用户名: 密码: 验证码:
生物油—甲醇在镍基催化剂上的催化转化制氢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气不仅是一种重要的化工原料,而且还是一种能源的载体。氢能被认为是21世纪最具有发展潜力的清洁能源之一。目前,氢气的生产主要依赖于石化原料的转化,不仅对环境造成了很大污染,而且也加速了化石燃料的枯竭。在环境污染和能源危机双重压力下,人们渴望寻求可循环、无污染的制氢技术。
     生物质能源作为一种清洁的可再生能源,将在未来世界能源结构中占据越来越重要的位置,对于发展低碳技术也具有十分重要的现实意义。在生物质能源利用的多种途径之中,生物质热解液体产物的催化转化制氢已成为生物质能源研究中的热点与重点。
     本文首先利用实验室自行研发的生物质快速热解系统制备生物油,研究了生物油的含水量、热值、粘度、pH值等理化特性,通过GC-MS分析了生物油的化学组成。分析结果表明,通过分级冷凝系统得到的一级生物油成分复杂,水分含量为24.21%,较适合提取高附加值化学品或提质改性为高品位燃料;二三、四级混合生物油成分简单,水分含量为55.54%,较适合催化重整制氢。
     本文主要研究了生物油-甲醇混合样品在镍基催化剂上催化转化制氢方面的内容。首先选择了商业催化剂ICI46-1对生物油进行催化转化,再利用正交试验的方法考查了生物油与甲醇混合样品催化转化制氢各反应参数的影响,包括生物油-甲醇混合比例、水碳比、反应温度和进样流速,优化了催化重整制氢的实验条件,建立了催化剂性能评价的一般方法。然后,实验选择镁橄榄石为载体,CeO2 MgO为助剂,依据前一阶段的研究成果制备了一种镍基催化剂,并对其催化性能进行考察。
     研究结果表明,采用生物油-甲醇混合样品催化重整制氢,不仅提高了氢气产率与碳转化率,而且可以明显减少催化剂积炭,提高了催化剂的活性与稳定性。通过正交试验得知,甲醇与生物油质量混合比为50%:50%的结果最佳,应用ICI46-1催化剂时氢气产率和碳转化率分别为34.66%及63.02%。合成催化剂6%Ni-3%Ce-1%Mg/olivine催化重整的效果相对于ICI46-1催化剂有所改善,同等实验条件下,碳转化率和氢气产率相对提高,最佳实验条件下碳转化率和氢气产率分别为68.29%和38.52%。
Hydrogen is not only an important chemical raw material, but also an energy carrier. Hydrogen is considered the most development potential clean energy sources in the 21st century. Currently, hydrogen production mainly depends on the conversion of petrochemical raw materials, such a process causes great pollution to the environment, and accelerates the depletion of fossil fuels. In the dual pressures of environ-mental pollution and energy crisis, people eager to search for recycling, pollution-free hydrogen production methods.
     As a clean renewable energy, biomass will play a more and more important role in the future. And it is also of great practical significance to the development of low carbon technology. Among varietal biomass energy application ways, hydrogen production by catalytic reforming of biomass pyrolysis liquid has become a hot research point and focus.
     Firstly, bio-oil was produced through fast pyrolysis of biomass under laboratory-developed system, in which physical properties such as water content, calorific value, viscosity, pH value, etc., are studied. The chemical composition of bio-oil was analyzed by GC-MS. The results show that the first grade bio-oil obtained through the grading system has a complex composition with a moisture content of 24.21%, which is suitable for extraction of high value-added chemicals or a high quality high-grade fuel after modification; and the second, third, fourth hybrid bio-oil with a simple composition consisting of moisture content of 55.54%, is more suitable for catalytic reforming.
     Hydrogen production by catalytic reforming of bio-oil & methanol over nickel catalysts is studied in this thesis. A commercial catalyst ICI46-1 was selected for catalytic conversion of bio-oil, an orthogonal experiment was used in the fixed micro-reactor to systematically examine the effect of various reaction parameters, such as the ratio of bio-oil and methanol mixture, reaction temperature, steam carbon ratio, and sample flow rate. Such a text can optimize conditions and hence, established a popular method for evaluating the performance of catalysts. Forsterite was chose as the catalysts'carrier, CeC2, MgO as additives according to results of previous studies, and the properties of a laboratory-made nickel-based catalyst uesd were investigated.
     The results show that hydrogen production by catalytic reforming of mixed samples of bio-oil-methanol not only improves the hydrogen yield and carbon conversion, but also reduces obviously the catalyst carbon deposition, and therefore effectively improves the catalyst activity and stability. The results of orthogonal test show that the optimum mixing mass ratio of methanol and bio-oil is 50%:50%, hydrogen yield and carbon conversion rate was 34.66% and 63.02%, respectively by using ICI46-1. The effect of catalytic reforming with a synthesis catalyst of 6% Ni-3% Ce-1% Mg/olivine improved in comparison with ICI46-1, where the carbon conversion and hydrogen yield is relatively increased, respectively in the same conditions. And under optimum conditions, the carbon conversion and hydrogen production rates were 68.29% and 38.52%, respectively.
引文
[1]张瑞芹,魏新利.生物质衍生的燃料和化学物质[M].郑州:郑州大学出版社,2004.
    [2]熊万明.生物油的分离与精制研究[D].合肥:中国科学技术大学,2010.
    [3]陈俊武,李春年,陈香生.石油替代综论[M].北京:中国石化出版社,2009:562-633.
    [4]丛德奇,侯金华,金花.生物质能开发与吉林省利用现状研究[J].农业与技术,1999,19(6):1-4.
    [5]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80.
    [6]吴创之,马隆龙.生物质能现代化利用技术[M].北京,化学工业出版社,2003.
    [7]张长森.流化床生物质气化及热解实验研究[D].郑州:郑州大学化学系,2006.
    [8]毛宗强.氢能及其近期应用前景[J].科技导报,2005,23(2):34-38.
    [9]王红民.氢气在汽车燃油替代能源方面的应用[J].武汉理工大学学报,2006,28(2):21-26.
    [10]黄亚继,张旭.氢能开发和利用的研究[J].能源工程,2003(2):33-36.
    [11]W. Wiese, B. Emonts, R. Peters. Methanol steam reforming in a fuel cell drive system[J]. Journal of Power Sources,1999,84:187-193.
    [12]Konrad Geissler, Esmond Newson, Frederic Vogel, et al. Autothermal methanol reforming for hydrogen production in fuel cell applications[J]. Physical Chemistry Chemical Physics, 2001,3:289-293.
    [13]Yongtaek Choi, Harvey G. Stenger. Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst[J]. Applied Catalysis B:Environmental,2002, (38):259-269.
    [14]John P. Breen, Julian R.H.Ross. Methanol reforming for fuel-cell applications:development of zirconia-containing Cu-Zn-Al catalyst[J]. Catalysis Today,1999,(51):521-533.
    [15]Xinrong R. Zhang, Pengfei Shi, Jianxi Zhao, etc. Production of hydrogen for fuel cell by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts[J]. Fuel Processing Technology, 2003,(83):183-192
    [16]胡勋,吕功煊.水蒸气重整生物质裂解油及其模型分子制氢[J].化学进展,2010,(9):1687-1700.
    [17]Peter McKendry. Energy production from biomass (part1):overview of biomass[J]. Bioresource Technology,2002,83(1):37-46.
    [18]Matti Parikka, Global biomass fuel resources[J]. Biomass and Bioenergy,2004,27 (6): 613-620.
    [19]Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy Convers Manage.2001, (42):1357-78.
    [20]张建安,刘德华.生物质能源利用技术[M].北京:化学工业出版社,2009.
    [21]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京:化学工业出版社,2005.
    [22]石文,张长森,徐兴敏,等.分级冷凝与电捕获器分离精制生物油研究[J].现代化工,2010,30(3):51-55.
    [23]张素萍,颜涌捷,任铮伟.生物质油精制的研究进展[J].新能源,2000,22(10):12-17.
    [24]Barneto AG, Carmona JA, Galvez A, etc. Effects of the compositing and the heating rate on biomass gasification [J]. Energy Fuels,2009, (23):951.
    [25]Ba T, Chaala A, Garcia-Perez M, etc. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions [J]. Energy Fuels,2004, (18):704.
    [26]Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering[J].Chem Rev,2006,106:4044.
    [27]Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil [J]. Energy fuels,2004,18:590.
    [28]Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Rev,2007,107:2411.
    [29]Rioche C, Kulkarni S, Meunier FC, etc. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts [J]. Appl Catal B Environ,2005,61:130.
    [30]Trimm DL. Coke formation and minimization during steam reforming reactions[J]. Catal Today,1997, (37):233.
    [31]F. Seyedeyn-Azad, E. Salehi, J. Abedi,etc. Biomass to hydrogen via catlytic steam reforming of bio-oil over Ni-supported alumina catalysts [J]. Fuel Processing Technology,2011, (92): 563-569.
    [32]J.A. Medrano, M. Oliva, J. Ruiz, etc. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed[J]. Energy,2011,36:2215-2224.
    [33]Gertl E, Konzinger H, Weitkamp J, etc. Steam reforming handbook of heterogeneous catalysis[M]. Chicago:Publishing house of Chicago University,1997:22-26.
    [34]Bimbela F, Oliva M, Ruiz J, et al. Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids [J]. J.Anal. Appl. pyrolysis,2007 (79):112-120.
    [35]Ayabe S, Omoto H, Utaka T, et al. Catalytic autothermal reforming of methane and propane over supported metal catalysts[J]. Applied Catalysis A:General,2003 (241):261-269.
    [36]Yamazaki O, Tomoshige K, Fujimoto K. Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon ratio[J]. Applied Catalysis A:General, 1996,136(l):49-56.
    [37]Takanabe K, Aika K, Seshan K, et al. Sustainable hydrogen from bio-oil Steam reforming of acetic acid as a model oxygenate[J], Journal of Catalysis,2004,227(l):101-108.
    [38]Domine M E, Iojoiu E E, Davidian T, et al. Hydrogen production from biomass-derived oil over monolithic Pt-based and Rh-based catalysts using steam reforing and sequential cracking processes[J]. Catalysis Today,2008,12(6):6-18.
    [39]Basagianis A C, Verykios X E. Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2O3 Catalysts[J]. Catal Today,2007(3):2-9.
    [40]Rioche C, Kulkarni S, Meunier F C, et al. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts[J]. Applied catalysis,2005 (61):130-139.
    [41]Thomas D, Nolven G, Eduard Ⅰ. Hydrogen production from crude pyrolysis oil by a sequential catalytic process[J]. Applied Catalysis B:Environmental,2007 (73):116-127.
    [42]Song M. Renewable hydrogen production[J]. International Journal of Energy Resources, 2008 (32):379-407.
    [43]Rioche T. Catalytic steam reforming of bio-oils for the production of hydrogen:effects of catalyst composition[J]. Applied Catalysis A,2000 (201):225-239.
    [44]Stefan C, Robert E, Richard F. Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil[J]. Catalysis Today,2007 (129):265-268.
    [45]Jonathan R. Marda, Joelle DiBenedetto, Shannon McKibben, etc. Non-catalytic partial oxidation of bio-oil to synthesis gas for distributed hydrogen production[J]. International journal of hydrogen energy,2009, (34):4048-4059.
    [46]David Rennard, Rick French, Stefan Czernik, etc. Production of synthesis gas by partial oxidation and steam reforming of biomass pyrolysis oils[J]. International journal of hydrogen energy,2010, (35):8519-8534.
    [47]Hu Xun, Lu Gongxuan. Investigation of steam reforming of acetic acid to hydrogen over Ni-Co metal catalyst[J]. Journal of Molecular Cataylsis,2007 (261):43-48.
    [48]李水荣,马新宾.乙醇水蒸汽重整制氢Ni/ZrO2催化剂的研究[C].中国化学会催化委员会.第十三届全国催化学术会议论文集.兰州:2006:375.
    [49]Dongwen Sheng, Ron H S, Jun K W, et al. Methane reforming over Ni/Ce-ZrO2 catalysts:effect of nickel content[J].Applied Catalysis A:General,2002 (226):63-72.
    [50]Wang Zhaoxiang, Pan Yue, Dong Ting, et al. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O- based catalysts[J]. Applied CatalysisA:General,2007 (320):24-34.
    [51]傅利勇,吕绍洁,谢卫国等.碱性助剂的添加对Ni/CaO-Al2O3催化剂性能的影响[J].分子催化,2000,14(3):179-183.
    [52]李基涛,陈明旦,张伟德等.载体对镍基催化剂CH4/CO2重整制合成气性能的影响[J].分子催化,1999,13(4):277-280.
    [53]曹立新,陈燕馨,李文钊,等.载体对甲烷直接氧化制合成气的影响[J].天然气化工,1996,21(4):12-16.
    [54]刘永刚,杨力,张瑞芹.热解油模型化合物甲醇的蒸汽转化制氢研究[J].工业催化,2007,15(5):16-21.
    [55]刘永刚.生物质热解油催化重整制氢研究[D].郑州:郑州大学,2007.
    [56]杨力.生物质焦油催化转化新型催化剂研究[D].郑州:郑州大学,2007.
    [57]徐兴敏.生物质热解油及其模型化合物乙酸催化重整制氢研究[D].郑州:郑州大学,2009.
    [58]CLARIDGE J B, GREEN L, TSANG S C, et al. A study of carbon deposition on during the partial oxidation of methane to synthesis gas[J]. Catal.Lett,1993 (22):299-305.
    [59]Bengard H S, Norskov J K, Sehested J, et al. Steam reforming and graphite formation on Ni Catalysts[J]. Journal Chemistry,2002 (209):365-384.
    [60]Iojoiu E E, Domine M E, Davidian T, et al. Hydrogen production by sequential cracking of Biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia[J]. Applied Catalysis A:General,2007,3(23):147-161.
    [61]Rostrup-Nielsen J R, Andesfon J R, Boudart M, Springer V. Catalytic Steam Reforming[M].. Catalysis Science and Techology. Berlin:1984.
    [62]Freni S, Calogero G, Cavallaro S. Hydrogen production from methane through catalytic partial oxidation reactions[J]. Journal of Power Sources,2000 (87):28-38.
    [63]Trimm D L. Design of Industrial Catalysts[M]. New York:Elsevier Sxientific Publishing Company,1980:85.
    [64]Miao Q, Xiong G X, Sheng S S, et al. Partial oxidation of methane to syngas over niekel-based catalysts modified by alkali metal oxide and rare earth metal oxide[J]. Appl.Catal. A,1997 (154):17-27.
    [65]Liu S L, Xiong G X, Ssheng S S, et al. Effects of alkali and rare earth metal oxides on the thermal stability and the carbon-depositon over nickel based catalyst[J]. Stud. Surf. Sci. Catal, 1998 (119):747.
    [66]Ruckenstein E, Pulver Macher B. Growth kinetics and the size distributions of supported metal crystallites[J]. Jounal of Catalysis,1973,29(2):224-245.
    [67]Flynm P C, Wanke S E. A mode of supported metal catalyst sintering[J]. J.Catal,1974 (34): 390-399.
    [68]Hickman D A, Schmidt L D. Synthesis gas formation by direct oxidation of methame over Pt monoliths[J]. J.Catal,1992 (138):267-282.
    [69]Tormiainen P M, Chu X, Schmidt L D. Comparison of monolith supported metals for the direct oxidation of methane to syngas[J]. J.Catal,1994 (146):1-10.
    [70]向德辉.催化剂制备单元操作[M].北京:化学工业出版社,1983.
    [71]丁兆军.生物质制氢技术综合评价研究[D].北京:中国矿业大学,2009.
    [72]杨小芹.用于生物质焦油水蒸气重整的橄榄石载镍催化剂的研究[D].大连:大连理工大学,2010.
    [73]李明,王伟.生物质热解参数对焦炭生成特性及产氢率的影响[J].太阳能学报,2009,(08):1129-1133.
    [74]陈汉平,杨海平,李斌等.生物质流化床气化焦油析出特性的研究[J].燃料化学学报,2009,(08):433-437.
    [75]岳宝华,卜宪昵,汪学广等.焙烧温度对橄榄石催化甲苯裂解性能的影响[J].化工学报,2009,(02):378-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700