学版).1995, 16(3):59
    [63] Murayama M. Orientation of sickled crythrocytes in a magnetic field [J]. Nature.1965, 206:420
    [64] Stupp I. Pulling polymers into line [J]. Science Nature.1986, 129:297
    [65] Laura P F T. Electron paramagnetic resonance and proton nuclear magnetic resonance relaxations in polyanilines [J]. Polymers for Advanced Technologies, 1997, 8:30-34
    [66] Meixiang Wan. Synthesis and electrical–magnetic properties of polyaniline composites [J].Journal of Polymer Science, 1998, 36:2799–2805
    [67] Graeff C F O. Magnetic resonance in polyacetylene and polyaniline [J]. phys. stat. sol. 1997, 162:713
    [68] 蔡林涛,姚士冰,周绍民.磁场对聚苯胺电聚合的影响,电化学[J].1995, 5(2):159-165
    [69] 黄彬生,李分明,许岩,等.磁场对聚苯胺电化学聚合特性的影响研究[J].吉首大学学报(自然科学版),1998,3(19):32-35
    [70] 段玉平,刘顺华,管洪涛,等.强磁场作用对聚苯胺颗粒形貌及电性能的影响[J]. 化学学报,2005,(63):1595
    [71] 陈文纳.磁场影响化学反映研究概述[J]. 广西梧州师范高等专科学校校报.1998, 3(14):57-60
    [72] Wakasa M. Sakasuchi Y. Hayashi H. Magnetic field effect on photodecomposition of p-aminophenyl disulfide in a micellar solution [J]. .Phyx.chem 1993, 97:1733
    [73] Turro N J, Chow M F, Chung C J, et al. Magnetic field and magnetic isotope effects on cage reactions in micellar solutions [J]. Am.chem.Soc.1980, 102:4843
    [74] 马利,陈云,刘家和,等. 微乳液法合成纳米聚苯胺的研究[J]. 包装工程. 2005, (1):57-58
    [75] 马利,刘昊,甘孟瑜,等. 乳液法合成磺基水杨酸掺杂纳米聚苯胺[J]. 表面技术.2006, 35(4):42-45
    [76] 孟勇,翁志学,单国荣,等.核壳结构聚硅氧烷/丙烯酸酯复合乳液(1)乳化剂对乳液聚合过程及粒径分布和粒子形态的影响[J]. 化工学报,2005,56(9):1796
    [77] 马 利 , 刘 家 和 . 聚 苯 胺 乳 液 合 成 及 其 电 致 变 色 性 [J]. 化 学 推 进 剂 与 高 分 子 材料,2004,2(1):28-30
    [78] 唐晓萍.磷酸掺杂对聚苯胺电导率及微观结构的影响[J]. 西南民族学院学报(自然科学版),2003,29(2):164-166
    [79] MacDiamid A, Chiang J C, Halpern M, et al. Polyaniline: Interconversion of metallic and insulating forms [J]. Mol. Cryst. LiqCryst, 1985, 121:173
    [80] Kinlen P J, Silvenman D C, Jefferys C R. Corrosion protecting using polyaniline coating formulstions [J]. Synthetic Metal, 1997, 85(2):1327-1332
    [81] 张金勇,李季,王献红,等.聚苯胺在防腐领域的应用[J]. 功能高分子学报,1999,12(3):350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700