用户名: 密码: 验证码:
PdPc-PANI杂化有机半导体膜及气敏机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对环保的日益重视,对毒气传感器的研究有重要意义。目前气体传感器主要是采用无机半导体法,它存在着方法复杂、成本高、精度低等问题;而有机半导体由于成本低、制膜工艺简单、易与其它技术兼容、常温下工作等优点,已成为研究的热点。聚苯胺(PANI)和金属酞菁是其中的典型代表。
     本课题以模板法合成了四取代对甲苯氧基酞菁钯(PdPc),按相关文献合成了高氯酸(HClO_4)掺杂PANI,并对两种材料进行了相关的表征。采用微细加工技术及机械掩膜技术制作了背面带有加热电阻的平板Pt电极。将两种有机半导体材料以不同的比例混合杂化成(PANI)_x(PdPc)_(1-x)(0≤x≤1),分别以涂膜工艺和蒸发镀膜工艺在电极上成膜,制成气体传感器,对浓度为0.01﹪的NO_2、SO_2、NO、Cl_2进行气敏测试,寻找气敏性最好的有机半导体掺杂材料。测试表明掺杂比例x=1/6的复合膜对多种气体均有敏感性,而且灵敏性好。
     通过扫描电镜(SEM)对涂膜和蒸发膜进行表征,从膜的微观形貌和分子结构两方面对敏感机理进行了分析。涂膜PdPc与PANI膜结构疏松,存在网状气孔;蒸发PdPc膜呈球状晶粒局部互相嵌入分布,PANI膜呈针状颗粒均匀分布,都存在气孔。气孔的存在有利于气体的吸附和脱附。涂膜有序性差,膜厚,响应时间长,但是灵敏度高;蒸发膜分布均匀,膜薄,灵敏度低,但是响应时间短。此外,还讨论了器件结构及检测方式等因素对膜气敏性能的影响,并对以后的发展前景给予了展望。
     实验数据表明其原理和工艺可行,但是对其稳定性和敏感机理还需进一步探讨。其他掺杂比例也可通过改变工艺等途径获得更好的敏感性。此外,具有较好灵敏性的复合膜的其他特性如选择性等,也需要深入的研究。可望使不同比例的杂化材料通过传感器阵列实现气体的检测。
Along with the increasingly regard on environment protection, the study of poison gas sensor has magnitude significance. At present, the main methods adopted are inorganic way, it exists such problems as technique complex、high cost、low precision etc. Due to the low cost、simple film forming craft、compatible with other technique easily、work in mormal temperature, organic semiconductor has become the hotspot of study. Polyanilin (PANI) and metal phthalocyanine are two typical representations of it.
     This paper used cyclostyle methods to synthesize PdPc, and PANI doped with HClO_4 was also composed. The related characterization was carried out. Adopt micro-machining technique and mechanical mask, the Pt flat electrode which has heating resistor on its back was fabricated. This two organic semiconductor materials were mixed with each other on different ratios (PANI)_x(PdPc)_(1-x)(0≤x≤1) in order to relize hybrid and form film on the electrode by coating film craft and evaporated film craft in order to make gas sensor. Through gas sensitive testing in NO_2、SO_2、NO、Cl_2 with the density of 0.01﹪, the mixing material which has best sensitive ability was expected to be acquired. The result indicates that the compound film with x=1/6 has well sensitivity to different gas.
     The coating film and evaporated film were both characterized by SEM. From the two sides of the micro appearance and molecular structure, the sensitive mechanism was analyzed. The coating films of PdPc and PANI both have loose structure and reticular air hole; the evaporated film of PdPc appears spheric crystal grains with partly embed with each other. PANI film appears acicular crystal grains uniform distribution. Both have air hole. The presence of the air hole is propitious to the gas’s adsoption and desorption. The coating film has bad order state, thick film, long response time but high sensitivity; the evaporated film has uniform distribution, thin film, low sensitivity but short response time. Furthermore, the effects of different factors such as the structure of the device and the detecting mode etc. on the sensitivity were also discussed. The foreground of the coming development was prospected.
     The experiment data show the feasibility of the principle and the craft, but its stability and sensitive mechanism still need to be further discussed. The compound film with other mixing ratios also could gain better sensitivity through the approach such as changing craft etc. Furthermore, the other characteristics such as selectivity of the compound film which has better sensitivity also need deep study. Detecting gas through sensor array using the hybrid material with different ratios is expected to realize.
引文
1 刘梅.传感技术-现代科技的开路先锋. 中国科技信息,2005,(18): 12
    2 倪星元.传感器敏感功能材料及应用.化学工业出版社,1999:3~5
    3 Noboru Yanazoe. The State of The Air of Gas Sensing for Environmental Protection. 7th International Meeting on Chemical Sensors, International Academic Publishers, 1998, 30(2): 2~5
    4 Yoshihiko Nakatani. Ceramic Gas Sensor For City Gas. Nationl Technical Report, 1979, 25(5): 1033~1041
    5 Michio Matsuokcl.γ-Fe2O3 Ceramic Gas Sensor. Nationl Technical Report, 1978, 24(3): 61~473
    6 马立杰.传感器的发展现状.传感器技术,1996, (5): 16~19
    7 沈渝生.气敏传感器发展现状和趋势.第四届全国敏感元件与传感器学术会议论文集.上海科技出版社,1995,(4):117~220
    8 三桥弘和.使用酸化物半导体的氨气选择性气体传感器.化学传感器,1992,(18):121~124
    9 全宝富.平面直热式气敏元件及其表面修饰.传感器技术,2000,19(2):5~7
    10 孙良彦.气敏元件的表面修饰技术的研究与应用.郑州轻工业学院学报,1994,(9):173~178
    11 刘义祥.气敏材料与气体传感器的发展与展望.消防技术与产品信息,2000,(10):6~8
    12 陈仕艳.酞菁在分子材料器件方面的研究进展.自然科学进展,2004,14(2):125~131
    13 FAASSEN V E, KERP H.Explanation of the low oxygen sensitivity of thin film phthalocyanine gas sensors. Sensors and Actuators, 2003, B88: 329~333
    14 QU S I., GAO Y C, ZHAO C J, et al. Optical limiting properties in phthalocyanine with different substituent groups. Chemical Physics Letters, 2003, 367: 767~770
    15 李建平,王悦.微结构气敏传感器薄膜制备方法的研究.真空科学与技术,2000,20(3):161~165
    16 Jin Z.H.,Jin Z.L.et al. Application of nano-crystalline porous tin oxide thinfilm for CO sensing.Sensors and Actuators, 1998, 52(2):188~194
    17 沈永嘉.酞菁的合成与应用.化学工业出版社,2000:20~21,36~47
    18 殷焕顺,邓建成.酞菁在高兴技术领域中的应用.精细化工中间体,2003,133(5):12~15
    19 于道建, 沈瑞琪.NO2 气体传感器敏感材料.传感器技术,2001,(5):3~4
    20 J. C. Hsich, C. J. Liu, Y. H. Ju. Response characteristics of lead phthalocyanine gas sensor: effects of film thickness and crystal morphlogy. Thin Solid Films, 1998, 322(2): 98~103
    21 Li Xi You, Shen ShuYin, Zhou Qingfu , et. al. The Gas Response Behavior of Spin-Coated Phthalocyanine Films to NO2. Thin Solid Films, 1998, 324: 274~276
    22 Qiu Wenfeng, HU Wenping, Liu Yunqi, et. al. The Gas Sensitivity of a Substituted Metallo-Phthalocyanine-Tetra-Iso-Propoxyp ht halocyaninato Copper(Ⅱ). Sensors and Actuators B, 2001, 75: 62~66.
    23 秦树基, 叶坚.酞菁气体传感器发展趋势.传感器技术,2004,23(3):6~7
    24 谢丹,蒋亚东.酞菁铜 LB 膜的制备及特性.传感器技术,1999,18(6):1~3
    25 左霞,王彬等.四烷氧及酞菁铜旋涂膜的气敏特性.传感器技术,2004, l23(5):1~2
    26 李岚,许琳等.铜归取代的酞菁材料 LB 膜气敏传感器的研究.功能材料,1998,29(2):1~2
    27 林春莺,詹红兵,陈文哲.芳氧基酞菁钯在二氧化硅凝胶基质中的植入光学性能的研究.中国陶瓷,2003,39(4):21~23
    28 蒋亚东,王涛,李丹.掺杂聚苯胺自组装超薄 NO2 气敏传感器研究.仪器仪表学报,2003,24(4)增刊:175~176
    29 霍丽华,汪冬梅,曾广赋,席时权. 掺杂态聚苯胺 LB 膜的制备与性质. 物理化学学报,2000,16(7):632~635
    30 B.B.Tieke, Langmuir-Blodgett films for electronic applications, Advanced materials, 1990, 2(5): 222~231
    31 刘笃仁.微机电系统(MEMS)技术的应用:微结构气敏传感器.测控技术,2000,19(3):9~10
    32 张宇.气体传感器在检测化工空气污染中的应用.内蒙古石油化工,2006,(7):18
    33 N. Yamazoe. Some Basic Aspects of Semiconductor Gas Sensors. Chemical Sensor Technology, Kodansha LTD, Tokyo. 1992, 28(1):19~24
    34 N. Yamazoe. Environmental Gas Sensing. Sensors and Actuators B,1994,27(1): 95~97
    35 潘小青,刘庆成.气体传感器及其发展.东华理工学院学报,2004,27(1):89
    36 蒋亚东.掺杂聚苯胺自组装超薄 NO2 气敏传感器研究.仪器仪表学报,2003, 24(4): 175~176
    37 H. Diesbach, E. von. Complex Salts of the o-dinitriles with Cu and Pyridine. der Weid. Helv. Chim. Acta. 1927, 10: 886
    38 五百藏弘典.金属氧化物半导体气体传感器与应用.传感器技术,1983, 7(3):68~69
    39 於黄中,陈明光,黄河.不同类型的酸掺杂对聚苯胺结构和电导率的影响.华南理工大学学报(自然科学版),2003,21(5):21~23
    40 陈长庆,胡明,吴霞宛.气体传感器的发展.材料导报,2003,17(1): 33~35
    41 李建平,王悦.微结构气敏传感器薄膜制备方法的研究.真空科学与技术,2000,20(3):161~165
    42 郑伟涛.薄膜材料与薄膜技术.化学工业出版社,2004:11~134
    43 陆慧.低温生长纳米 ZnO 薄膜的结构.华东理工大学学报,2004,30(5):609~612
    44 李永明.浸渍聚合法制备透明导电聚苯胺薄膜的研究.高分子学报, 1998,(2): 177~183
    45 N.E.Agbor, M.C.Petty, A.P.Monkman. Polyaniline thin films for gas sensing. Sensors and Actuators B, 1995, B28: 173~179
    46 Chin-Tsou Kuo, Wen-Hong Chiou. Field-effect transistor with polyaniline thin film as semiconductor. Synthetic Metals, 1997, 88: 23~30
    47 G. S. Devi,V. J. Rao, S. V. Manorama. SnO2/Bi2O3: suitable system selective carbon monoxide detection. Journal of the Electrochemical Society, 1998, 145(3): 1039~1044
    48 孔祥霞,孙良彦,平天光寿.高选择性常温 NH3 传感器.传感器技术,2003:22(8)
    49 王文军,刘金凤.LB 膜的制备及其在光学中的应用.应用光学,2004,25(1):52~54
    50 左霞.四-α-(2,2,4-三甲基-3-戊氧基)酞菁铜 LB 膜及其气敏性.哈尔滨工业大学学报,2004,36(3):321~323
    51 贺春英.八-n-丁氧基萘酞菁铜 LB 膜的制备及其气敏特性研究.高等学校化学学报,2002,23(1):14~17
    52 谢丹.NO2 气敏 LB 膜及其微结构传感器研究.电子科技大学.博士论文.2001:167~168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700