用户名: 密码: 验证码:
数控机床热变形特性和热误差补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控机床在加工过程中,机床部件受到各种内部热源和外部热源的影响而产生不均匀的温度场,同时由于机床各部件的线膨胀系数不一致产生热应力和热变形,使机床上刀具和工件之间的正确位置遭到破坏,机床固有精度降低,导致工件加工过程中的热变形误差。在精密加工过程中由于工艺系统热变形引起的加工误差占总加工误差的40%~70%,其中机床的热变形误差占整个工件加工误差的60%~80%,机床热变形已经成为精密和超精密加工过程的主要误差来源。
     本文以某立式加工中心为实验对象,通过大量的实验验证了主轴轴承的摩擦发热是主轴箱内的主要热源,是引起机床主轴热变形和热误差的主要原因;利用赫兹接触理论,分析了主轴轴承上钢球与滚道的接触变形和载荷分布;应用运动学理论分析了主轴轴承上钢球的运动及速度;将数学推导和经验公式相结合建立了主轴轴承运动过程中所产生的各种摩擦力矩及摩擦力的数学公式;在综合钢球的摩擦力矩和运动速度的基础上建立了机床主轴轴承摩擦热源的发热模型。
     本文动态地分析了影响主轴轴承发热的工艺因素,并进行了相应的试验验证。利用热应力理论分析了主轴转速、轴承内外圈与主轴及轴套的配合过盈量对主轴热变形位移的影响规律。在对主轴轴承的装配工艺及配合过盈量进行有效改进的基础上,主轴箱测温点的温升和热位移达到很大的改善,验证了过盈量大小对主轴热位移的影响规律。
     对数控机床进行热误差补偿时,补偿系统的信息输入是机床的温度场信息,为了最佳地把握机床的温度场信息,同时又降低温度测量的成本,本文结合模糊聚类和相关性分析理论来优化机床热关键点。在初步选定多个测温点的前提下,利用模糊聚类分析原理把测温点聚类分组,再从每组中选一个测温点,利用相关性分析,最终确定测温点的位置和数目。最后的补偿结果证明所选定的关键测温点能保证机床精度补偿的要求。
     在确定测温点的前提下,需要建立测温点温升和热误差之间的关系模型。本文结合生产现场实际,应用多元线性回归模型对热误差建模,补偿结果表明初步收到良好的效果。在多元线性回归建模的基础上,应用分段线性回归模型进行建模,通过数据分析表明,进一步提高了热误差的精度。
     利用径向基神经网络技术建立了测温点温升和热误差之间的关系模型,并应用该模型对某立式加工中心主轴箱上的测量数据进行了分析,结果表明径向基神经网络模型能够很好地逼近实际的热误差模型,从而降低热误差。
     针对数控机床使用过程中的各种工况,在数控机床原有的机床坐标系和工件坐标系的基础上提出了热态坐标系和冷态坐标系的概念。应用热态坐标系和冷态坐标系的概念,对数控机床的各种工况进行了深入的分析,为工件数控加工过程中出现的各种意外情况提供了解决问题的思路。
When a NC machining tool is working, heat disturbances at internal and external thermal resource cause a non-even temperature field in the machining tool. At the same time, the coefficients of thermal expansion are different, the thermal stress and thermal deformation also emerge in parts of machining tool. The correct position relationship between tool and work is destroyed, and the accuracy of machining tools is come down, so the thermal error comes into being. In the process of precise machining, the thermal error of the mechanical process system covers 40-70% of the total machine error, the thermal error of machining tool covres 60-80% of thermal error. The thermal deformation has become the major error in precision and extra-precision machine.
     In this thesis, a vertical machine centers is our research object. A large of tests state that friction heat of the spindle bearings is the major thermal resource. In spindle box ,it is also the major reason that leads to the thermal error of spindle. The contact deformation and load distribution between balls and rings have been researched with the theory of Hertz contact; Applying the kinematics principle, the ball motions have been analyzed, and formulas of the velocity have also been build. The formulas of friction force and torque have been build with mathematics inference and experiment. At last, on the basis of the friction torque and velocity, the thermal resource model of spindle bearings has been build.
     The process factors that affect spindle bearing's friction heat have been analyzed, and many tests have done to verify the result. The regular that the interference between bearings and spindle and spindle sleeves affects the thermal deformation error has been researched according to the thermal stress theory. Afer improving the assemble technology and decreasing the interference, temperature raise in key point and thermal error all are cut down. These methods verify the regular correct.
     Before thermal error compensates in a NC machining center, we must determine the key temperature measurement points. The points are more , the input information about the thermal character is more precise, but the cost for temperature measurement is more expensive, and the compensation system deal with the temperature information is more difficulty. So the least measurement points must be selected to express the thermal character information as full as possible. The fuzzy group and correlation analysis are made used of to optimizate the key points. At first some initia temperature measurement points in spindle box are selected as optimization base. Secondly these points are divided into several groups by fuzzy group theory. At last we select point from every group, them are accept or reject according to the result of correlation analysis. The error compensation has verified that the selected points are satisfied with the accuracy require of machining center.
     The following thing is to model relationship between the thermal error and temperature raise of key points. In this thesis multiple linear regression is applied to build model, and the experimental test in the vertical machining center has already stated that the effect is very ideal. Based on multiple linear regression, the piecewise linear regression is lead into build the thermal error model. The simulation result states it can make thermal error further descend.
     The thermal model based RBF(radial base function) neural netwoks has been built. The measurement data on the vertical machining center has been analysed. The result states that the model can be more closed to the real thermal model and reduce the effect of thermal error.
     On the basis of the machining tool coordinate system and work coordinate system, the thermal coordinate system and cool coordinate have put forward. All cases in machine process are deeply analyzed with these concepts. The methods that solve all questions in most abnormal cases also are list.
引文
[1] 梁允奇,机械制造中的传热与热变形基础[M],机械工业出版社,1982.
    [2] 陈兴祥、赵培炎,传热与热变形基础[M],长沙:湖南大学出版社,1988年12月
    [3] 陈兆年、陈子辰,机床热态特性学基础[M],北京:机械工业出版社,1988.
    [4] 王先奎主编,精密加工技术实用手册,北京:机械工业出版社,2001年3月:230-234
    [5] Narayan Sfinivasa, John C. Ziegert, An Application of Fuzzy ARTMAP Neural Network to Real-time Learning and Prediction of Time-Variant Machine Tool Error Maps[C], IEEE 1994:1725-1730
    [6] Jan hung-Kang, Dynamic Modeling of Manufacturing Process Error Patterns Using Distributed Adaptive System[D], the Degree of Doctor of Philosophy in Pudue University, 1992
    [7] Youji Ma, Sensor Placement Optimization for Thermal Error Compensation on Machine Tools[D], the Degree of Doctor of Philosophy in The University of Michigan, 2001
    [8] Hong Yang, Dynamic Modeling for Machine Tool Thermal Error Compensation[D], the Degree of Doctor of Philosophy in The University of Michigan, 2002
    [9] 范梦吾,高速电主轴热变形的有限元分析[D],广东工业大学硕士论文,2004年4月:19
    [10] Koliskor A S. Compensation for Automatic Cycle Machining Error. [J]. Machines and Tooling,. 1971,41(5)
    [11] 黄晓明,高速电主轴热态特性的有限元分析[D],广东工业大学博士论文,2004年4月
    [12] 郭军,基于热接触分析的电主轴热态特性研究[D],广东工业大学硕士 论文,2005年4月
    [13] Hirotoshi Aramaki, Yoshio Shoda, Yuka Morishita etc. The Performance of Ball Bearings with Silicon Nitride Ceramic Ball in High Speed Spindles for Machine Tools [J]. Journal of Tribology, 1988,110:693-698
    [14] Jin Kyung Choi, Dai Gil Lee. Thermal Characteristic of the Spindle Bearing System with a Great Located on the Bearing Span. International Journal of Machine Tools & Manufacture. 1998 38:1017-1030
    [15] Berd Bossmanns, Jay F. Tu. A Power Flow Model for High Speed Motorized Spindles-Heat Generation Characterization[J]. ASME Journal of Manufacturing Science and Engineering. 2001,123:494—505
    [16] Sun-min Kim, Kang-Jae Lee, Sun kyu Lee. Effect of bearing support structure on the high-speed spindle bearing compliance[J]. International Journal of Machine Tools & Manufacture, 2002,42:365~373
    [17] V. P. Raja, P. R. Pillai. Thermal Analysis of Spindle Units under High Speed Machining[J]. IE(I) Journal-MC, 2001, 81:155~159
    [18] Chi-WeiLlin, Jay F.Tu, Joe Kamman, An Integrated Thermo-mechanical Dynamic Modcl to Characterize Motorized Machine Tool Spindles during very High Speed Rotation. International Journal of Machine Tools & Manufacture 2003,43:1035~1050
    [19] 蒋兴奇,主轴轴承热特性及对速度和动力学性能影响的研究[D],浙江大学博士学位论文,2001年4月
    [20] 黄晓明,张伯霖,肖曙红.高速电主轴热特性的有限元分析[J].航空制造技术,2003,(10):20-26
    [21] 郭策、孙庆鸿、蒋苏运等,高速高精度数控车床主轴系统的热特性分析[J]制造技术与机床,2003(2):37-39
    [22] 郭策、孙庆鸿.高速高精度数控车床主轴系统的热特性分析及热变形计 算[J].东南大学学报,2005,35((2):231-234
    [23] Jenq-Shyong Chen, Wei-Yao Hsu. Characterizations and models for the thermal growth of a motorized high speed spindle[J].International Journal of Machine Tools & Manufacture, 2003, 43:1163~1170
    [24] J. V. Beck, B. Blackwell, C. R. St. Clair, Inverse Heat Conclusion: Ill-Posed Problems, Wiley-Interscience Publication, New York, 1985
    [25] M.H.Attia, S.Fraser, M.O.M.Osman, On-Line Estimation of time variant thermal load applied to machine tool structures using a S-domain inverse solution[J], International Journal of Machine Tools & Manufacture, 1999, 36:527~537
    [26] S.Fraser, M.H.Attia, M.O.M.Osman. Control-Orient Modeling of Thermal Deformation of Machine Tools Based on Inverse Solution of Time-Variant Thermal Loads with Delayed Response [J]. Journal of Manufacturing Science and Engineering,2004,vol 126:286-296
    [27] Ching-Yu Yang, Estimation of Temperature-dependent thermal Conductivity in Inverse heat conductive problems[J], Applied Mathematical Modelling 23(1999):469-478
    [28] Olson, L., and Throne, R., 2001, "Estimation of Tool/Chip Interface temperatures for On-Line Tool Monitoring: An Inverse Problem Approach," Inverse Probl. Eng., 9, pp. 367-388.
    [29] Lorraine Olson, Robert Throne, Eric Rost, Improved Inverse Solutions for On-Line Machine Tool Monitoring, Journal of Manufacturing Science and Engineering,2004, 126(2):311-316
    [30] 闫占辉、于骏一,曹毅,环境温度变化对机床基础热变形的影响规律[J],吉林大学学报,2002,32(1)33-36
    [31] 闫占辉、曹毅、于骏一,减小导轨磨床床身一基础系统热变形的一种新方法[J],制造技术与机床,2004(8):79-81
    [32] 闫占辉,于骏一,机床热变形的研究现状[J],吉林工业大学自然科学学报,2001,31(3):95-97
    [33] 闫占辉、于骏一、曾福胜、曹毅,机床床身模拟件的弯曲刚度对其热态几何精度影响规律的应用研究[J],光学精密工程,2002,10(2):214-219
    [34] 应济,陈子辰,机床关键部件热接触变形的有限元计算[J],浙江大学学报,1999,14(4):451-454
    [35] 王金生、姚春燕、彭伟,XK717数控铣床主轴系统的热特性分析[J],机床与液压,2005(4):16-18
    [36] 王金生、胡如夫、巫修海,带冷却系统的XK717数控铣床主轴部件热特性分析[J],中国工程科学,2005,7(8):84-88
    [37] 王金生,XK717数控铣床热特性研究[D],浙江工业大学硕士论文,2004年5月
    [38] 王金生、翁泽宇、姚春燕、彭伟,ANSYS在数控铣床热特性分析中的应用[J].浙江工业大学学报,2004,32(3):157-161
    [39] 赵汝嘉、白作霖、张定红、江平宇、徐庆友、王少军,机床热特性诊断及结构设计改善对策专家系统的研究[J],西安交通大学学报,1994,28(9):14-19
    [40] 邹济林,机床热变形的控制与防止[J],机床与液压,2001,第5期:109-111
    [41] 应济、陈子辰,重型机床的热变形控制研究[J],机械科学与技术,1998,17(4):623-625
    [42] 杨庆东.神经网络机床热变形误差的机器学习技术[J].机械工程学报,2000,36(1):92~95
    [43] 陈子辰.热敏感度和热耦合度研究[D],1992年全国机床热误差控制和补偿研究会议论文集,1992:49-53
    [44] 张奕群、李书和、张国雄,机床热误差建模中温度测点选择方法研究[J],航空精密制造技术,1996,32(6):37-39
    [45] 李小力、周云飞、李作清等.数控机床热敏感点识别研究[J].机械与电子,1998,第5期
    [46] 窦小龙、杨建国、李晔,温度测点优化在机床主轴热误差建模中的应用 [J],检测,2002,40(460):57-59
    [47] 于金、赵树国、于治明.数控机床热变形关键点的辨识与补偿方法的研究[J].机械设计与制造[J],2000(6):16~17
    [48] 于金、李成山,数控机床热变形关键点的辨识,组合机床与自动化加工技术,2000(12):16-17
    [49] 张德贤、刘筱连、师汉民、陈日曜.神经网络在数控机床热变形控制中的应用[J].制造技术与机床,1995(1):8~12
    [50] 杨建国、邓卫国、任永强、李院生、窦小龙,机床热补偿中温度变量分组优化建模[J],中国机械工程,2004,15(6):478-481
    [51] 杨建国、潘志宏、孙振勇.回归正交设计在机床热误差建模中的应用[J].航空精密制造技术,1999,35(5):33~37
    [52] 项伟宏、郑力、刘大成.机床主轴热误差建模[J].制造技术与机床,2000(11):12~14
    [53] 李书和、杨世民、张奕群、张国雄.机床热变形误差实时补偿技术[J].天津大学学报,1998,31(6):800~814
    [54] 张志飞、刘又午、张永丹、章青.加工中心热误差补偿研究[J]。制造技术与机床,2001(1):27~29
    [55] Chih-Hao Lo, Jingxia Yuan, Jun Ni, an Application of Real-Time error Compensation on a Turning Center[J], International Journal of Machine Tools & Manufacture, 1995, 35:1669~1652
    [56] Z.C.Du, J.G.Yang, Z.Q.Yao, B.Y.Xue, Modeling approach of Regression or thogonal experiment design for the thermal error compensation of a CNC turning center[J], Journal of Materials Processing Technology 129(2002):619-623
    [57] Jianguo Yang, Jingxia Yuan, Jun Ni, Thermal error mode analysis and robust modeling for error compensation on a CNC turning center[J], International Journal of Machine tool & Manufacture 39(1999): 1367-1381
    [58] J.G.Yang, Y.Q.Ren, Z.C.Du, An Application of real-Time error Compensation on an NC twin-Spindle lathe[J], Journal of Materials Processing Technology 129(2002):474-479
    [59] S.Yang, J. Yuan, J. Ni, Accuracy Enhancement of a Horizontal Machining Center by Real-Time Error Compensation[J], Journal of Manufacturing System 15(1996):113-124
    [60] D.S.Lee, J.Y.Choi, D.H.Choi, ICA based thermal source extraction and thermal distortion compensation method for a machine tool[J], International Journal of Machine Tools & Manufacture, 43(2003):589-597
    [61] Dong Soo Lee, JinYoungChoi, Doo-HyunChoi. New ICA Based Thermal Error Compensation System[C]. Proceedings of the 9th international Conference on Neural Information Processing, vol3, 2002:1378-1382 (thermalerror2)
    [62] Hong Yang, Jun Ni, Dynamic Modeling for Machine Tool Thermal Error Compensation [J], Journal of Manufacturing Science and Engineering, 2003,125(2): 245-254
    [63] 张奕群、李书和、张国雄,机床热变形误差的动态模型[J],航空精密制造技术,1997,33(2):5-7
    [64] 张奕群、李书和、刘安伟、张国雄.基于主轴转速的机床热误差状态方程模型[J].仪器仪表学报,1998,19(5):460~463
    [65] Shuhe Li, Yiqun Zhang, Guoxiong Zhang, A Study of Pre-Compensation for Thermal Errors of NC Machine Tools[J], International Journal of Machine Tools & Manufacture, 1997, 37:1715~1719
    [66] 李书和、张奕群、王东升、张国雄,数控机床热误差的建模与预补偿[J],计量学报,1999,20(1):49-52
    [67] 张奕群、李书和 张国雄,机床热误差建模的组合小样本LKL方法[J],天津大学学报,1998,31(6):719-722
    [68] 张奕群、李书和、张国雄,机床热变形误差的混合输入动态模型[J],航 空精密制造技术, 1998, 34(5):28-31
    
    [69] Yiding Wang, Guoxiong Zhang, Kee S.Moon, John W.Sutherland, Compensation for the thermal error of a multi-axis machining center[J], Journal of Materials Processing Technology 75(1998):45-53
    
    [70] Narayan Srinivasa, Jhon C.Ziegert. Automated measurement and compensation of thermally induced error maps in machine tools[J], Precision Engineering 19(1996): 112-132
    
    [71] Christopher D. Mize, Evaluation of Thermal Models on a machining Center[D], the Degree of Doctor of Philosophy in University of Florida, 1998
    
    [72] Christopher D. Mize, John C. Ziegert, Neural network thermal error compensation of a machining center[J], Journal of International Societies for Precision Engineering and Nanotechnology, 24(2000):338-346
    
    [73] Christopher D. Mize, John C. Ziegert, Neural network thermal error compensation of a machining center[J], Journal of International Societies for Precision Engineering and Nanotechnology, 40(2000):338-346
    
    [74] Chuan-Wei Chang, YuanKang, Ming-Hui Chu, Chih-Pin Chiang and Yuan-Liang Liu. An Optimal Estimation for Neural Network by Using Genetic Algorithm for the Prediction of Thermal Deformation in Machine Tools [C]. 2005 International Conference on Control and Automation,2005:925-929
    
    [75] Kenji Nakayama, Akihiro Hirano, Shinya Katoh etc, Cutting Error Prediction by Multilayer Neural Networks for Machine Tools with Thermal Expansion and Compensation [C]. IEEE, 2002:1373-1378
    
    [76] Hong Yang, Jun Ni, Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error[J], International Journal of Machine Tools & Manufacture, 1005, 45:455-465
    
    [77] Hong Yang, Jun Ni, Adaptive model estimation of Machine-tool thermal errors based on recursive dynamic modeling strategy[J], International Journal of Machine Tools & Manufacture, 2005, 45:1-11
    [78] S.Yang,, J. Yuan, J. Ni, The Improvement of Thermal Error Modeling and Compensation on a machine tool s by CMAC Neural network [J], International Journal of Machine Tools & Manufacture, 1996, 36:527~537
    [79] 于金,赵树国、赵益华,机床热误差的无限冲激响应网络动态模型[J],沈阳航空工业学院学报,2002年,19(3):33-35
    [80] 于金,无限冲激响应网络在数控机床热误差建模中的应用[J],机床与液压,2003(2):93-94
    [81] 于金,补偿模糊神经网络在机床热误差预报模型中的应用[J],航空精密制造技术,2004年,40(5):37-39
    [82] 于金,基于补偿模糊神经网络的数控机床热误差预报模型[J],组合机床与自动化加工技术,2004(4):78-79
    [83] 于金,数控机床热误差的模型预报补偿[J],组合机床与自动化加工技术,2002(4):7-8
    [84] K.Baker, B.K.N.Rao, A.D.Hope, S.Noroozi. Performance Monitoring of a Machining Center[C], IEEE Instumentation and Measurement Technology Conference. Brussels, 1996:853-858
    [85] M.H.Attia ,S.Fraser, A generalized modelling methodology for optimized real-time compensation of thermal deformation of machine tools and CMM structures [J], International Journal of Machine Tools & Manufacture, 1999, 39:1001-1016
    [86] 刘又午、章青、赵小松、张志飞、张永丹,基于多体理论模型的加工中心热误差补偿技术[J],江苏机械制造与自动化,2001(4):60-64
    [87] 章青、岳红新、王慧清,四轴加工中心热误差建模及补偿技术研究[J],制造技术与机床,2004(10):55-58
    [88] 岳红新,章青,王慧清,基于多体理论的加工中心热误差建模及补偿技术研究[J],组合机床与自动化加工技术,2005(1):27-29
    [89] 赵小松、方沂、章青、刘又午,四轴联动加工中心误差补偿技术研究[J],中国机械工程,11(6):637-640
    [90] 岳红新,章青,王慧清.基于多体理论的加工中心热误差建模及补偿技术研究[J].合机床与自动化加工技术,2005(1):27~29
    [91] 张志飞、刘又午、刘丽冰,张永丹,基于多体理论的五坐标数控机床的热误差建模[J],河北工业大学学报,2000,29(5):23-28
    [92] 邓三鹏、章青、么子云,能够进行热误差补偿的加工中心在线检测软件的研究[J],组合机床与自动化加工技术,2003(9):61-63
    [93] 杨清好、刘筱连、陈尔昌、师汉民,机床热变形智能热补偿数学模型[J],湖北工学院学报,1994,9(3):127-133
    [94] 李书和、张奕群、张国雄,数控机床热误差的补偿[J],航空精密制造技术,1996,32(4):6-9
    [95] 杨建国、薛秉源,数控机床热误差鲁棒建模新方法及实时补偿,制造技术与机床,1998(6):8-11
    [96] 陶湘保,张德贤,刘筱连等.机床热变形的主动补偿[J].中国机械工程,1999,10(8):923-926
    [97] 章青、赵宏林、唐华、盛伯浩,数控机床误差补偿技术及应用:热误差补偿技术[J],制造技术与机床,1999(3):26-29
    [98] 陶晓杰、王治森,机床误差的补偿方法探讨[J],制造业自动化,2005,27(5):18-21
    [99] 杨建国,张宏韬,童恒超,曹洪涛,任永强,数控机床热误差实时补偿应用[J],上海交通大学学报,2005,39(9):1389-1392
    [100] 冈本纯三著,黄志强译,球轴承的设计计算[M],北京:机械工业出版社,2003年4月。
    [101] Harris T A, Rolling Bearing Analysis, 3rd. John Wiley & Sons, Inc. 1990
    [102] 胡鹏浩、费业泰、黄强先.考虑受力变形和受热变形的滚动轴承初始游隙的确定[J],机械设计,1999年第9期,p41-43;
    [103] 徐之纶,弹性力学简明教程[M],北京:高等教育出版社,1983年10月
    [104] 顾泽同、葛永乐、翁中杰等编,工程热应力[M],北京:国防工业出版社,1987年12月
    [105] 孔祥谦,热应力有限单元法分析[M],上海:上海交通大学出版社,1999年10月
    [106] 李维特、黄保海、毕仲波,热应力理论分析及应用[M],北京:中国电力出版社:2004年6月
    [107] FAG Kugelfischer AG(德)著,李景贤译,滚动轴承安装设计[M],北京:机械工业出版社,2004年1月:14-27
    [108] 李洪、曲中谦.适用轴承手册[M].沈阳科学技术出版社,2001年10月:p454-455
    [109] 周顺生,范晋伟、岳中军、董光谱,有限元分析在数控铣床热变形方面的研究[J],微计算机信息,2005,21(8):58-60
    [110] 杨纶标、高英仪,模糊数学原理及应用[M],广州:华南理工大学出版社,2004年2月:86-125
    [111] 蒋泽军编,模糊数学教程[M],北京:国防工业出版社,2004年1月
    [112] 苏均和,概率论与数理统计[M].上海:上海财经大学出版社,2005年3月
    [113] 方开泰、金辉、陈庆云,实用回归分析[M].北京:科学出版社,1988年10月
    [114] 陈魁.实验设计与分析[M],北京:清华大学出版社,2005年:37-38
    [115] 廖效果、朱启逑,数字控制机床[M],武汉:华中科技大学出版社,1992年9月:29-32
    [116] 吴焱明、陶晓杰,齿轮数控加工技术的研究[M],安徽:合肥工业大学出版社,2006年4月
    [117] 沈世镒,神经网络系统理论及其应用[M],北京:科学出版社,1998年11月
    [118] 丛爽,神经网络模糊系统及其在运动控制中的应用[M],安徽:中国科技大学出版社,2001年5月
    [119] 周开利、康耀宏,神经网络模型及其MATLAB仿真程序设计[M],北京:清华大学出版社,2005年7月
    [120] 吴成茂、范九伦,确定RBF神经网络隐层节点数的最大矩阵元法[J],计算机工程与应用,2004第20期:77-79
    [121] 贾力、方肇洪、钱兴华,高等传热学[M],北京:高等教育出版社,2003年3月
    [122] Jingxia Yuan, Jun Ni. The real-time compensation technique for CNC machining systems[J],.Mechatronics 1998,(8):359—380
    [123] J.S.Chen and G..Chiou, Quick Testing and Modeling of Thermally Induced Errors of CNC Machine Tools[J], International Journal of Machine tool & Manufacture 35(1995): 1065-1074
    [124] Jenq-Shyong Chen, Wei-Yao Hsu. Characterizations and models for the thermal growth of a motorized high speed spindle[J].International Journal of Machine Tools & Manufacture, 2003, 43:1163~1170
    [125] Jenq-Shyong Chen, Computer_Aided Accuracy Enhancement for Multi-Axis CNC Machine Tool[J], International Journal of Machine Tools & Manufacture, 1995, 35:593~605
    [126] R.Ramesh, M.A.Mannan, A.N.Poo, Error Compensation in machine tools-a review Part 1: geometric, cutting-force induced and fixture-dependent error[J], International Journal of Machine Tools & Manufacture, 2000, 40:1235~1256
    [127] R.Ramesh, M.A.Mannan, A.N.Poo, Error Compensation in machine tools—a review Part II: thermal Errors[J], International Journal of Machine Tools & Manufacture, 2000, 40:1257-1284
    
    [128] R.Ramesh, M.A.Mannan, A.N.Poo, S.S.Keerthi, Thermal errors measurement and modeling in machine tools. Part II. Hybrid Bayesian Network —support vector machine model[J], International Journal of Machine Tools & Manufacture, 20034, 43:405-419
    [129] R.Ramesh, M.A.Mannan, A.N.Poo, Thermal error measurement and modelling in machine tools Part I. Influence of varying operating conditions[J], International Journal of Machine Tools & Manufacture, 2003, 43:391 -404
    [130] Jin-Hyeon Lee, Seung-Han Yang, Statistical optimization and assessment of a thermal error model for CNC machine tools[J], International Journal of Machine Tools & Manufacture, 2002, 42:147-155
    [131] Debra A. Krulewich, Temperature integration model and measurement point selection for thermally induced machine tool errors[J], Mechatronics 8(1998):395-412
    [132] A.K.Srivastava, S.C.Veldhuis and M.A.Elbestawit, Modelling Geometric and Thermal errors in a Five-Axis CNC Machine Tool[J], International Journal of Machine Tools & Manufacture, 1995, 35:1321-1337
    [133] Anthony Chukwujekwu Okafor, Yalcin M.Ertekin, Vertical Machining center accuracy Characterization using laser interferometer Part 1. Linear Positional error[J]. Journal of Materials Processing Technology 105(2000):407-420
    [134] Anthony Chukwujekwu Okafor, Yalcin M.Ertekin, Vertical Machining center accuracy Characterization using laser interferometer Part 2. Angular error[J]. Journal of Materials Processing Technology 105(2000):394-406
    [135] Minyang Yang, Jaejong Lee, Measurement and prediction of thermal errors of a CNC Machining center using two spherical balls[J], Journal of Materials Processing Technology 75(1998): 180-189
    
    [136] Won Soo Yun, Soo Kwang Kim, Dong Woo Cho, Thermal error analysis for a CNC lathe feed drive system[J], International Journal of Machine Tools & Manufacture, 1999, 35:1087-1101
    
    [137] Cheng-Hsien Wu, Yu-Tai Kung, Thermal analysis for the feed drive system of a CNC machine center[J], International Journal of Machine Tools & Manufacture, 2003, 43:1521-1528
    
    [138] P.Vanherck, J.Dehase, M.Nuttin, Compensation of thermal deformation in machine tools with neural nets[J], Computer In Industry 33(1997): 119-125
    
    [139] Mofid Mahdi, Liangchi Zhang, Applied mechanics in grinding. Part 7: residual stresses induced by full coupling of mechanical deformation, thermal deformation and phase transformation[J], International Journal of Machine Tools & Manufacture, 39(1999): 1285-1298
    
    [140] Sun-Kyu Lee, Jae-Heung Yoo, Moon-Su Yang, Effect of thermal deformation on machine tool slide guide motion[J], Tribology international 36(2003):41-47
    
    [141] D G Ford, S R Postlethwaite, J P Allen and M D Blake, Compensation algorithms for the real-time correction of time and spatial errors in a vertical machining center[J], Proc Instn Mech Engrs Vol 214 Part B:221-235
    
    [142] Kyung-Don Kim and Sung-Chong Chung, Synthesis of 3D artifact for Quick identification of thermal errors in machine tools[J], International Journal of Production Research 43(2004): 1167-1187
    
    [143] S R Postlethwaite, J P Allen and D G Ford, The use of thermal imaging, temperature and distortion models for machine tool thermal error reduction[J], Proc Instn Mech Engrs Vol 212 Part B:671-681
    [144] D.I.Bergman and B.C.Waltrip, A low thermal error Sampling Comparator for Accurate settling Measurement[C],ISCAS 2004:I-521~I-524
    
    [145] Toshimitsu Matsuzaki, Toru Kohashi, Thermal Error Compensation Method for Weighing Sensor[C], SICE Annual Conference in Fukui, August 4-6,2003:2528-2532
    
    [146] Jin-Hyeon Lee, Seung-Han Yang, Fault Diagnosis and Recovery for a CNC Machine Tool Thermal Error Compensation System[J], Journal of Manufacturing System 19(2001):428-434
    
    [147] Jin-Hyeon Lee, Jae-Ha Lee, Seung-Han Yang,Thermal Error Modeling of a Horizontal Machining Center Using Fuzzy Logic Strategy[J], Journal of Manufacturing Process 3(2001): 120-127
    
    [148] J.S.Chen, Fast Calibration and Modeling of Thermally-Induced Machine Tool Errors in Real Mchining[J], International Journal of Machine Tools & Manufacture, 37(1997): 159-169
    
    [149] JenQ-Shyong,Chen, A Study of Thermally Induced Machine Tool Errors in Real Cutting Condition[J], International Journal of Machine Tools & Manufacture, 36(1996): 1401-1411
    
    [150] A.C.Okafor, Yalcin M.Ertekin, Derivation of machine tool errors models and error compensation procedure for three axis vertical machining center using rigid body kinematics [J], International Journal of Machine Tools & Manufacture, 40(2000): 1199-1213
    
    [151] S R Postlethwaite, J P Allen and D G Ford, Machine tool thermal error reduction—an appraisal[J], Proc Instn Mech Engrs Vol 213(1999) Part B:1-10
    
    [152] Moriwaki.T. Thermal Deformation and Its On-line Compensation of Hydrosaatically Supported Precision Spindle [C]. Annals of CIRP,1988 , vol,37(1):283-286
    [153] Donmez M.A, D.S.Blomquist, R.J.Hocken. A Ggeneral Methodology for Machine Tool Accuracy Enhancement by Error Compensation {J}. Precision Engineering, 1986, vol, 8 (4):187-196
    [154] Woytowitz. Tool Path Error Analysis for High Precision Milling With a Magnetic Bearing Spingdle [C]. 1989 ASME Publication, 1989:129-142
    [155] 邓三鹏,基于热补偿的加工中心在线检测软件的开发[D],天津:天津大学硕士毕业论文,2004年1月
    [156] 胡鹏浩,非均匀温度场中机械零部件热变形的理论及应用研究[D],合肥工业大学博士学位论文,2001年7月
    [157] 罗哉,精密机械中孔轴最佳热配合理论及应用研究[D],合肥工业大学博士学位论文,2005年11月
    [158] 张勇,温度变化对机械零件配合精度影响的研究[D],合肥工业大学硕士学位论文,2002年6月
    [159] 杨建国、潘志宏、薛秉源,数控双主轴车床几何和热误差综合数学模型及实时补偿[J],机械设计与研究,1998(1):44-47
    [160] 吴光琳,林建平,李从心,阮雪榆,基于神经网络的数控加工热误差补偿[J],机床与液压,2000(3):8-10
    [161] 杨建国、许黎明、刘行、李勇、李启斌、王嵘、潘志宏,加工中心的几何误差和热误差综合补偿模型[J],计量学报,2001,22(2):91-95
    [162] 闫占辉、曹毅,环境温度分布特征及其对机床热变形影响规律的分析[J],汽车工艺与材料,2001(10):39-41
    [163] 杨建国、薛秉源,CNC车削中心热误差模态分析及鲁棒建模[J],中国机械工程,1998年,9(5):31-36
    [164] 杨庆东,机床动态热性能研究和误差补偿[J],重庆工业高等专科学校学报,1999,14(3~4):232-234
    [165] 杨庆东、c.范丹伯格、P.范赫里克、J.P.克鲁斯,数控机床热误差补偿建模方法[J],制造技术与机床,2000(2):10-14
    [166] 杜正春,杨建国,关贺,窦小龙,制造机床热误差研究现状与思考[J],制造业自动化,2002,4(10):41-44
    [167] 邓卫国、杨建国、任永强、吴昊,精密车削中心热误差测试和优化建模[J],机械制造,2004,42(479)22-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700