用户名: 密码: 验证码:
单活性中心催化剂催化乙烯共聚及环烯烃聚合的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文提出——在乙烯多米诺反应体系中两种不同功能活性中心的存在是制备支化聚乙烯的关键这一设想,按照此思路设计了一种新型乙烯多米诺催化体系,即单一主催化剂与两种助催化剂组成的催化体系来催化乙烯共聚制备支化聚乙烯。对于非茂β-二酮锆催化体系,β-二酮锆/AlEt_2Cl可以形成了乙烯齐聚活性中心催化乙烯聚合得到了碳数分布在C4-C12、含量达到70 %以上的α-烯烃。β-二酮锆/MAO (Al(i-Bu)_3、AlEt_3)可以形成乙烯与α-烯烃的共聚活性中心,催化乙烯与特定链长的α-烯烃共聚得到了支化聚乙烯。β-二酮锆/AlEt_2Cl/MAO(Al(i-Bu)_3、AlEt_3)多米诺催化体系,可以催化乙烯共聚制备含有一定支链长度分布的支化聚乙烯,活性达到6×104 g/(molZr?h),但其支化度不高。两种助催化剂比例、铝锆比、催化剂浓度、聚合温度对催化活性、产物性质都有一定的影响。
     在茂金属Et(Ind)_2ZrCl_2催化体系中,Et(Ind)_2ZrCl_2/AlEt_2Cl在一定压力下可以催化乙烯得到碳数分布在C4-C16、含量高达91 %的α-烯烃。聚合条件对乙烯齐聚活性及α-烯烃分布的影响很大。Et(Ind)_2ZrCl_2/AlEt_2Cl/MAO多米诺体系的催化活性高于7×105 g/(molZr?h),得到的聚乙烯支化度可达到20/1000C以上。聚合反应条件对聚合结果都有很明显的影响。研究表明,从商品化的茂金属到合成简便的非茂金属都适用于这种方法,此体系具有普遍的应用性。
     通过紫外-可见光谱法,研究了β-二酮催化剂(dbm)2ZrCl_2分别与两种不同助催化剂(AlEt_2Cl, MAO)的作用情况。结果表明,无论是AlEt_2Cl还是MAO,少量的助催化剂首先使催化剂发生单烷基化反应,主催化剂金属中心的最大吸收峰波长发生蓝移,而当助催化剂量进一步增加时,金属中心的最大吸收峰波长红移,单烷基取代的催化剂被大量的助催化剂夺去电子成为缺电子的阳离子活性中心,以便烯烃单体的配位插入。
     采用三种新型的碳硅异双桥联茂金属催化剂(Me_2C)(Me_2Si)Cp_2TiCl_2、[(CH_2)_5C](Me_2Si)Cp_2TiCl_2、(Me_2C)(Me_2Si)Cp_2ZrCl_2催化乙烯均聚,锆催化剂对乙烯几乎无活性。两种钛催化剂能够催化乙烯与不同链长的α-烯烃共聚。催化剂桥基长度的缩短、两茂环之间的二面角及立体刚性的增大、两桥联基团的结构差异等因素对催化剂的热稳性、聚合活性及共聚情况都有一定的影响。
     选择了β-二酮镍、钛、锆配合物催化环烯烃降冰片烯聚合。研究发现,β-二酮镍催化降冰片烯发生加成聚合,β-二酮钛、锆催化降冰片烯会同时发生开环易位聚合和加成聚合。β-二酮锆、钛催化剂的催化活性、聚合物中开环结构的比例均随助催化剂的量、聚合温度的增加而提高。β-二酮镍配合物也可以催化降冰片烯与α-烯烃、双环戊二烯、乙叉基降冰片烯共聚,但β-二酮镍对降冰片烯与α-烯烃的共聚物中α-烯烃的含量很低。降冰片烯分别与双环戊二烯、乙叉基降冰片烯共聚时,聚合方式仍然是按照加成方式,并且共聚物中的单体比例接近反应物比例。降冰片烯均聚物以及四种共聚物热稳定性都比较好。
In this dissertation, we supposed that the presence of oligomerization active species and copolymerization active species was the key feature in tandem catalysis of ethylene. In order to prove our assumption, we attempted the tandem catalytic systems, consisting of one catalyst with two different cocatalysts, to prepare the branched polyethylene.
     For non-metallocene catalysts, the combination of dichlorobis(β-diketonato)zirconium and AlEt_2Cl could form the oligomerization active species, and oligomerized ethylene to produceα-olefins. The oligomers were composed by C4-C12, and the selectivity ofα-olefins was above 70%. The catalyst combined with MAO (or Al(i-Bu)_3, AlEt_3) to form copolymerization active species, which was responsible for copolymerizing the ethylene andα-olefins to prepare branched polyethylene. The tandem catalytic systems, dichlorobis(β-diketonato)zirconium /AlEt_2Cl/MAO (or Al(i-Bu)_3, AlEt_3), were able to produce branched polyethylene from ethylene as the sole monomer. The activity was up to 6.76×104g/(molZr?h), the branching degree of resulting polymer was not higher. The molar ratio between two cocatalysts, molar ratio of catalyst and cocatalyst, concentration of catalyst and polymerization temperature had effects on the catalytic activity and the properties of copolymer.
     In the Et(Ind)_2ZrCl_2 catalytic system, the Et(Ind)_2ZrCl_2/AlEt_2Cl system gave higher selectivity to C4-C16α-olefins (91%) at the relatively high pressure. The polymerization conditions influenced the activity and distribution ofα-olefins. The catalytic system of Et(Ind)_2ZrCl_2/AlEt_2Cl/MAO exhibited high activity (above 7×105g/molZr?h) and incorporation (above 20/1000C). The polymerization conditions also had effects on the result of copolymerization. In our tandem catalytic system, the catalyst precursor could be selected from commercial metallocene to easily synthesized non-metallocene, which makes this method possess general application value for preparing branched polyethylene. The catalytic systems (dbm)_2ZrCl_2/AlEt_2Cl (or MAO) were investigated by UV/visible absorption spectroscopy. For low molar ratios of Al/Zr, a hypsochromic shift of the initial catalyst absorption band, corresponding to the monomethylation of the catalyst, was observed. Further addition of AlEt2Cl (or MAO) was accompanied by a continuous bathochromic shift of the maximal wavelength corresponding to the formation of more dissociated ionic active species. Then, there would be a coordination of monomer to the ionic active species.
     Three ansa-metallocenes (Me_2C)(Me_2Si)Cp_2TiCl_2, [(CH_2)_5C](Me_2Si)Cp_2TiCl_2 and (Me_2C)(Me_2Si)Cp_2ZrCl_2 were used as catalysts for ethylene polymerization. Only in trace polymer was obtained using zirconocene complex. The copolymerizations of ethylene withα-olefins, catalyzed by titanocene catalysts, were investigated. The structural characteristics, such as short bridges, more rigid ligand, larger dihedral angle and different bridging groups, had significant effects on the stability, catalytic activity and polymerization behavior.
     The polymerizations of cycloolefin (norbornene) were carried out by catalystsβ-diketonate titanium (zirconium, nickel), respectively. The norbornene polymerization occurred via addition mechanism inβ-diketonate nickel catalyst system. The polynorbornenes, synthesized by titanium or zirconium complexes, contained both ring-opening metathesis and addition polymer chain structures. The polymerization activity and portions of double bonds in polynorbornene increased when the polymerization temperature and Al/Ti molar ratio increased. The copolymers of norbornene with 1-hexene, 1-octene, dicyclopentadiene and 5-ethylidene-2-norbornene were prepared usingβ-diketonate nickel, respectively. Theα-olefin content in the copolymers was lower. The copolymers of norbornene with dicyclopentadiene or 5-ethylidene-2-norbornene were also vinyl-addition polymers, and the content of comonomer was close to the ratio in reaction. The homopolymer and copolymer of norbornene exhibited good thermal stability.
引文
[1] Ziegler K, Holzkamp E, Breil H, et al. Polymerisation von ?thylen und anderen olefinen. Angew Chem, 1955, 67: 426.
    [2] Ziegler K, Holzkamp E, Breil H, et al. Das mülheimer normaldruck-poly?thylen-yerfahren. Angew Chem, 1955, 67: 541-547.
    [3] Natta G, Pino P, Corradini P, et al. Crystalline high polymers ofα-olefins. J Am Chem Soc, 1955, 77: 1708-1710.
    [4] Peacock A J. Handbook of Polyethylene: Structures, Properties, and Applications. New York: Marcel Dekker, 2000.
    [5]胡友良,马志,吕英莹. LLDPE的发展现状和技术创新.石化技术与应用, 2003, 21(1): 1-4.
    [6]黄葆同,陈伟.茂金属催化剂及其烯烃聚合物.北京:化学工业出版社, 2000.
    [7] Bialek M, Czaja K. The effect of comonomer on the copolymerization of ethylene with long chain alpha-olefins using Ziegler-Natta catalysts supported on MgCl2(THF)2. Polymer, 2000, 41: 7899-7904.
    [8] Jaber I A, Fink G. Active-sites concentration in the ethylene homopolymerization and copolymerization with 1-hexene using the high-active TiCl4/MgCl2-AlEt3 catalyst system. J Mol Catal A: Chem, 1995, 98: 135-141.
    [9] Kim J H, Jeong Y T, Woo S I. Copolymerization of ethylene and 1-butene with highly active TiCl4/THF/MgCl2, TiCl4/THF/MgCl2/SiO2 and TiCl3·1/3AlCl3 catalysts. J Polym Sci A: Polym Chem, 1994, 32: 2979-2987.
    [10]高京京,王海华,张启兴,等.合成LLDPE的气相聚合Z-N催化剂的研究.石油化工, 2003, 32(8): 658-662.
    [11] Huang J C K, Lacombe Y, Lynch D T, et al. Effects of hydrogen and 1-butene concentrations on the molecular properties of polyethylene produced by catalytic gas-phase polymerization. Ind Eng Chem Res, 1997, 36: 1136-1143.
    [12] Chen S P, Fan Z Q. Ethylene/1-hexene copolymerization with TiCl4/MgCl2/AlCl3 catalyst in the presence of hydrogen. Eur Polym J, 2006, 42: 2441-2449.
    [13] Chien J C W, Nozaki T. Ethylene-hexene copolymerization by heterogeneous and homogeneous Zigler-Natta cataysts and the“comononer”effect. J Polym Sci A: Polym Chem, 1993, 31: 227-237.
    [14] Czaja K, Bialek M. Microstructure of ethylene-1-hexene and ethylene-1-octene copolymers obtained over Ziegler-Natta catalysts supported on MgCl2(THF)2. Polymer, 2001, 42: 2289-2297.
    [15] Chen Y P, Fan Z Q. Ethylene/1-hexene copolymerization with TiCl4/MgCl2/AlCl3 catalyst in the presence of hydrogen. Eur Polym J, 2006, 42: 2441-2449.
    [16] Jiang T, Du W, Zhang L, et al. Copolymerization of ethylene and propylene catalyzed by novel magnesium chloride supported, vanadium-based catalysts. J Appl Polym Sci, 2009, 111: 2625-2629.
    [17] Zhang L T, Fan Z Q, Fu Z S. Effect of internal electron donor on copolymerization of ethylene and 1-hexene catalyzed by supported Ziegler-Natta catalysts. e-Polymers, 2008, no. 143: 1-7.
    [18]胡友良,李泽.烯烃共聚合反应及聚烯烃改性: IV.乙烯原位共聚及聚乙烯结构调控.石化技术与应用, 2004, 22(4): 239-243.
    [19] Kaminsky W, Laban A. Metallocene catalysis. Appl Catal A: Gen, 2001, 222: 47-61.
    [20] Quijada R, Dupont J, Miranda M S L, et al. Copolymerization of ethylene with 1-hexene and 1-octene-correlation between type of catalyst and comonomer incorporated. Macromol Chem Phys, 1995, 196: 3991-4000.
    [21]肖士镜,余赋生.烯烃配位聚合催化剂及聚烯烃.北京:北京工业大学出版社, 2002.
    [22] Hanaoka H, Hino T, Nabika M, et al. Synthesis and characterization of titanium alkyl, oxo, and diene complexes bearing a SiMe2-bridged phenoxy-cyclopentadienyl ligand and their catalytic performance for copolymerization of ethylene and 1-hexene. J Organom Chem, 2007, 692: 4717-4724.
    [23] Yoon J S, Lee D H, Park E S, et al. Thermal and mechanical properties of ethylene/α-olefin copolymers produced over (2-MeInd)2ZrCl2/MAO system. Polymer, 2000, 41: 4523-4530.
    [24]周家敏,盛京.胺基铪茂催化乙烯/1-辛烯无规共聚合的研究.高分子学报, 2000, (1): 79-84
    [25] Intaragamjon N, Shiono T, Praserthdam P. Effect ofα-olefins on copolymerization of ethylene andα-olefin with [t-BuNSiMe2Flu]TiMe2 catalyst. Stud Surf Sci Catal, 2006, 161: 271-274.
    [26] Intaragamjon N, Shiono T, Praserthdam P. A comparative study ethylene/1-hexene copolymerization with [t-BuNSiMe2Flu]TiMe2 catalyst via various activators. Stud Surf Sci Catal, 2006, 159: 841-844.
    [27] Soga K, Kaminaka M. Copolymerization of olefins with SiO2-supported, Al2O3-supported and MgCl2-supported metallocene catalysts activated by trialkyaluminums. Macromol Chem Phys, 1994, 195: 1369-1379.
    [28] Galland G B, Seferin M, Linear low-density polyethylene synthesis promoted by homogeneous and supported catalysts. Polym Int, 1999, 48: 660-664.
    [29] Dos Santos J H Z, Uozumi T, Teranishi T, et al. Ethylene (co)polymerization with supported- metallocenes prepared by the sol-gel method. Polymer, 2001, 42: 4517-4525.
    [30] Jongsomjit B, Kaewkrajang P, Shiono T, et al. Supporting effects of silica-supported methylaluminoxane (MAO) with zirconocene catalyst on ethylene/1-olefin copolymerization behavious for linear low-density polyethylene (LLDPE) production. Ind Eng Chem Res, 2004, 43: 7959-7963.
    [31] Ketloy C, Jongsomjit B, Praserthdam P. Characteristics and catalytic properties of [t-BuNSiMe2Flu]TiMe2/MMAO catalyst dispersed on various supports towards ethylene/1-octene copolymerization. Appl Catal A: Gen, 2007, 327: 270-277.
    [32] Wang W, Fan Z Q, Feng L X. Ethylene polymerization and ethylene/1-hexene copolymerization using homogenous and hetergenous unbridged bisindenyl zirconncene catalysts. Eur Polym J, 2005, 41(10): 2380-2387.
    [33] Johnson L K, Killian C M, Brookhart M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene andα-olefins. J Am Chem Soc, 1995, 117: 6414-6415.
    [34] Haggin J. Polymer catalyst system: DuPont eyes new polyolefins business. Chem Eng News, 1996, 74: 6-7.
    [35] Gates D P, Svejda S A, O?ate E, et al. Synthesis of branched polyethylene using (α-diimine)nickle (II) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules, 2000, 33: 2320-2334.
    [36] Svejda S A, Johnson L K, Brookhart M. Low-temperature spectroscopic observation of chain growth and migratory insertion barriers in (α-diimine)Ni(II) olefin polymerization catalysts. J Am Chem Soc, 1999, 121: 10634-10635.
    [37] Tempel D J, Johnson L K, Brookhart M, et al. Mechanistic studies of Pd(II)-α-diimine-catalyzed olefin polymerizations. J Am Chem Soc, 2000, 122: 6686-6700.
    [38] Kumar K R, Sivaram S. Ethylene polymerization using iron(Ⅱ)bis(imino)pyridyl and nickel(diimine) catalysts: effect of cocatalysts and reaction parameters. Macromol Chem Phys, 2001, 201: 1513-1520.
    [39] Britovsek G J P, Baugh S P D, Hoarau O, et al. The role of bulky subsituents in the polymerization of ethylene using late transition metal catalysts: a comparative study of nickel and iron catalyst systems. Inorg Chim Acta, 2003, 345: 279-291.
    [40] Wang C, Friedrich S, Grubbs R H. Neutral nickel(II)-based catalysts for ethylene polymerization. Organometallics, 1998, 17: 3149-3151.
    [41]黄英娟,闫卫东,曹晨刚,等.线性低密度聚乙烯合成研究进展.应用化学, 2003, 20(9): 817-822.
    [42] Liang Y G, Pan L, Li Y S, et al. Polymerization of ethylene to branched polyethylene with silica and Merrifield resin supported nickel(II) catalysts withα-diimine ligands. J Mol Catal A: Chem, 2008, 287: 57-64.
    [43] Jiang H L, He F, Wang H H. A new strategy to prepare branching polyethylene by using anα-diimine nickel (II) complex covalently supported on MgCl2/AlRn(OEt)3-n. J Polym Res, 2009, 16: 183-189.
    [44] Wang J X, Li H B, Marks T J, et al. Covalently linked heterobimetallic catalysts for olefin polymerization. Organometallics, 2004, 23: 5112-5114.
    [45] Eric D S, Levi J I, Miller S A, et al. Highly branched polyethylene from ethylene alone via a single zirconium-based catalyst. Macromolecules, 2008, 41: 1080-1085.
    [46] Wang Y J, Yan W D. Investigation on chain structure of LLDPE obtained by ethylene In-situ copolymerization with DSC and XRD. Chin Sci Bull, 2007, 52(6): 732-735.
    [47] Beach D L, Kissin Y V. Dual functional catalysis for ethylene polymerization to branched polyethylene I: Evaluation of catalytic systems. J Polym Sci, Part A: Polym Chem, 1984, 22: 3027-3042.
    [48] Kissin Y V, Beach D L. Dual-functional catalysis for ethylene polymerization to branched polyethylene II: Kinetics of ethylene polymerization with a mixed homogenous-heterogenous Zigler-Natta catalyst system. J Polym Sci, Part A: Polym Chem, 1986, 24: 1069-1084.
    [49]谢光华,方义群.双催化剂体系乙烯二聚和共聚合的研究.石油化工, 1994, 23(8): 191-197.
    [50]王金梅,吕兵,洪晓宇,等.乙烯二聚共聚双功能均相催化体系的研究.石油炼制与化工, 1995, 26(12): 26-29.
    [51] Pettijohn T M, Reagan W K, Martin S J. Process for olefin polymerization. US Pat. Appl., US 5331070. 1994.
    [52] Mcdaniel M P, Klendworth D, Norwood D D, et al. In-situ comonomer generation in olefin polymerization. US Pat. Appl., US 4735931. 1998.
    [53]胡锦民,王海华,张启兴.镍-钛复合负载催化剂乙烯气相聚合研究1.含NiCl2组份钛系催化剂制备支化聚乙烯.中山大学学报(自然科学版), 2000, 39(2): 37-40.
    [54] Sinn H, Kaminsky W, Vollmer H J, et al.“Living polymers”on polymerization with extremely productive Ziegler Catalysts. Angew Chem, Int Ed Eng, 1980, 19: 390-392.
    [55]柳忠阳,王军,胡友良,等.一种新型制备LLDPE的双功能聚合催化体系Ti(OBu-n)4/AlEt3- [Me2SiNtBuInd]ZrCl2/MAO.高等学校化学学报, 2001, 22(7): 1271-127.
    [56]柳忠阳,徐德民,王军,等. Ti(On-Bu)4/AlEt3-Et(Ind)2ZrCl2/MAO催化体系原位聚合制备LLDPE.科学通报, 2001, 46(15): 1261-1264.
    [57]柳忠阳,杨玲,潭志俊,等.桥联茂金属催化剂用于双功能催化体系制备LLDPE的研究.高分子学报, 2001, 4: 471-475.
    [58]柳忠阳,王军,胡友良,等.载体茂金属用于原位反应制备LLDPE研究.高分子学报, 2001, (4): 509-512.
    [59] Zhu B C, Guo C Y, Liu Z Y. In situ copolymerization of ethylene to produce linear low-density polyethylene by Ti(OBu)4/AlR3-Et[Ind]2ZrCl2/MAO/SiO2. J Appl Polym Sci, 2004, 94: 2451-2455.
    [60] Denger C, Haase U, Fink G. Simultaneous oligomerization and polymerization of ethylene. Makromol Chem, Rapid Commun, 1991,12: 697-701.
    [61]萧翼之,张启兴,王海华.新型Ni(acac)2/TiCl4/L复合催化剂单一乙烯聚合制备支化聚乙烯.高分子材料科学与工程, 2004, 20(5): 113-116,120.
    [62]张启兴,范新刚,王海华,等.用双过渡金属复合催化剂制备长链支化聚乙烯.应用化学, 2003, 20(9): 888-892.
    [63]张启兴,林少全,王海华.α-二亚胺镍(Ⅱ)配合物-TiCl4复合催化剂催化乙烯原位聚合制备支化聚乙烯.高等学校化学学报, 2004, 25(11): 2166-2170.
    [64] Small B L, Brookhart M, Bennett A M A. Highly active iron and cobalt catalysts for the polymerization of ethylene. J Am Chem Soc, 1998, 120(16): 4049-4050.
    [65] Britovsek G J P, Gibson V C, Kimberley B S, et al. Novel olefin polymerization catalysts based on iron and cobalt. Chem Commum, 1998, 10: 849-850.
    [66] Zhang Z C, Lu Z X, Hu Y L, et al. Synthesis of branched polyethylene from ethylene stock by interference-free tandem catalysis of TiCl4/MgCl2 and iron catalyst. J Mol Catal A: Chem, 2005, 236: 87-93.
    [67] Lu Z X, Zhang Z C, Hu Y L, et al. Synthesis of branched polyethylene by in situ polymerization of ethylene with combined iron catalyst and Ziegler–Natta catalyst. J Appl Polym Sci, 2006, 99: 2898-2903.
    [68] Komon Z J A, Bu X H, Bazan G C. Synthesis of butene-ethylene and hexene-butene-ethylene copolymers from ethylene via tandem action of well-defined homogeneous catalysts. J Am Chem Soc, 2000, 122: 1830-1831.
    [69] Komon Z J A, Diamond G M, Leclerc M K, et al. Triple tandem catalyst mixtures for the synthesis of polyethylenes with varying structures. J Am Chem Soc, 2002, 124: 15280-15285.
    [70] Lobaidi F, Ye Z B, Zhu S P. Direct synthesis of linear-density polyethylene of ethylene/1-hexene from ethylene with a tandem catalytic system in a single reactor. J Polym Sci, Part A: Polym Chem, 2004, 42: 4327-4336.
    [71] Ye Z B, Alobaidi F, Zhu S P. A tandem catalytic system for the synthesis of ethylene-hex-1-ene copolymers from ethylene stock. Macromol Rapid Commun, 2004, 25: 647-652.
    [72] Ye Z B, Alobaidi F, Zhu S P, et al. Long-chain branching and rheological properties of ethylene-1-henxene copolymers synthesized from ethylene stock by concurrent tandem catalysis. Macromol Chem Phys, 2005, 206: 2096-2105.
    [73] Sperber O, Kaminsky W. Synthesis of long-chain branched comp-structured polyethylene from ethylene by tandem action of two single-site catalysts. Macromolecules, 2003, 36: 9014-9019.
    [74] Barnhart R W, Bazan G C. Synthesis of branched polyolefins using a combination of homogeneous metallocene mimics. J Am Chem Soc, 1998, 120: 1082-1083.
    [75]柳忠阳,贺大为,胡友良.双功能催化剂体系催化乙烯原位聚合制备长链支化聚乙烯研究.高分子学报, 2001, (6): 751-754.
    [76] Wass D F. Olefin trimerisation using a catalyst comprising a source of chromium molybdenum or tungsten and a ligand containing at least one phosphorous, arsenic or antimony atom bound to at least one hetero-hydrocarbyl group. WO Pat. Appl., WO 0204119. 2002.
    [77] Wet-Roos D D, Dixon, J T. Homogeneous tandem catalysis of bis(2-decylthioethyl)amine-chromium trimerization catalyst in combination with metallocene catalysts. Macromolecules, 2004, 37: 9314-9320.
    [78] Wet-Roos D D, Toit A D, Joubert D J. Homogeneous tandem catalysis of the bis-(diphenylphosphino)- amine/chromium tetramerization catalyst with metallocene catalysts. J Polym Sci, Part A: Polym Chem, 2006, 44: 6847-6856.
    [79] Jiang T, Huang Z J, Luo, M J. Preparation of ethylene/1-octene copolymers from ethylene stock with tandem catalytic system. J Appl Polym Sci, 2008, 107: 3071-3075.
    [80] Zhang J W, Li B G, Zhu S P, et al. Synthesis of ethylene-1-hexene copolymers from ethylene stock by tandem action of bis(2-dodecylsulfanyl-ethyl)amine-CrCl3 and Et(Ind)2ZrCl2. J Polym Sci, Part A: Polym Chem, 2007, 45: 3562-3569.
    [81] Quijada R, Rojas R, Bazan G, et al. Synthesis of branched polyethylene from ethylene by tandem action of iron and zirconium single site catalyst. Macromolecules, 2001, 34: 2411-2417.
    [82]柳忠阳,王军,胡友良,等.载体茂金属用于原位反应制备LLDPE研究.高分子学报, 2001, 4: 509-512.
    [83]柳忠阳,王军,胡友良,等.后过渡金属及茂金属组成的催化剂体系原位聚合制备长支链支化聚乙烯.科学通报, 2001, 46: 1264-1267.
    [84] Zhang Z C, Cui N N, Lu Y Y, et al. Preparation of LLDPE by in situ copolymerization of ethylene with an iron oligomerization catalyst and rac-Et(Ind)2ZrCl2. J Polym Sci, Part A: Polym Chem, 2005, 43: 984-993.
    [85]黄英娟,刘盘阁,闫卫东,等.一种新型亚胺基吡啶铁配合物和茂金属复配催化乙烯原位共聚制备LLDPE.高分子学报, 2004, 1: 125-128.
    [86]黄英娟,曹晨刚,闫卫东,等.后过渡金属铁系催化剂与Et[Ind]2ZrCl2复配催化乙烯原位共聚中的“共单体效应”.石油化工, 2003, 32(11): 953-956.
    [87] Claudio B, Marco F, Giuliano G. Amorphous polyethylene by tandem action of cobalt and titanium single-site catalysts. Macromol Rapid Commun, 2005, 26:1218-1223.
    [88] Frediani M, Piel C, Kaminsky W, et al. Tandem copolymerization: an effective control of the level of branching and molecular weight distribution. Macromol Symp, 2006, 236:124-133.
    [89] Furlan L G, Kunrath F A, Casagrande Jr O L. Linear low density polyethylene (LLDPE) from ethylene using nTpMsNiCl (TpMs=hydridotris (3-mesitylpyrazol-1-yl)) and Cp2ZrCl2 as a tandem catalyst system. J Mol Catal A: Chem, 2004, 214: 207-211.
    [90] Desouza R F, Casagrande Jr O L. Recent advances in olefin polymerization using binary catalyst systems. Macroml Rapid Commun, 2001, 22: 1293-1301.
    [91] Cui Y, Shao C X, Sun W H, et al. Combined polymerization catalysis of nickel complex and zirconocene for branched polyethylene. Cent Eur Sci J, 2003, 4: 325-338.
    [92] Zhu N, Cui Y, Li Z L, et al. Silica-supported nickel and zirconium catalysts for branched polyethylene. Chin J Polym Sci, 2003, 2: 453-457.
    [93]李贺新,石金永,闫卫东.铁系亚胺基吡啶复配催化乙烯原位共聚产物表征.高分子学报, 2004, (6): 935-938.
    [94]旧桥章.以工程塑料市场为目标的新型聚烯烃共聚物COC.工业材料(日文), 1998, 46 (3): 98-101.
    [95]山本阳造.环烯烃共聚物.塑料(日文), 1996, 47(2): 26-30.
    [96] Janiak C, Lassahn P G. The vinyl homopolymerization of norbornene. Macromol Rapid Commun, 2001, 22: 479-492
    [97] Andersen A W, Merkling N G. Polymeric bicyclo[2,2,1]hept-2-ene. US Pat. Appl., US 2721189. 1954
    [98]朱树新.开环聚合,北京:化学工业出版社, 1987, 233
    [99] Ivin K J, Mol J C. Olefin metathesis and metathesis polymerization. Academic Press, San Diego, CA 1997: 407-410.
    [100] Trimmel G, Riegler S, Fuchs G, et al. Liquid crystalline polymers by metathesis polymerization. Adv Polym Sci, 2005, 176: 43-87.
    [101] Buchmeiser M R. Metathesis polymerization to and from surfaces. Adv Polym Sci, 2006, 197: 137-171.
    [102] Schrock R R, Hoveyda A H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. Angew Chem Int Ed, 2003, 42: 4592-4633.
    [103] Bielawski W, Louie J, Grubbs R. Tandem catalysis: Three mechanistically distinct reactions from a single ruthenium complex. J Am Chem Soc, 2000, 122: 12872-12873.
    [104] Sanford M S, Love J A, Grubbs R H. Mechanism and activity of ruthenium olefin metathesis catalysts. J Am Chem Soc, 2001, 123: 6543-6554.
    [105] Tsujino T, Saeguss T, Purukawa J J. Polymerization of norbornene by modified Ziegler-catalysts. Die Makromol Chem, 1965, 85: 71-79.
    [106] Kuempfel W, Wondracrek R H, Schütz H, et al. Untersuchungen zur bicyclo[2,2,1]hept-2-en- ethylen-copolymerisation. I. Kettenwachstumsmodell aus kinetischen und spektroskopischen untersuchungen. Acta Polym, 1985, 36: 166-169.
    [107] Kuempfel W, Koinzer J P, Heublein G, et al. Untersuchungen zur bicyclo[2,2,1]hept-2-en- ethylen-copolymerisation. II. Bestimmung des kinetischen ablaufs. Acta Polym, 1986, 37: 410-415.
    [108] Kaminsky W, Spiehl R. Copolymerization of cycloalkenes with ethylene in presence of chiral zirconocene catalysts. Makromol Chem, 1989, 190: 515-526.
    [109] Kaminsky W, Bark A, Steiger R. Stereospecific polymerization by metallocene/ aluminoxane catalysts. J Mol Catal, 1992, 74: 109-119.
    [110] Ruchatz D, Fink G. Ethene-norbornene copolymerization using homogenous metallocene and half-sandwich catalysts: Kinetics and relationships between catalyst structure and polymer structure. 1. Kinetics of the ethane-norbornene copolymerization using the [(Isopropylidene)(η5-inden-1-ylidene-η5-cyclopentadienyl)]zirconium dichloride/methylaluminoxane catalyst. Macromolecules, 1998, 31: 4669-4673.
    [111] Kaminsky W, Arndt M, Beulich I. New materials & kinetic aspects by copolymerization of cyclic olefins with metallocene catalysts. Polym Mater Sci Eng, 1997, 76: 18-19.
    [112] Kaminsky W, Engehausen R, Kepf J. A tailor-made metallocene for the copolymerization of ethene with bulky cycloalkenes. Angew Chem Int Ed, 1995, 34: 2273-2275.
    [113] Bergstr?m C H, Sepp?l? J V. Effects of polymerization conditions when making norbornene-ethylene copolymers using the metallocene catalyst ethylene bis(indenyl) zirconium dichloride and MAO to obtain high glass transition temperature. J Appl Polym Sci, 1997, 63: 1063-1070.
    [114] Tritto I, Boggioni L, Ferro D R. Metallocene catalyzed ethene- and propene co-norbornene polymerization: Mechanisms from a detailed microstructural analysis. Coord Chem Rev, 2006, 250: 212-241.
    [115] Jansen J C, Mendichi R, Tritto I, et al. Evidence of the quasi-living character of the ansa-zirconocene/MAO-catalyzed copolymerization of ethylene and norbornene. Macromol Rapid Commun, 2001, 22: 1394-1398.
    [116] Park S Y, Choi K Y, Song K H, et al. Kinetic modeling of ethylene-norbornene copolymerization using homogeneous metallocene catalysts. Macromolecules, 2003, 36: 4216-4225.
    [117] Tritto I, Boggioni L, Jansen J C, et al. Ethylene-norbornene copolymers from metallocene-based catalysts: microstructure at tetrad level and reactivity ratios. Macromolecules, 2002, 35: 616-623.
    [118] Young M J, Chang W S, Ma C C M. Polymerization kinetics and modeling of a metallocene cyclic olefin copolymer system. Eur Polym J, 2003, 39: 165-171.
    [119] Kaminsky W, Sperber O, Werner R. Pentalene substituted metallocene complexes for olefin polymerization. Coord Chem Rev, 2006, 250: 110-117.
    [120] Wendt R A, Fink G. Ethene-norbornene copolymerisations using two different homogeneous metallocene catalyst systems and investigations of the copolymer microstructure. J Mol Catal A: Chem, 2003, 203: 101-111.
    [121] Lee H, Hong S D, Park Y W, et al. Control of symmetry in active cationic ansa-zirconocene species: catalyst preparation, characterization and ethylene–norbornene copolymerization. J Organomet Chem, 2004, 689: 3402-3411.
    [122] Hasan T, Shiono T, Ikeda T. Living random copolymerization of ethene and norbornene using ansa-fluorenylamidodimethyltitanium complex. Macromol Symp, 2004, 213: 123-129.
    [123] Hasan T, Ikeda T, Shiono T. Ethene?norbornene copolymer with high norbornene content produced by ansa-fluorenylamidodimethyltitanium complex using a suitable activator. Macromolecules, 2004, 37: 8503-8509.
    [124] Hu H, Gao H, Wu Q. Novel bis(benzoin) titanium catalyst for homo- and copolymerization of norbornene with ethylene: Synthesis, characterization and catalytic properties. Polymer, 2008, 49: 4552-4558.
    [125] Hasan T, Ikeda T, Shiono T. Random copolymerization of propene and norbornene with ansa-fluorenylamidodimethyltitanium-based catalysts. Macromolecules, 2005, 38: 1071-1074.
    [126] Cai Z, Nakayama Y, Shiono T. Living random copolymerization of propylene and norbornene with ansa-fluorenylamidodimethyltitanium complex: Synthesis of novel syndiotactic polypropylene-b- poly(propylene-ran-norbornene). Macromolecules, 2006, 39: 2031-2033.
    [127] Jung H Y, Hong S D, Lee H, et al. Norbornene copolymerization withα-olefins using methylene-bridged ansa-zirconocene. Polyhedron, 2005, 24: 1269-1273.
    [128] Boggioni L, Zatnpa C, Ravasio A, et al. Propene-norbornene copolymers by C2-symmetric metallocene rac-Et(Ind)2ZrCl2: Influence of reaction conditions on reactivity and copolymer properties. Macromolecules, 2008, 41: 5107-5115.
    [129] Henschke O, Koeller F, Arnold M. Polyolefins with high glass transition temperatures. Macromol Rapid Commun, 1997, 18: 617-623.
    [130] Boggioni L, Bertini F, Tritto I, et al. Propene-norbornene copolymers: Synthesis and analysis of polymer structure by 13C NMR spectroscopy and ab initio chemical shift computations. Macromolecules, 2003, 36: 882-890.
    [131] Shiono T, Sugimoto M, Hasan T, et al. Random copolymerization of norbornene with higher 1-alkene with ansa-fluorenylamidodimethyltitanium catalyst. Macromolecules, 2008, 41: 8292-8294.
    [132] Li H C, Li J C, Mu Y, et al. Homo- and copolymerization of 5-ethylidene-2-norbornene with ethylene by [2-C5Me4-4,6-(Bu2C6H2O)-But]TiCl2/(AlBu3)-Bui/Ph3CB(C6F5) catalyst system and epoxidation of the resulting copolymer. Polymer, 2008, 49: 2839-2844.
    [133] Na S J, Wu C J, Yoo J N, et al. Copolymerization of 5,6-dihydrodicyclopentadiene and ethylene. Macromolecules, 2008, 41: 4055-4057.
    [134] Tran H V, Hung R J, Chiba T, et al. Metal-catalyzed vinyl addition polymers for 157 nm resist applications. 2. Fluorinated norbornenes: Synthesis, polymerization, and initial imaging results. Macromolecules, 2002, 35: 6539-6549.
    [135] Sanders D P, Connor E F, Grubbs R H, et al. Metal-catalyzed addition polymers for 157 nm resist applications: Synthesis and polymerization of partially fluorinated, ester-functionalized tricyclo[4.2.1.02,5]non-7-enes. Macromolecules, 2003, 36: 1534-1542.
    [136] Schultz R G. The chemistry of palladium complexes III. The polymerization of norbornene systems catalyzed by palladium chloride. Polym Lett, 1966, 4: 541-546.
    [137] Taniélian C, Kiennemann A, Osparpucu T. Influence de differents catalyseurs a base delements de transition du group VIII. Sur la polymerisation du norbornene. Can J Chem, 1979, 57: 2022-2027.
    [138] Massa W, Faza N, Kang H C, et al. Combining oxidative addition and polymerization: a study towards the synthesis of macromonomers. Acta Polym, 1997, 48: 432-437.
    [139] Sen A, Lai T W. Catalysis by solvated transition-metal cations novel catalytic transformations of alkenes by tetrakis(acetonitrile) palladium ditetrafluoroborate. Evidence for the formation of incipient carbonium ions as intermediates. J Am Chem Soc, 1981, 103: 4627-4629.
    [140] Mehler C, Risse W. The Pd2+-catalyzed polymerization of norbornene. Makromol Chem, Rapid Commun, 1991, 12: 255-259.
    [141] Haselwander T F A, Heitz W, Krügel S A, et al. Polynornene: Synthesis, properties and siumulations. Macromol Chem Phys, 1996, 197: 3435-3453.
    [142] Lassahn P G, Lozan V, Janiak C. Palladium(II) salts containing [PdCl ] and [Pd Cl ] ions as pre-catalysts for the vinyl-polymerization of norbornene-evidence for the in situ formation of PdCl as the active species. 4 2– 2 6 2–2J Chem Soc, Dalton Trans, 2003: 927-935.
    [143] Lassahn P G, Lozan V, Wu B, et al. Dihalogeno(diphosphane)metal(II) complexes (metal = Co, Ni, Pd) as pre-catalysts for the vinyl/addition polymerization of norbornene-elucidation of the activationprocess with B(C F ) /AlEt or Ag[closo-1-CB H ] and evidence for the in situ formation of“naked”Pd as a highly active species6 5 3 3 11 122+ . J Chem Soc, Dalton Trans, 2003, 4437-4450.
    [144] Liang H, Liu J, Li X, et al. Synthesis, structure and norbornene polymerization behavior of neutral palladium complexes. Polyhedron, 2004, 23: 1619-1627.
    [145] Heinz B S, Alt F P, Heitz W. Pd(II)-catalyzed vinylic polymerization of norbornene and copolymerization with norbornene carboxylic acid esters. Macromol Rapid Commun, 1998, 19: 251-256.
    [146] Abu-Surrah A S, Thewalt U, Rieger B. Chiral palladium(II) complexes bearing tetradentate nitrogen ligands: Synthesis, crystal structure and reactivity towards the polymerization of norbornene. J Organomet Chem, 1999, 587: 58-66.
    [147] Porri L, Natta G, Gallazzi M C. Polymerization of butadiene and cycloolefins byπ-allylnickel bromide. Chim Ind (Milan), 1964, 46: 428-429.
    [148] Deming T J, Novak B M. Preparation and reactivity studies of highly versatile, nickel-based polymerization catalyst systems. Macromolecules, 1993, 26: 7089-7091.
    [149] Luo X, Zhang J, Wu Q, et al. Norbornene polymerization in the presence of Ni(acac)2 activated by MAO. Polym Mater Sci Eng, 2001, 85: 367-368.
    [150] Zhao C T, Ribeiro M R, Portela M F. Addition polymerisation of 5-vinyl-2-norbornene with nickel bis(acetyl acetonate)/methylaluminoxane system. J Mol Catal A: Chem, 2002, 185: 81-85.
    [151] Lee B Y, Kim Y H, Shin H J, et al. Synthesis molecular structures, and norbornene polymerization of methallyl nickl (Ⅱ) complexes of 2-(diphenylamino)benzoate. Organometallics, 2002, 21: 3481-3484.
    [152] He X H, Yao Y Z, Wu Q. Bis(β-ketoamino)nickel(II) catalyst catalyzed polymerization for cycloolefin and polar monomer. Polym Mater Sci Eng, 2003, 89-92.
    [153] Guo W J, Zhu F M, Wu Q, et al. Synthesis, molecular structure, and solution-dependent behavior of nickel complexes chelating anilido-imine donors and their catalytic activity toward olefin polymerization. Organometallics, 2004, 23: 6273-6280.
    [154] Li Y F, Jiang L, Wu Q, et al. Vinyl polymerization of norbornene by Nickel(II) complex bearingβ-diketiminate ligands. Appl Organomet Chem, 2007, 21: 965-969.
    [155] Mi X, Ma Z, Hu Y L, et al. Homo- and copolymerization of norbornene and styrene with Pd- and Ni-based novel bridged dinuclear diimine complexes and MAO. Macromol Chem Phys, 2003, 204: 868-876.
    [156] Li X F, Li Y S. Vinylic Polymerization of Norbornene by Neutral Nickel (Ⅱ) - Based Catalysts. J Polym Sci A : Polym Chem, 2002, 40: 2680-2685.
    [157] Li Y S, Li Y R, Li X F. New neutral nickel (Ⅱ) complexes bearing pyrrole-imine chelate ligands: Synthesis, structure and norbornene polymerization behavior. J Organomet Chem, 2003, 667: 185-191.
    [158] Yang H J, Li Z L, Sun W H, et al. Highly active vinyl-polymerization of norbornene by [2-methyl-8-(diphenylphosphino)quinoline]nickel(II) dichloride/methylaluminoxane. J Mol Catal A: Chem, 2003, 206: 23-28.
    [159] Yang H J, Sun W H, Chang F, et al. Vinyl-polymerization of norbornene catalyzed by bis-[N-(substituted methyl)-salicylideneiminato]nickel/MAO system. Appl Catal A: Gen, 2003, 252: 261-267.
    [160] Sun W H, Yang H J, Li Z L, et al. Vinyl polymerization of norbornene with neutral salicylaldiminato nickel(II) complexes. Organometallics, 2003, 22: 3678-3683.
    [161] Suzuki H, Matsumura S, Satoh Y, et al. Random copolymerizations of norbornene with other monomers catalyzed by novel Ni compounds involving N- or O-donated ligands. React Funct Polym, 2004, 58: 77-91.
    [162] Cho H Y, Hong D S, Jeong D W, et al. High-throughput synthesis of new Ni(II), Pd(II), and Co(II) catalysts and polymerization of norbornene utilizing the self-made parallel polymerization reactor system. Macromol Rapid Commun, 2004, 25: 302-306.
    [163] Goodall B L. Rieger L S, Baugh S, Kasker, et al. Late Transition Metal Polymerization Catalysis. Weinheim: Wiley, 2003, 101.
    [164] Alt F, Heitz W. Vinylic polymerization of bicyclo[2.2.1]hept-2-ene by Co(II)-catalysis. Macromol Chem Phys, 1998, 199: 1951-1956.
    [165] Pelascini F, Peruch F, Lutz P J, et al. Polymerization of norbornene with CoCl and pyridine bisimine cobalt2(II) complexes activated with MAO. Macromol Rapid Commun, 2003, 24: 768-771.
    [166] Younkin T R, Connor E F, Henderson J I, et al. Neutral, single-component nickel(II) polyolefin catalysts that tolerate heteroatoms. Science, 2000, 287: 460-462.
    [167] Bauers, FM, Mecking, S. Aqueous homo- and copolymerization of ethylene by neutral nickel(II) complexes. Macromolecules, 2001, 34: 1165-1171.
    [168] Benedikt G M, Elce E, Goodall B L, et al. Copolymerization of ethene with norbornene derivatives using neutral nickel catalysis. Macromolecules, 2002, 35: 8978-8988.
    [169] Kieswetter J, Kaminsky W. Ethene/norbornene copolymerization with palladium(II)α-diimine catalysts: From ligand screening to discrete catalyst species. Chem Eur J, 2003, 9: 1750-1758.
    [170] Wu H R, Liu Y H, Sh M, et al. Palladium(II) Complexes containing a pyridinyliminophosphorane ligand. Eur J Inorg Chem, 2003, 3152-3154.
    [171] Pelascini F, Peruch F, Lutz P J, et al. Polymerization of norbornene with CoCl2 and pyridine bisimine cobalt(II) complexes activated with MAO. Macromol Rapid Commun, 2003, 24: 768-771.
    [172] Hennis A D, Polley J D, Long G S, et al. Novel, efficient, palladium-based system for the polymerization of norbornene derivatives: Scope and mechanism. Organometallics, 2001, 20: 2802-2812.
    [173] Kim J M, Shin H Y, Park K H, et al. Synthesis of norbornene-derived polymers having pendant phenoxyquinones for photochromism. Macromolecules, 2001, 34: 4291-4293.
    [174] Xia W, Tonosaki K, Taniike T, et al. Copolymerization of ethylene and cyclopentene with the catalyst in the presence of an aluminum alkyl cocatalyst. J Appl Polym Sci, 2009, 111: 1869-1877.
    [175] Kelly W M, Wang S T, Collins S. Polymerization of cyclopentene using metallocene catalysts: Competitive cis- and trans-1,3 insertion mechanisms. Macromolecules, 1997, 30: 3151-3158.
    [176] Arndt M, Kaminsky W. Olefin polymerization at bis(pentamethylcyclopentadieny1) zirconium and hafnium centers: chain-transfer mechanisms. Macromol Symp, 1995, 95: 167-183.
    [1] Beach D L, Kissin Y V. Dual functional catalysis for ethylene polymerization to branched polyethylene I: Evaluation of catalytic systems. J Polym Sci A: Polym Chem, 1984, 22: 3027-3042.
    [2]谢光华,方义群.双催化剂体系乙烯二聚和共聚合的研究.石油化工, 1994, 23(8): 191-197.
    [3]胡锦民,王海华,张启兴.镍-钛复合负载催化剂乙烯气相聚合研究1.含NiCl2组份钛系催化剂制备支化聚乙烯.中山大学学报(自然科学版), 2000, 39(2): 37-40.
    [4]柳忠阳,王军,胡友良,等.一种新型制备LLDPE的双功能聚合催化体系Ti(OBu-n)4/AlEt3- [Me2SiNtBuInd]ZrCl2/MAO.高等学校化学学报, 2001, 22(7): 1271-127.
    [5] Zhu B C, Guo C Y, Liu Z Y, et al. In-situ copolymerization of ethylene to produce linear low-density polyethylene by Ti(OBu)4/AlEt3-MAO/SiO2/Et(Ind)2ZrCl2. J Appl Polym Sci, 2004, 94: 2451-2455.
    [6] Komon Z J A, Bu X H, Bazan G C. Synthesis of butene-ethylene and hexene-butene-ethylene copolymers from ethylene via tandem action of well-defined homogeneous catalysts. J Am Chem Soc, 2000, 122: 1830-1831.
    [7] Sperber O, Kaminsky W. Synthesis of long-chain branched comp-structured polyethylene from ethylene by tandem action of two single-site catalysts. Macromolecules, 2003, 36: 9014-9019.
    [8] Wet-Roos D D, Dixon J T. Homogeneous tandem catalysis of bis(2-decylthioethyl)amine-chromium trimerization catalyst in combination with metallocene catalysts. Macromolecules, 2004, 37: 9314-9320.
    [9] Ye Z B, Alobaidi F, Zhu S P A. tandem catalytic system for the synthesis of ethylene-hex-1-ene copolymers from ethylene stock. Macromol Rapid Commun, 2004, 25: 647-652.
    [10] Claudio B, Marco F, Giuliano G. Amorphous polyethylene by tandem action of cobalt and titanium single-site catalysts. Macromol Rapid Commun, 2005, 26: 1218-1223.
    [11] Zhang Z C, Cui N N, Lu Y Y, et al. Preparation of LLDPE by in situ copolymerization of ethylene with an iron oligomerization catalyst and rac-Et(Ind)2ZrCl2. J Polym Sci Part A: Polym Chem, 2005, 43: 984-993.
    [12] Xu H, Guo C Y, Zhang M G, et al. In situ copolymerization of ethylene to linear low-density polyethylene (LLDPE) with calcosilicate (CAS-1) supported dual-functional catalytic system. Catal Commun, 2007, 8: 2143-2149.
    [13] Vega J F, Otegui J, Expósito M T, et al. Structure and physical properties of polyethylenes obtained from dual catalysis process. Polym Bull, 2008, 60: 331-342.
    [14]李贺新,石金永,闫卫东,等.铁系亚胺基吡啶复配催化乙烯原位共聚产物表征.高分子学报, 2004, (6): 935-938.
    [15] Janiak C, Scharmann T G, Lange K C H. Zirconiumβ-diketonate/methylaluminoxane systems as single catalysts for the preparation of high-molecular-weight polyethylene. Macromol Rapid Commun, 1994, 15: 655-658.
    [16] Clas S D, Heyding R D, McFadding D C, et al. Crystallinties of copolymers of ethylene and 1-alkene. J Polym Sci Polym Phys Ed, 1988, 26: 1271-1286.
    [17] Siedle A R, Lamanna W M, Newmark R A, et al. Mechanism of olefin polymerization by a soluble zirconium catalyst. J Mol Catal A: Chem, 1998, 128: 257-271.
    [18]黄葆同,陈伟.茂金属催化剂及其烯烃聚合物.北京:化学工业出版社, 2000
    [19] Oouchi K, Mitar M. Ethylene oligomerization catalyzed with dichlorobis(β-diketonato) zirconium/organoaluminium chloride systems. Macromol Chem Phys, 1996, 197(4): 1545-1551.
    [20] Couto J P A, Nele M, Coutinho F M B. Study on ethylene polymerization by homogeneous Cp2ZrCl2/methylalminoxane catalyst system. Eur Polym J, 2002, 38: 1471-1476.
    [21] Chien J C W, Nozaki T. Ethylene-hexene copolymerization by heterogeneous and homogeneous Zigler-Natta cataysts and the“comononer”effect. J Polym Sci A: Polym Chem, 1993, 31: 227-237.
    [22] Usami T, Takayama S. Fine-branching Structure in high-pressure, low-density polyethylene by 50.10-MHz 13C NMR analysis. Macromolecules, 1984, 17: 1756-1761.
    [23] Quijada R, Dupont J, Miranda M S L, et al. Copolymerization of ethylene with 1-hexene and 1-octene: correlation between type of catalyst and comonomer incorporated. Macromol Chem Phys, 1995, 196: 3991-4000.
    [24] Galland G B, Quijada R, Rojas R. NMR study of branched polyethylenes obtained with combined Fe and Zr catalysts. Macromolecules, 2002, 35: 339-345.
    [25] Coevoet D, Cramail H, Deffieux A. U.V./visible spectroscopic study of the rac-Et(Ind)2ZrCl2/MAO olefin polymerization catalytic system, 1 Investigation in toluene. Macromol Chem Phys, 1998, 199: 1451-1457.
    [26] Coevoet D, Cramail H, Deffieux A. U.V./visible spectroscopic study of the rac-Et(Ind)2ZrCl2/MAO olefin polymerization catalytic system, 2 Investigation in CH2Cl2. Macromol Chem Phys, 1998, 199: 1459-1464.
    [27] Pédeutour J-N, Coevoet D, Deffieux A, et al. Activation of iPr(CpFluo)ZrCl2 by methylaluminoxane, 4 UV/visible spectroscopic study in hydrocarbon and chlorinated media. Macromol Chem Phys, 1999, 200: 1215-1221.
    [28] Peruch F, Cramail H, Deffieux A. Kinetic and UV-visible spectroscopic studies of hex-1-ene polymerization initiated by anα-Diimine-[N,N] nickel dibromide/MAO catalytic system. Macromolecules, 1999, 32: 7977-7983.
    [29] Ferreira M L, Belelli P G, Damiani D E. Theoretical and spectroscopic UV study of the EtInd2ZrCl2/MAO, EtInd2ZrCl2/MAO-AlCl3 and EtInd2ZrCl2/MAO-Ethyl benzoate interaction. Macromol Chem Phys, 2001, 202: 495-511.
    [30] Pédeutour J-N, Radhakrishnan K, Cramail H, et al. Reactivity of metallocene catalysts for olefin polymerization: Influence of activator nature and structure. Macromol Rapid Commun, 2001, 22: 1095-1123.
    [31] Cramail H, Deffieux A, Pédeutour J-N, et al. Routes to reduce aluminium co-catalyst content for zirconocene activation in olefin polymerization. Macromol Symp, 2002, 183: 113-119.
    [32] Radhakrishnan K, Cramail H, Deffieux A, et al. Ethylene polymerization studies with an MAO synthesized by a non-hydrolytic synthetic route. Macromol Rapid Commun, 2002, 23: 829-833.
    [33] Radhakrishnan K, Cramail H, Deffieux A, et al. Influence of alkylaluminium activators and mixtures thereof on ethylene polymerization with a tridentate bis(imino)pyridinyliron complex. Macromol Rapid Commun, 2003, 24: 251-254.
    [34] Dalet T, Cramail H, Deffieux A. Non-hydrolytic route to aluminoxane-type derivative for metallocene activation towards olefin polymerisation. Macromol Chem Phys, 2004, 205: 1394-1401.
    [35] Wieser U, Schaper F, Brintzinger H-H. Methylalumoxane (MAO)-derived MeMAO- anions in zirconocene-based polymerization catalyst systems– A UV-vis spectroscopic study. Macromol Symp, 2006, 236: 63-68.
    [36] Dalet T, Cramail H, Deffieux A. Investigation of the reaction between benzophenone and trimethylaluminium: A source of novel aluminic activator for single-site olefin polymerization catalysts. Macromol Symp, 2006, 231: 110-115.
    [37] Tritto I, Li S X, Sacchi M C, et al. lH and 13C NMR spectroscopic study of titanium metallocene-aluminoxane catalysts for olefin polymerizations. Macromolecules, 1993, 26:7111-7115.
    [38] Tritto I, Li S X, Sacchi M C, et al. Titanocene-methylaluminoxane catalysts for olefin polymerization: A 13C NMR study of the reaction equilibria and polymerization. Macromolecules, 1995, 28: 5358-5362.
    [39] Tritto I, Donetti R, Sacchi M C, et al. Dimethylzirconocene-methylaluminoxane catalyst for olefin polymerization: NMR study of reaction equilibria. Macromolecules, 1997, 30: 1247-1252.
    [40] Tritto I, Donetti R, Sacchi M C, et al. Evidence of zircononium-polymeryl ion pairs from 13C NMR in situ 13C2H4 polymerization with Cp2Zr(13CH3)2-based catalysts. Macromolecules, 1999, 32: 264-269.
    [41] Tritto I, Zucchi D, Destro M, et al. NMR investigations of the reactivity between zirconocenes and b-alkyl-substituted aluminoxanes. J Mol Catal A: Chem, 2000, 160: 107-114.
    [42] Babushkin D E, Semikolenova N V, Zakharov V A, et al. Mechanism of dimethylzirconocene activation with methylaluminoxane: NMR monitoring of intermediates at high Al/Zr ratios. Macromol Chem Phys, 2000, 201: 558-567.
    [43]李润卿,范国梁,渠荣遴.有机结构波谱分析.天津:天津大学出版社, 2002: 12.
    [1] Hungenberg K D, Kerth J, Langhauser F, et al.α-Olefin oligomers and polymers with metallocene catalysts. Die Angew Makromol Chem, 1995, 221: 159-177.
    [2] Janiak C, Lange K C H, Marquardt P.α-Olefin oligomers with narrow molar mass distributions from zirconocene/methylaluminoxane catalysts-An examination of the structure-reactivity relationship. Macromol Rapid Commun, 1995, 16: 643-650.
    [3] Wang M, Li R, Qian M X, et al. The effect of cocatalysts on the oligomerization and cyclization of ethylene catalyzed by zirconocene complexes. J Mol Catal A: Chem, 2000, 160: 337-341.
    [4]钱明星,黄勇,王梅.二茚基二芳氧基锆催化乙烯齐聚.应用化学, 2000, 17(1): 96-98.
    [5]钱明星,黄勇,王辉. Ind2ZrCln(OC6H3-3,5-Me2)2-n/一氯二乙基铝催化乙烯齐聚的研究.分子催化, 2000, 14(1): 29-32.
    [6]张玉良,钱明星,何仁.过渡金属络合物催化乙烯齐聚.应用化学, 2001, 18(5): 360-364.
    [7]钱明星,周斌,何仁. Ind2Zr(OC6H4Me-p)2和EtnAlCl3-n催化乙烯齐聚的研究.高等化学学校学报, 2001, 10(22): 1771-1772.
    [8] Janiak C. Metallocene and related catalysts for olefin alkyne and silane dimerization and oligomerization. Coord Chem Rev, 2006, 250: 66-94.
    [9] Siedle A R, Lamanna W M, Newmark R A, et al. Mechanism of olefin polymerization by a soluble zirconium catalyst. J Mol Catal A: Chem, 1998, 128: 257-271.
    [10] Chien J C W, Nozaki T. Ethylene-hexene copolymerization by heterogeneous and homogeneous Zigler-Natta cataysts and the“comononer”effect. J Polym Sci A: Polym Chem, 1993, 31: 227-237.
    [11] Galland G B, Quijada R, Rojas R. NMR study of branched polyethylenes obtained with combined Fe and Zr catalysts. Macromolecules, 2002, 35: 339-345.
    [12] Galland G B, Quijada R, Mauler R S, et al. Determination of reactivity ratios for ethylene/α-olefin copolymerization catalysed by the C2H4[Ind]2ZrCl2/methylaluminoxane system. Macromol Rapid Commun, 1996, 17: 607-613.
    [13] Villar M A, Ferreira M L. Co- and terpolymerization of ethylene, propylene, and higherα-olefins with high propylene contents using metallocene catalysts. J Polym Sci, Part A: Polym Chem, 2001, 39: 1136-1148.
    [14] Bianchini C, Frediani M, Giambastiani G, et al. Amorphous polyethylene by tandem action of cobalt and titanium single-site catalysts. Macromol Rapid Commun, 2005, 26: 1218-1223.
    [15] Quijada R, Dupont J, Miranda M S L, et al. Copolymerization of ethylene with 1-hexene and 1-octene: correlation between type of catalyst and comonomer incorporated. Macromol Chem Phys, 1995, 196: 3991-4000.
    [1] Zhu B L, Wang Baiquan, Xu Shansheng, et al. Progress on the doubly bridged bis(Cyclopentadienyl) metal complexes. Chin J Org Chem, 2003, 23(10): 1049-1057.
    [2] Mengele W, Diebold J, Brintzinger, H H, et al. Ansa-metallocene derivatives 27 chiral zirconocene complexes with two dimethylsilylene bridges. Organometallics, 1993, 12: 1931-1935.
    [3] Lang H, Blau S, Pritzkow H, et al. Synthesis and reaction behavior of the novel mono (σ-Alkynyl) titanocene chloride [(η5-C5H2SiMe3)SiMe2]2Ti(Cl)(CCSiMe3). Organometallics, 1995, 14: 1850-1854.
    [4] Jung J, Noh S K, Lee D H, et al. Synthesis and characterization of group 4 metallocene complexes with two disiloxanediyl bridges. J Organomet Chem, 2000, 595: 147-152.
    [5] Ihara E, Nodono M, Yasuda H, et al. Single site polymerization of ethylene and 1-olefins initiated by rare earth metal complexes. Macromol Chem Phys, 1996, 197: 1909-1917.
    [6] Wang B Q, Mu B, Deng X B, et al. Synthesis, structure and polymerization catalytic properties of doubly bridged bis(cyclopentadienyl) dinuclear titanium and zirconium complexes. J Organomet Chem, 2002, 645: 212-217.
    [7] Clas S D, Heyding R D, McFadding D C, et al. Crystallinities of copolymers of ethylene and 1-alkenes. J Polym Sci Part A: Polym Phys, 1988, 26: 1271-1286.
    [8] Shapiro P J. The evolution of the ansa-bridge and its effect on the scope of metallocene chemistry. Coord Chem Rev, 2002, 231: 67-81.
    [9] Shaltout R M, Corey J Y, Rath N P. The X-ray crystal structures of the ansa-metallocenes, Me2C(C5H4)2MCl2 (M = Ti, Zr and Hf). J Organomet Chem, 1995, 503: 205-212.
    [10] Herzog T A, Zubris D L, Bercaw J E. A new class of zirconocene catalysts for the syndiospecific polymerization of propylene and its modification for varying polypropylene from isotactic to syndiotactic. J Am Chem Soc, 1996, 118: 11988-11989.
    [11] Clearfield A, Warner D K, Saldarriaga-Molina C H. Structural studies of (π-C H ) MX complexes and their derivatives. The structure of bis(π-cyclopentadienyl)titanium dichloride. 5 5 2 2Can J Chem, 1975, 53: 1622-1629.
    [12] Bajgur C S, Tikkanen W R, Petersen J L. Synthesis, structural characterization, and electrochemistry of [1]metallocenophane complexes, [Si(alkyl)2 ( C 5H 4 )2 ] MCl 2, M = Ti, Zr. Inorg Chem, 1985, 24: 2539-2546.
    [13] Shaltout R M, Corey J Y, Rath N P. The X-ray crystal structures of the ansa-metallocenes, Me2C(C5H4)2MCl2 (M = Ti, Zr and Hf). J Organomet Chem, 1995, 503: 205-212.
    [14] Wang B Q, Mu B, Deng X B, et al. Synthesis and structure of cycloalkylidene-bridged cyclopentadienyl metallocene catalysts: effects of the bridges of ansa-metallocene complexes on the catalytic activity for ethylene polymerization. Chem Eur J, 2005, 11: 669-679.
    [15] Jung J, Noh S K, Lee D H, et al. Synthesis and characterization of group 4 metallocene complexes with two disiloxanediyl bridges. J Organomet Chem, 2000, 595: 147-152.
    [16] Dorer B, Prosenc M H, Brintzinger, H H, et al. Ansa-metallocene derivatives. 30. synthesis and structures of titanocene, zirconocene, and vanadocene dichloride complexes with two ethanediyl bridges. Organometallics, 1994, 13: 3868-3872.
    [17] Wang B Q. Ansa-metallocene polymerization catalysts: Effect of the bridges on the catalytic activities. Coord Chem Rev, 2006, 250: 242-258.
    [18] Chien J C W, Nozaki T. Ethylene-Hexene Copolymerization by Heterogeneous and homogeneous Zigler-Natta cataysts and the“comononer”effect. J Polym Sci A: Polym Chem, 1993, 31: 227-237.
    [19] Randall J C. A review of high resolution liquid 13Carbon nuclear magnetic resonance characterizations of ethylene-based polymers. Macromol Chem Phys, 1989, C29: 201-317.
    [20] Fink G, Richter W J. Polymer Handbook, 4th ed., New York: Wiley, 1999, Vol. II.
    [1] Janiak C, Lassahn P G. The vinyl homopolymerization of norbornene. Macromol Rapid Commun, 2001, 22: 479-492
    [2] Pearson R G, Moore J W. The rates and mechanism of substitution reactions of nickel(II) acetylacetonato complexes. Inorg Chem, 1966, 5: 1523-1528.
    [3] Janiak C, Scharmann T G, Lange K C H. Zirconiumβ-diketonate/methylaluminoxane systems as single catalysts for the preparation of high-molecular-weight polyethylene. Macromol Rapid Commun, 1994, 15: 655-658.
    [4]宁永成.有机化合物结构鉴定与有机波谱学,北京:科学出版社, 1991: 332
    [5] Kennedy J P, Makowski H S. Carbonium Ion Polymerization of norbornene and Its Derivatives. J Macromol Sci Chem, 1967, A, 345-370。
    [6] Tsujino T, Saeguss T, Purukawa J J. Polymerization of norbornene by modified Ziegler-catalysts. Die Makromol Chem, 1965, 85: 71-79.
    [7] Jung H Y, Hong S D, Lee H, et al. Norbornene copolymerization withα-olefins using methylene-bridged ansa-zirconocene. Polyhedron, 2005, 24: 1269-1273.
    [8] Shiono T, Sugimoto M, Hasan T, et al. Random copolymerization of norbornene with higher 1-alkene with ansa-fluorenylamidodimethyltitanium catalyst. Macromolecules, 2008, 41: 8292-8294.
    [9] Li Y F, Jiang L, Wu Q, et al. Vinyl polymerization of norbornene by Nickel(II) complex bearingβ-diketiminate ligands. Appl Organomet Chem, 2007, 21: 965-969.
    [10] Hasan T, Ikeda T, Shiono T. Homo- and copolymerization of norbornene derivatives with ethene by ansa-fluorenylamidodimethyltitanium activated with methylaluminoxane. J Polym Sci, Part A: Polym Chem, 2007, 45: 4581-4587.
    [11] Li X F, Nishiura M, Hou Z M, et al. Cationic scandium aminobenzyl complexes. Synthesis, structure and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene. Chem Comm, 2007, 4137-4139.
    [12] Li H C, Li J C, Mu Y, et al. Homo- and copolymerization of 5-ethylidene-2-norbornene with ethylene by [2-C5Me4-4,6-(Bu2C6H2O)-But]TiCl2/(AlBu3)-Bui/Ph3CB(C6F5) catalyst system and epoxidation of the resulting copolymer. Polymer, 2008, 49: 2839-2844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700