铝合金干切削和少量润滑切削试验及模糊监控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从二十世纪九十年代提出“绿色制造”概念以来,由于人们环保意识的增强和可持续发展战略的提出,绿色制造正在成为制造业的重要特征和基本生产模式。为了提高生产率、工件加工质量和刀具耐用度,传统的金属切削中大量使用切削液。但是切削液的大量使用会对人和环境造成严重的负面影响,而且切削液的使用费用相当高。无论从保护人身健康、生态环境的角度,还是从经济角度考虑,在金属切削过程中不使用或尽可能地少使用切削液都是极其必要的。
     本文在国家自然科学基金项目(50875120)资助下,对铝合金干切削和少量润滑切削进行研究。首先对干切削和少量润滑切削机理进行了深入研究。以往对金属切削过程的研究没有对振动和声发射信号给予足够关注,本文对干切削和少量润滑切削加工过程中的这两种信号在较抽象的物理信号层面进行系统深入地研究,旨在从一个新的视角揭示干切削和少量润滑切削机理。另外,对干切削和少量润滑切削效果进行了试验研究。最后,在对少量润滑研究的基础上,为了能够在金属切削过程中自适应地提供切削液,提出了基于少量润滑的切削温度监控的构想,并探讨了其可行性,最后进行了试验验证。
     本文主要研究内容包括:
     (1)运用传热学理论对干切削和少量润滑切削的热学机理进行了研究。利用普朗特的对流换热边界层理论揭示了少量润滑的冷却机理,提出了切削液处于液态强迫对流换热状态下切削液冷却能力最大时所需最少切削液流量、最大对流换热量计算方法,推导出对流换热量与切削液流量之间关系式;对Zorev提出的刀-屑摩擦模型针对少量润滑条件进行了改进,以对少量润滑条件下的摩擦行为进行更合理地解析;从热量传输角度研究了干切削和少量润滑切削的切削热传输机制;通过对切削液传热模型的研究得到了切削液供液方位和传热参数对切削热传输的影响规律。
     (2)建立了基于虚拟仪器的干切削加工过程信号采集平台,采样航空铝合金7050-T7451干铣削过程中的振动和声发射信号,从时域和能量角度研究了不同工艺条件下干切削过程的特点和规律。通过时域研究,得到了铣削工艺参数与振动信号、声发射信号的均方根值之间的关系。利用小波包分解,研究了干切削过程中不同工艺条件下振动和声发射信号在不同频带内的能量分布,发现了切削速度、每齿进给量和铣削宽度对信号不同频带能量分布的影响规律。
     (3)在基于虚拟仪器和VC6.0建立少量润滑切削加工过程信号采集平台和少量润滑切削液供应系统的基础上,对少量润滑切削进行了试验研究。对航空铝合金7050-T7451铣削过程中采样的振动和声发射信号,分别从时域、频域、时频域和信号能量的角度运用多种经典和现代信号处理方法研究了在少量润滑条件下不同切削液流量对切削过程的影响,得到了铣削过程中少量润滑对切削振动信号和声发射信号的均方根值、频谱分布、不同频带能量分布影响的规律。
     (4)通过航空铝合金和工具钢的铣削试验,对干切削和不同切削液流量的少量润滑切削加工效果从加工质量、对刀具的影响和切屑方面进行对比研究,研究结果表明少量润滑能有效提高加工质量和刀具耐用度。
     (5)提出并实现了基于少量润滑的切削温度监控的构想。考虑到切削温度与工艺条件之间的强耦合性,运用模糊控制理论设计并开发了基于少量润滑的切削温度监控系统,以期在保证加工质量的前提下尽可能地减少切削液的使用量。对基于少量润滑的航空铝合金7050-T7451切削温度监控进行了可行性研究、仿真和试验研究。仿真和试验结果表明:在少量润滑条件下,通过电液数字阀输出的切削液流量随着切削温度的变化能快速反应,切削温度的控制效果较好,可以实现控制切削温度和减少切削液用量的双重目的。通过加工实例表明了基于切削液的切削温度监控对提高航空铝合金加工质量和减少切削液用量的有效性。
     论文的研究工作丰富了绿色切削加工理论,研究结果对干切削和少量润滑切削在生产中的应用具有指导作用和实践意义。
Due to the increased awareness of environmental protection and sustainable development, greenmanufacturing has been becoming an important feature and a basic production style in modernmanufacturing industry. In order to improve productivity, workpiece quality and to prolong tool life, alarge quantity of cutting fluid is used in metal cutting process. However, extensive use of cutting fluidwill cause serious negative impact on human health and the environment, and the costs of cutting fluidare heavy. From the aspects of human health, the environment, and economics, it’s necessary todecrease the use of cutting fluid as much as possible in metal cutting process.
     Dry cutting and LQL (A Little Quantity Lubricant) cutting of aluminum alloy are researched inthis paper, supported by the National Natural Science Foundation of China (50875120). Mechanism ofdry cutting and LQL cutting is studied. Compared with previous studies, the characteristic of this paperis that the research of dry cutting and LQL cutting is conducted in a more abstract level through theanalysis of vibration signals and AE (Acoustic Emission) signals. An experimental research isconducted in order to understand the effects of LQL on machining. In addition, in order to providecutting fluid adaptively in metal machining process, the feasibility of cutting temperature control basedon cutting fluid is discussed, and an experimental validation is conducted. The main achivements in thedissertation are summarized as follows:
     (1) The thermal mechanism of dry cutting and LQL cutting is discussed by applying heat trasfertheory. Cooling mechanism is revealed by applying convective heat transfer boundary layer theory ofPrandtl. The improvement of tool-chip friction model which is suggested by Zorev is conducted inorder to give a more reasonable explanation to the friction behavior between the tool and chip underlubricant condition in machining process, the formula of minimum cutting fluid flow rate when thecooling capacity is the maximm is derived out under the heat transfer condition of liquid forcedconvection. The cutting heat transfer mechanism is researched on dry cutting and LQLcutting from theaspect of heat transfer process. The effect of cutting fluid applying direction and heat trasferparameters on cutting heat trasfer process is researched through heat trasfer model of cutting fluid.
     (2) A signal acquisition platform is established based on virtual instrument platform. Thevibration signals and AE signals are sampled in milling process of aluminum alloy7050-T7451. Thecharacteristics of signals in dry cutting are researched through the methods of time domain and energydistribution under different process conditions. In time domain, the relationship between process parameters and RMS (Root Mean Square) values is obtained in milling process. By means of waveletpacket decomposition, the energy distribution in different frequency bands of vibration signals and AEsignals in dry milling process is analyzed under different process conditions, revealing the law ofenergy distribution in different frequency bands for different cutting speed, feed per tooth, and cuttingwidth.
     (3) In order to conduct an experimental research on LQL, a signal acquisition platform isestablished based on virtual instrument platform. A cutting fluid supply system for LQL is built basedon VC6.0. The effects on cutting process of cutting fluid flow rate in LQL milling process foraluminum alloy7050-T7451are researched through the analysis of vibration and AE signals in timedomain, frequency domain, time-frequency domain, and energy distribution in different frequencybands based on wavelet packet decomposition. The characteristics of effects of cutting fluid flow rateto vibration and AE signals are concluded through RMS value, frequency distribution, and energydistribution.
     (4) Based on the tests of milling of aluminum alloy7050-T7451and tool steel, the comparativeresearch of machining effects of dry cutting and LQL cutting under different cutting fluid flow rate isconducted from aspects of workpiece quality, tool, and chips. The research reveals the advantage ofLQL in metal machining process.
     (5) By applying fuzzy control theory, a cutting temperature control system for aluminum alloy7050-T7451milling process is established based on LQL in order to decrease the use of cutting fluidwhile assuring the quality of cutting process. A practicability study is conducted. Simulation andexperiment show that the proposed control system can conduct an effective control of cuttingtemperature, and has high control accuracy. The effectiveness of cutting temperature control based oncutting fluid on improving machining quality and decreasing the use of cutting fluid is verified throughmachining experiment.
     The promising achivements of this dissertation enrich green cutting theory and give a helpfulguide to the application of dry cutting and LQL cutting.
引文
[1] Melnyk S A, Smith R T. Green manufacturing[M]. USA: Society of Manufacturing Engineers,1996.
    [2]张彦通. ISO环境管理体系入门[M].北京:航空工业出版社,1996.
    [3] Myer Kutz.环境意识制造[M].北京:人民邮电出版社,2010.
    [4]刘飞,曹华军,何乃军.绿色制造的研究现状与发展趋势[J].中国机械工程,2000,11(1~2):105~109.
    [5] Chen Z. Green technology and environmental standards[C]. Proceedings of CIRP InternationalSymposium-Advanced Design and Manufacture in the Global Manufacturing Era.1997,1:425~429.
    [6] Anon. Green manufacturing and the global materials industry[J]. Advanced Materials&Processes,1997,151(1):25~28.
    [7] Zhang H C, Kuo T C, Lu H T. Environmentally conscious design and manufacturing: Astate-of-the-art survey[J]. Journal of Manufacturing Systems,1997,16(5):352~369.
    [8] An Q L, FU Y C, Xu J H, et al. High efficiency cooling technology based on greenmanufacturting[J]. Transactions of Nanjing University of Aeronautics&Astronautics,2005,22(3):260~268.
    [9]中国科学技术协会.2006-2007学科发展报告综合卷[M].北京:中国科学技术出版社,2007.
    [10]曹凤中,马登齐.绿色的冲击[M].北京:中国环境科学出版社,1998.
    [11]张世昌,李旦,高航.机械制造技术基础[M].北京:高等教育出版社,2001.
    [12]吴玉华.金属切削加工技术[M].北京:机械工业出版社,1998.
    [13] Vieira J M, Machado A R, Ezugwu E O. Performance of cutting fluids during face milling ofsteels[J]. Journal of Materials Processing Technology,2001,116:244~251.
    [14] Klocke F, Eisenblatter G. Dry cutting[J]. Annals of the CIRP,1997,46(2):519~526.
    [15] Li K M, Liang S Y. Modeling of cutting forces in near dry machining under tool wear effect[J].International Journal of Machine Tools&Manufacture,2007,47:1292~1301.
    [16] Feng S C, Hattori M. Cost and process information modelling for dry machining[C].Proceedings of the International Workshop for Environment Conscious Manufacturing,ICEM-2000,2000.
    [17] Sreejith P S, Ngoi B K A. Dry machining: machining of the future[J]. Journal of MaterialsProcessing Technology,2000,101:287~291.
    [18] Thepsonthi T, Hamdi M, Mitsui K. Investigation into minimal-cutting-fluid application inhigh-speed milling of hardened steel using carbide mills[J]. International Journal of MachineTools&Manufacture,2009,49:156~162.
    [19] Bennett E, Bennett D. Occupational airway diseases in the metalworking industry. Part1:Respiratory infections, pneumonia, chronic bronchitis and emphysema[J]. TribologyInternational,1985,169~173.
    [20] Bennett E O, Bennett D L. Minimizing human exposure to chemicals in metalworking fluids[J].Lubrication Engineering,1987,43(3),167~175.
    [21]王西彬.绿色切削加工技术的研究[J].机械工程学报,2000,36(8):6~11.
    [22] NIOSH (National Institute for Occupational Safety and Health). What you need to know aboutoccupational exposure to metalworking fluids[M]. DHHS Publication,1998:98~116.
    [23] Hong S Y, Broomer M. Economical and ecological cryogenic machining of AISI304austeniticstainless steel[J]. Clean Products and Processes,2000,2:157~166.
    [24] Sluhan C A. Selecting the right cutting and grinding fluids[J]. Tooling and Production,1994,60(2):7.
    [25] Abdalla H S, Baines W, McIntyre G, et al. Development of novel sustainable neat-oilmetalworking fluids for stainless steel and titanium alloy machining. Part1. Formulationdevelopment[J]. International Journal of Advanced Manufacturing Technology,2007,34:21~33.
    [26] Bernstein D, Lummus Z, Santilli G, et al. Machine operators lung–a hypersensitivitypneumonitis disorder associated with exposure to metal[J]. Chest,1995,108:636~641.
    [27] Thornburg J, Leith D. Mist generation during metal machining[J]. Journal of Tribology,2000,122(3):544~549.
    [28] Lopez D, Lacalle L N, Lamikiz A, et al. Cutting conditions and tool optimization in thehigh-speed milling of aluminium alloys[C]. Proceedings of the Institution of MechanicalEngineers,2001,215(Part B):1257~1269.
    [29] Brinksmeier E, Walter A, Janssen R, et al. Aspects of cooling lubrication reduction in machiningadvanced materials[C]. Proceedings of the Institute of Mechanical Engineers,1999,213(Part B):769~778.
    [30] Avila R F, Abrao A M. The effect of cutting fluid on the machining of hardened AISI4340steel[J]. Journal of Materials Processing Technology,2001,119:21~26.
    [31] Devillez A, Schneider F, Dominiak S, et al. Cutting forces and wear in dry machining of Inconel718with coated carbide tools[J]. Wear,2007,262:931~942.
    [32] Aronson R B. Why dry machining?[J]. Manufacturing Engineering,1995,114(1):33~36.
    [33] Dunlap C. Should you try dry?[J]. Cutting Tool Engineering,1997,49(1):22~23.
    [34] Blocke F, Krieg T. Improved cutting processes with adapted coating system[J]. Annals of theCIRP,1998,47(1):65~68.
    [35] Kustas F M, Fehrehnbacher L L, Komanduri R. Nanocoatings on cutting tools for drymachining[J]. Annals of the CIRP,1997,46(1):39~42.
    [36] Narutaki N, Yamane Y, Tashima S. A new advanced ceramics for dry machining[J]. Annals of theCIRP,1997,46(1):43~45.
    [37]刘志峰,张崇高,任家隆.干切削加工技术及应用[M].北京:机械工业出版社,2005.
    [38]李新龙,何宁,李亮.绿色切削中的MQL技术[J].航空精密制造技术,2005,41(2):24~35.
    [39] Dudzinski D, Devillez A, Moufki A, et al. A review of developments towards dry and high speedmachining of inconel718alloy[J]. International Journal of Machine Tools&Manufacture,2004,44:439~456.
    [40] Dasch J M, Carolina C, Curtis A, et al. A comparison of five categories of carbon-based toolcoatings for dry drilling of aluminum[J]. Surface&Coatings Technology,2006,200:2970~2977.
    [41] Heine H J. Dry machining-A promising option[J]. American Machinist,1997,141(8):92~94.
    [42] Diniz A E, Oliveira A J. Optimizing the use of dry cutting in rough turning steel operations[J].International Journal of Machine Tools&Manufacture,2004,44(10):1061~1067.
    [43] Diniz A E, Micaroni R. Cutting conditions for finish turning process aiming: the use of drycutting[J]. International Journal of Machine Tools&Manufacture,2002,42:899~904.
    [44] Richardson D J, Keavey M A, Dailami F. Modelling of cutting induced workpiece temperaturesfor dry milling[J]. International Journal of Machine Tools&Manufacture,2006,46:1139~1145.
    [45] Abouelatta O B, Mádl J. Surface roughness prediction based on cutting parameters and toolvibrations in turning operations[J]. Journal of Materials Processing Technology,2001,118(1~3):269~277.
    [46] Risbood K A, Sahasrabudhe A D. Prediction of surface roughness and dimensional deviation bymeasuring cutting forces and vibrations in turning process[J]. Journal of Materials ProcessingTechnology,2003,132(1~3):203~214.
    [47] Li K M. Predictive modeling of near dry machining: mechanical performance and environmentalimpact[博士学位论文]. Georgia Institute of Technology,2006.
    [48] Dosbaeva J, Veldhuis, S. Enhancement of wet-and MQL-based machining of automotive alloysusing cutting tools with DLC/polymer surface treatments[J]. Journal of Materials Engineeringand Performance,2008,17(3):346~351.
    [49] Wang Z G, Rahman M, Wong Y S, et al. Study on orthogonal turning of titanium alloys withdifferent coolant supply strategies[J]. International Journal of Advanced ManufacturingTechnology,2009,42:621~632.
    [50] Durval U B, Diniz A E, Gilberto W A, et al. Using a minimum quantity of lubricant and adiamond coated tool in the drilling of aluminum-silicon alloys[J]. Journal of MaterialsProcessing Technology,2002,122(1):127~138.
    [51]横田秀雄,吴敏镜. MQL切削的现状和发展[J].航空精密制造技术,2004,40(1):24~26.
    [52] Dosbaeva J, Rabinovich G F, Dasch J. Enhancement of wet-and MQL-based machining ofautomotive alloys using cutting tools with DLC/polymer surface treatments[J]. Journal ofMaterials Engineering and Performance,2008,17(3):46~351.
    [53]裴宏杰,王贵成.绿色机械加工的研究现状及其发展[J].机械设计与制造工程,2001,30(5):52~54.
    [54] Cselle T. Rotating tooling for dry and high speed cutting[C]. Proceeding of Germany-FranceConference on High Speed Machining,1998:85~89.
    [55] Machado A R, Wallbank J. Effect of extremely low lubricant volumes in machining[J]. Wear,1997,210(1-2):76~82.
    [56] Varadarajan, A S, Philip P K, Ramamoorthy B. Investigations on hard turning with minimalcutting fluid application (HTMF) and its comparison with dry and wet turning[J]. InternationalJournal of Machine Tools&Manufacture,2002,42(2):193~200.
    [57] Chen D C, Suzuki Y, Sakai K. A study of turning operation by oil-water combined mistlubrication machining method[J]. Key Engineering Materials,2001,202-203:47~52.
    [58] Diniz A E, Ferreira J R, Filho F T. Influence of refrigeration/lubrication condition on SAE52100hardened steel turning at several cutting speeds[J]. International Journal of Machine Tools&Manufacture,2003,43(3):317~326.
    [59] Dhar N R, Islam M W, Islam S, et al. The influence of minimum quantity of lubrication (MQL)on cutting temperature, Chip and Dimensional Accuracy in Turning AISI-1040steel[J]. Journalof Materials Processing Technology,2006,171(1):93~99.
    [60] Rahman M, Senthil K A, Salam M U. Experimental evaluation on the effect of minimalquantities of lubricant in milling[J]. International Journal of Machine Tools&Manufacture,2002,42(5):539~547.
    [61] Rahman M, Senthil K A, Manzoor U S. Evaluation of minimal quantities of lubricant in endmilling[J]. International Journal of Advanced Manufacturing Technology,2001,18(4):235~241.
    [62] Lopez L N, Angulo C, Lamikiz A, et al. Experimental and numerical investigation of the effectof spray cutting fluids in high speed milling[J]. Journal of Materials Processing Technology,2006,172(1):11~15.
    [63] Sasahara H, Kawasaki M, Tsutsumi M. Helical feed milling with MQL for boring of aluminumalloy[J]. Transactions of the Japan Society of Mechanical Engineers,2003,69(8):2156~2161.
    [64]苏宇.新型低温MQL装置的研制与难加工材料低温高速切削机理研究[博士学位论文].南京:南京航空航天大学,2007.
    [65] Anshu D J. An expertimental investigation of the effects of cutting fluid application onmachining performance[博士学位论文]. The University of Utah,2006.
    [66]陈德成,铃木康夫,酒井克彦.微量润滑油润滑和冷风切削冷却加工法对高硅铝合金切削面的影响[J].机械工程学报,2000,36(11):70~74.
    [67]陈德成,铃木康夫,加茂进.冷风切削加工对不锈钢加工表面的效果[J].机械工程学报,1999,(4):93~95.
    [68]赵威.基于绿色切削的钛合金高速切削机理研究[博士学位论文].南京:南京航空航天大学,2006.
    [69]安庆龙.低温喷雾射流冷却技术及其在钛合金机械加工中的应用[博士学位论文].南京:南京航空航天大学,2006.
    [70]2009年度机床工具行业“中国机械工业科学技术奖”揭晓[J].世界制造技术与装备市场,2010,(2):31.
    [71]张春燕. MQL切削机理及其应用基础研究[博士学位论文].镇江:江苏大学,2008.
    [72] Shang H. Advancement of economical machining technology[C]. Proceedings of3rdInternational Conference on Manufacturing,1995,(12):312~317.
    [73] Wang Z Y,Rajurkar K P. Cryogenic machining of hard-to-cut materials[J]. Wear,2000,239:168~175.
    [74] Jun S, Lubrication effect of liquid nitrogen in cryogenic machining friction on the tool-chipinterface[J]. Journal of Machanical and Technology,2005,19(4):936~946.
    [75] Khan A A, Ahmed M. Improving tool life using cryogenic cooling[J]. Journal of MaterialsProcessing Technology,2008,196(1~3):149~154.
    [76] Venugopal K A, Paul S, Chattopadhyay A B. Tool wear in cryogenic turning of Ti-6Al-4Valloy[J]. Cryogenic,2007,47(1):12~18.
    [77]舒彪,何宁,武凯.氮气介质下钦合金铣削特性的分析研究[J].航空精密制造技术,2002,(12):16~19.
    [78] Hong S Y, Ding Y, Jeong W. Friction and cutting forces in cryogenic machining of Ti–6Al–4V[J].International Journal of Machine Tools&Manufacture,2001,41:2271~2285.
    [79]刘俊岩.水蒸汽作绿色冷却润滑剂的作用机理及切削试验研究[博士学位论文].哈尔滨:哈尔滨工业大学,2005.
    [80]韩荣第,吴健.绿色切削技术探讨[J].工具技术,2006,(12):8~10.
    [81]严鲁涛,袁松梅,刘强.绿色切削中的微量润滑技术[J].制造技术与机床,2008,(4):91~93.
    [82]贾晓明,黄宝中.绿色切削加工技术分析[J].润滑与密封,2002,(6):83~85.
    [83] Abukhshim N A, Mativenga P T, Sheikh M A. Heat generation and temperature prediction inmetal cutting: A review and implications for high speed machining[J]. International Journal ofMachine Tools&Manufacture,2006,46:782~800.
    [84] Lazoglu I, Altintas Y. Prediction of tool and chip temperature in continuous and interruptedmachining[J]. International Journal of Machine Tools&Manufacture,2002,42:1011~1022.
    [85]周泽华.金属切削理论[M].北京:机械工业出版社,1992.
    [86] Waldorf D J. Shearing, ploughing and wear in orthogonal machining[博士学位论文]. Universityof Illinois,1996.
    [87] Kalpakjian S, Schmid S R.制造工程与技术(唐一平改编)[M].北京:高等教育出版社,2005.
    [88] Shaw M C. Energy conversion in cutting and grinding[J]. Annals of the CIPP,1996,45(1):101~104.
    [89]杨福荣,董申.金属切削原理[M].北京:机械工业出版社,1988.
    [90] An Q L, Fu Y C, Xu J H. Experimental study on turning of TC9titanium alloy with cold watermist jet cooling[J]. International Journal of Machine tools&Manufacture,2011,51:549~555.
    [91] Anshu D J. An experimental investigation of the effects of cutting fluid application onmachining performance[博士学位论文]. University of Utah,2006.
    [92]广井进,山中康夫.切削液与磨削液[M].北京:机械工业出版社,1987.
    [93] Claudin C, Mondelin A, Rech J, et al. Effects of a straight oil on friction at the tool-workmaterialinterface in machining[J]. Internatioal Journal of Machine Tools&Manufacture,2010,50:681~688.
    [94]姜峰.不同冷却润滑条件下Ti6Al4V高速加工机理研究[博士学位论文].济南:山东大学,2009.
    [95] Bailey J A. Friction in metal machining-mechanical aspects[J]. Wear,1975,31:243~275.
    [96] Loewen E G, Shaw M C. On the Analysis of cutting-tool temperatures, Transactions of ASME,Journal of Engineering for Industry,1954,76:217~231.
    [97] Lin S C. The use of variable spindle speed for vibration control in face milling process[博士学位论文]. University of Illinois at Urbana-Champain,1989.
    [98] Yesilyurt I. End mill breakage detection using mean frequency analysis of scalogram[J].International Journal of Machine tools&Manufacture,2006,46:450~458.
    [99] Liu J J. Monitoring the precision machining process: sensors, signal processing, and informationanalysis[博士学位论文]. University of California at Berkeley,1991.
    [100] Salgado D R, Alonso F J, Cambero I, et al. In-process surface roughness prediction system usingcutting vibrations in turning[J]. International Journal of Advanced Manufacturing Technology,2009,43:40~51.
    [101] Chelladurai H, Jain V K, Vyas N S. Development of a cutting tool condition monitoring systemfor high speed turning operation by vibration and strain analysis[J]. International Journal ofAdvanced Manufacturing Technology,2008,37:471~485.
    [102] Sharma V, Sharma S K, Sharma A. Cutting tool wear estimation for turning[J]. InternationalJournal of Advanced Manufacturing Technology,2008,19:99~108.
    [103] Chen J C, Chen W. A tool breakage detection system using an accelerometer sensor[J]. Journal ofIntelligent Manufacturing,1999,10:187~197.
    [104] Li X L. A brief review: acoustic emission method for tool wear monitoring during turning[J].Internatioal Journal of Machine Tools&Manufacture,2002,42:157~165.
    [105] Kannatey-Asibu E, Dornfeld D A. Quantitive relationships for acoustic emission fromorthogonal metal cutting[J]. Journal of Engineering for Industry,1981,103(3):330~340.
    [106] Uehara K. Identification of chip formation mechanism through acoustic emissionmeasurement[J]. Annals of the CIPP,1984,33(1):71~74.
    [107] Jantunen E. A summary of methods applied to tool condition momitoring in drilling[J].International Journal of Machine Tools&Manufacture,2002,42:997~1010.
    [108]刘战强,王兆辉,刘逢时.先进切削加工技术综述[J].工具技术,2003,(5):3~7.
    [109]刘学杰,杨建鸣.高速干切削[J].包头钢铁学院学报,1998,(1):157~160.
    [110] Fukuia H, Okidaa J, Omoria N, et al. Cutting performance of DLC coated tools in drymachining aluminum alloys[J]. Surface&Coatings Technology,2004,187:70~76.
    [111]李茂月,韩振宇,富宏亚,等.基于开放式控制器的铣削颤振在线抑制[J].机械工程学报,2012,48(17):172~182.
    [112]高宏力.切削加工过程中刀具磨损的智能监控技术研究[博士学位论文].成都:西南交通大学,2005.
    [113] Yu Q H. Acoustic emission: measurement and analysis for metal cutting[博士学位论文].Washington State University,1988.
    [114] Li X L, Dong S, Yuan Z J. Discrete wavelet transform for tool breakage monitoring[J].International Journal of Machine Tools&Manufacture,1999,39:1935~1944.
    [115] Srinivasa P P, Nagabhushana T N, Ramakrishna Rao P K. Tool wear estimation using resourceallocation network[J]. International Journal of Machine Tools&Manufacture,2001,41:673~685.
    [116] Issam Abu-Mahfouz. Drilling wear detection and classification using vibration signals andartificial neural network[J]. International Journal of Machine Tools&Manufacture,2003,43:707~720.
    [117] Axinte D A, Gindy N, Fox K, et al. Process monitoring to assist the workpiece surface quality inmachining[J]. International Journal of Machine Tools&Manufacture,2004,44:1091~1108.
    [118] Song D Y, Otani N, Aoki T, et al. A new approach to cutting state monitoring in end-millmachining[J]. International Journal of Machine Tools&Manufacture,2005,45:909~921.
    [119] Tatar K, Gren P. Measurement of milling tool vibrations during cutting using laser vibrometry[J].International Journal of Machine Tools&Manufacture,2008,48:380~387.
    [120] Cao H R, Chen X F, Zi Y Y, et al. End milling tool breakage detection using lifting scheme andMahalanobis distance[J]. International Journal of Machine Tools&Manufacture,2008,48:141~151.
    [121] Jiang H, Long X H, Meng G. Study of the correlation between surface generation and cuttingvibrations in peripheral milling[J]. Journal of Materials Processing Technology,2008,208:229~238.
    [122] Jemielniak K, Arrazola P J. Application of AE and cutting force signals in tool conditionmonitoring in micro-milling[J]. CIRP Journal of Manufacturing Science and Technology,2008(1):97~102.
    [123] Marinescu I, Axinte D. A time–frequency acoustic emission-based monitoring technique toidentify workpiece surface malfunctions in milling with multiple teeth cutting simultaneously[J].International Journal of Machine Tools&Manufacture,2009,49:53~65.
    [124] Li H, Zheng H Q, Tang L W. Theoretical and experimental investigation of the effects of anirregular-pitch cutter on vibration in face-milling[J]. Journal of Mechanical Science andTechnology,2010,24(11):2169~2174.
    [125] Quintana G, Garcia M L, Ciurana J. Surface roughness monitoring application based on artificialneural networks for ball-end milling operations[J]. Journal of Intelligent Manufacturing,2011,22(11):607~617.
    [126] Kakinuma Y, Sudo Y, Aoyama T. Detection of chatter vibration in end milling applyingdisturbance observer[J]. CIRP Annals-Manufacturing Technology,2011,60:109~112.
    [127] Chen C C, Liu N M, Chiang K T, Chen H L. Experimental investigation of tool vibration andsurface roughness in the precision end-milling process using the singular spectrum analysis[J].International Journal of Advanced Manufacturing Technology,2012,63:797~815.
    [128] Bisu C F, Zapciu M, Cahuc O, et al. Envelope dynamic analysis: a new approach for millingprocess monitoring [J]. International Journal of Advanced Manufacturing Technology,2012,62:471~486.
    [129] Schulz H, Abele E,何宁.高速加工理论与应用[M].北京:科学出版社,2010.
    [130] Klocke F, Hoppe S. Mechanisms of chip formation in high speed cutting[M]. Hanser Press,2001.
    [131] Arndt G. Ultra-high-speed machining: A review and an analysis of cutting force[C]. Proceedingsof the Institution of Mechanical Engineers,1973.
    [132] Sahm A, Siems S. Influence of chip segmentation on cutting force[M]. Hanser Press,2001.
    [133] Marinescu I, Axinte D A. A critical analysis of effectiveness of acoustic emission signals todetect tool and workpiece malfunctions in milling operations[J]. Internatioal Journal of MachineTools&Manufacture,2008,48:1148~1160.
    [134] Hu X, Wang Z Z, Ren X M. Classification of surface EMG signal using relative wavelet packetenergy[J]. Computer Methods and Programs in Biomedicine,2005,79:189~195.
    [135] He Z Y, Cai Y M, Qian Q Q. A study of wavelet entropy theory and its application in electricpower system fault detection[C]. Proceeding of the CSEE,2005,25(5):38~43.
    [136] Dimla D E. The impact of cutting conditions on cutting forces and vibration signals in turningwith plane face geometry inserts[J]. Journal of Materials Processing Technology,2004,155~156:1708~1715.
    [137]黄学文,董光能,周仲荣,等.金属摩擦副干滑动摩擦噪声机理研究[J].润滑与密封,2005,(3):5~8.
    [138] Wang M Y, Chang H Y. Experimental study of surface roughness in slot end millingAL2014-T6[J]. International Journal of Machine Tools&Manufacture,2004,44:51~57.
    [139] Dhar N R, Ahmeda M T, Islama S. An experimental investigation on effect of minimum quantitylubrication in machining AISI1040steel[J]. International Journal of Machine Tools&Manufacture,2007,47:748~753.
    [140] Jayal A D, Balaji A K. Effects of cutting fluid application on tool wear in machining: interactionswith tool-coatings and tool surface features[J]. Wear,2009,267:1723~1730.
    [141] Tsao C C. An experiment study of hard coating and cutting fluid effect in milling aluminumalloy[J]. International Journal of Advanced Manufacturing Technology,2007,32:885~891.
    [142] Aldo B J, Anselmo E D, Fernando T F. Tool wear and tool life in end milling of15–5PHstainless steel under different cooling and lubrication conditions[J]. International Journal ofAdvanced Manufacturing Technology,2009,43:756~764.
    [143] Thepsonthi T, Hamdi M, Mitsui K. Investigation into minimal-cutting-fluid application inhigh-speed milling of hardened steel using carbide mills[J]. International Journal of Machinetools&Manufacture,2009,49:156~162.
    [144] Anthony Xavior M, Adithan M. Determining the influence of cutting fluids on tool wear andsurface roughness during turning of AISI304austenitic stainless steel[J]. Journal of MaterialsProcessing Technology,2009,209:900~909.
    [145] Axinte D A, De Chiffre L. Effectiveness and resolution of tests for evaluating the performance ofcutting fluids in machining aerospace alloys[J]. CIRP Annals-Manufacturing Technology,2008,57:129~132.
    [146] Dimla D E. The correlation of vibration signal features to cutting tool wear in a metal turningoperation[J]. International Journal of Advanced Manufacturing Technology,2002,19:705~713.
    [147]刘占强,万熠,艾兴.高速铣削过程中表面粗糙度变化规律的实验研究[J].现代制造工程,2002,(3):8~109.
    [148]李亮,何宁,何磊,等.高速铣削铝合金时切削力和表面质量影响因素的试验研究[J].工具技术,2002,36(12):16~19.
    [149]汪振华.防锈铝合金弱刚度复杂构件高速铣削工艺研究[博士学位论文].南京:南京理工大学,2009.
    [150]付秀丽.高速切削航空铝合金变形机理及加工表面形成特征研究[博士学位论文].济南:山东大学,2007.
    [151]李晋年,付建军,袁哲俊. CBN刀具磨损机理的研究[J].哈尔滨工业大学学报,1989,(1):80~85.
    [152] Komanduri R, Hou Z B. A review of the experimental techniques for the measurement of heatand temperatures generated in some manufacturing processes and tribology[J]. TribologyInternational,2001,34:653~682.
    [153] Dimla D E, Lister P M. On-line metal cutting tool condition monitoring.I: force and vibrationanalyses[J]. International Journal of Machine Tools&Manufacture,2000,40:739~768.
    [154] Guo Y B, Ammula S C. Real-time acoustic emission monitoring for surface damage in hardmachining[J]. International Journal of Machine Tools&Manufacture,2005,45:1622~1627.
    [155] Liang M, Yeap T, Rahmati S, et al. Fuzzy control of spindle power in end milling process[J].International Journal of Machine Tools&Manufacture,2002,42:1487~1496.
    [156] D’Errico G E. An adaptive system for turning process control based on tool temperaturefeedback[J]. Journal of Materials Processing Technology,1998,72:43~47.
    [157]李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [158]窦振中.模糊逻辑控制技术及其应用[M].北京:北京航空航天大学出版社,1995.
    [159]汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社,1983.
    [160] Guely F, Siarry P. A centred formulation of Takagi-Sugeno rules for improved leaningefficiency[J]. Fuzzy Sets and Systems,1994,62:277~285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700