用户名: 密码: 验证码:
超支化聚合物在无机纳米晶体制备与组装中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物是一类具有准球形结构的高度支化大分子,具有大量的末端官能团和内部空腔。超支化聚合物结构独特、制备简单,因此日益受到人们的重视。如今,超支化聚合物的合成、结构表征、功能化改性等技术已经日趋成熟和完善,超支化聚合物的应用也逐渐兴起。人们在超支化聚合物自组装、药物控制释放、纳米封装、基因转染等许多领域进行了广泛的研究,但是超支化聚合物的一些应用领域还有待开发和完善。本文在综合前人有关超支化聚合物工作的基础上,在超支化聚合物的功能化方面做了一些新的探索和研究。基于本课题组有关官能团非等活性单体对合成超支化聚合物的策略,我们制备了超支化聚酰胺胺(HPAMAM),然后对HPAMAM进行化学改性或通过非共价相互作用构筑不同类型的纳米反应器并用于制备CdS量子点和Au、Ag等金属纳米晶体;利用超支化聚乙烯亚胺(HPEI),我们原位制备了有机-无机纳米杂化磁性非病毒基因载体,并研究了其磁转染性能;我们还合成了棕榈酰氯封端的两亲性超支化聚酰胺胺(HPAMAM-PC),并考察了HPAMAM-PC对CdTe和Au纳米晶体的封装性能,分别实现了CdTe和Au纳米晶体在水/氯仿界面的自组装。具体研究内容和主要结论概括如下:
     1.以超支化聚合物作为纳米反应器制备无机纳米晶体
     合成了端基为酯基的超支化聚酰胺胺,并以其作为纳米反应器制备了粒径小且尺寸分布均一的CdS量子点。我们考察了Cd2+/S2-摩尔比、反应温度、反应pH值和陈化时间等对CdS量子点光学性能的影响,并用UV-Vis、PL、TEM和FT-IR等对所制备的纳米复合物进行了表征。
     2.以两亲性超支化聚合物作为单分子纳米反应器在两相体系中制备无机纳米晶体
     发展了一种利用两相体系制备单分散、尺寸分布均一CdS量子点的新方法。在两相体系中,用氯仿和水分别作为十六烷基酰氯封端的超支化聚酰胺胺(HPAMAM-PC)和Cd(CH3COO)2/Na2S的溶剂。HPAMAM-PC具有亲水性的超支化聚酰胺胺核和疏水的十六烷基臂,可在氯仿等溶剂中形成单分子胶束。以此单分子胶束为纳米反应器封装Cd2+,进一步与S2-反应后得到尺寸均一的CdS量子点。同时,我们也成功地将该方法拓展到制备直径小于2 nm的Au、Ag等金属纳米晶体。
     3.超分子自组装纳米反应器制备CdS量子点及其相行为研究
     提出了一种利用超分子自组装纳米反应器制备CdS量子点的新策略。自组装纳米反应器是由棕榈酸和端基为胺基的超支化聚合物通过静电相互作用和离子对构筑的。在水油两相体系中,水相的Cd2+首先自发转移至位于氯仿相的自组装纳米反应器中,在与水相的S2-反应后,即可生成浅黄色的CdS量子点氯仿溶液。通过加入三乙胺,自组装纳米反应器中制备的CdS量子点将从氯仿相转移至水相。经过透析和旋转蒸发干燥,CdS量子点再次溶于含有棕榈酸的氯仿溶液中,从而实现了CdS量子点在水油两相之间的相互转移。
     4.利用超支化聚合物原位制备磁性非病毒基因载体及磁转染性能研究
     实现了一种原位制备有机-无机纳米杂化磁性非病毒基因载体的新路线。有机-无机纳米杂化磁性非病毒基因载体是在二价铁盐和不同分子量的超支化聚乙烯亚胺(HPEI)存在下制备的。HPEI是最理想的非病毒基因载体之一,在本文中它不仅用作纳米反应器和稳定剂来合成磁性纳米晶体,而且被我们巧妙地用来代替碱金属氢氧化物和氨水为反应提供所需要的碱。通过调节HPEI/FeSO4·7H2O(w/w)和改变HPEI的分子量,制备了不同磁含量和饱和磁化强度的磁性非病毒基因载体。MTT评估表明这种磁性非病毒基因载体的毒性比相对应的HPEI的毒性小。我们进一步研究了这种磁性非病毒基因载体的磁转染性能,研究发现荧光素酶在COS-7细胞内的表达量最高可达到HPEI标准转染的13倍。
     5.利用两亲性超支化聚合物实现无机纳米晶体在水油两相界面的组装
     建立了一种利用两亲性核壳型超支化聚合物实现CdTe和Au纳米晶体在水/油界面组装的新途径。以CdTe纳米晶体为例,CdTe纳米晶体首先被转移至含有十六烷基酰氯封端超支化聚酰胺胺(HPAMAM-PC)的氯仿溶液中,通过降低水相的pH值或在水相引入α-环糊精(α-CD),CdTe纳米晶体便在水/氯仿界面进行自组装。我们对得到的CdTe/HPAMAM-PC自组装膜进行了荧光显微镜、UV-Vis、PL、TEM、EDS、FT-IR、DSC和TGA等表征。
     综上所述,本论文基于超支化聚酰胺胺化学改性或非共价相互作用构筑了不同类型的纳米反应器并用于合成CdS量子点和Au等纳米晶体;利用超支化聚乙烯亚胺原位制备了封装磁性纳米晶体的有机-无机纳米杂化非病毒基因载体,并考察了磁转染性能;我们还利用两亲性的超支化聚酰胺胺分别封装CdTe和Au纳米晶体,并分别实现了CdTe和Au纳米晶体在水/氯仿界面的自组装。总之,我们制备了一系列无机纳米晶体/超支化聚合物纳米杂化材料,为超支化聚合物和纳米晶体的实际应用提供了重要信息。
Hyperbranched polymers are a kind of highly branched polymers with three-dimension topological structures. They have many inner cavities and a large amount of terminal functional groups. Due to their unique molecular structures and facile synthsis route, hyperbranched polymers have received much attention and remarkable development has been made on their synthesis, characterization and modification in the passed decades. This leads to an increasing interest on the application of hyperbranched polymers, such as the molecular self-assembly, the control-release of medicine, nanoparticle encapsulation, gene transfection, and so on. Howerver, there are still a lot of areas to be explored and improved. In this dissertation, some new researches on the application of hyperbranched polymers have been made: (1) We synthesized hyperbranched poly(amidoamine) (HPAMAM) via the AB+Cn strategy and prepared various nanoreactors based on chemical modification or non-covalent interactions to synthesize CdS quantum dots (QDs) and Au, Ag metal nanocrystals (NCs); (2) Hyperbranched poly(ethylenimine) (HPEI) was used to in situ prepare magnetic nonviral gene vectors and the magnetization properties was also investigated; (3) The CdTe and Au NCs encapsulation by amphiphlic HPAMAM and the self-assembly of CdTe and Au NCs at the water/chloroform interface were realized, respectively. The details and main conclusions are described as follows:
     1. Preparation of Nanocrystals within Hyperbranched Polymer Nanoreactors
     Hyperbranched poly(amidoamine) (HPAMAM) with ester groups was synthesized and used as nanoreactors to prepare CdS quantum dots (QDs) with small particle size and low size-distribution. The effects of molar ratio of Cd2+/S2-, reaction temperature, pH value in the reactions and aging time on the photoluminescence of CdS QDs were investigated. The resulting CdS/HPAMAM nanocomposites were then characterized by UV-Vis, PL, TEM and FT-IR.
     2. A New Two-phase Route to Nanocrystals Using Amphiphilic Hyperbranched Polymers as Unimolecular Nanoreactors
     A new two-phase route has been developed to prepare monodisperse CdS QDs. In a two-phase system, chloroform and water were used as separate solvents for palmitoyl chloride functionalized hyperbranched poly(amidoamine) (HPAMAM-PC) and cadmium acetate/sodium sulfide, respectively. The amphiphilic HPAMAM-PC with a hydrophilic dendritic core and hydrophobic arms formed stable unimolecular micelles in chloroform and was used to encapsulate aqueous Cd2+ ions. After reaction with S2- ions from aqueous phase, monodisperse CdS QDs stabilized by HPAMAM-PC unimolecular micelles were obtained. Au and Ag nanocrystals smaller than 2 nm were also prepared by this method.
     3. Preparation of Nanocrystals within Supramolecular Self-assembly Nanoreactors and their Phase Transfer Behavior
     A new strategy for the synthesis of CdS QDs within supramolecular self-assembly nanoreactors has been described. The self-assembled nanoreactors were readily constructed through the electrostatic interactions and ion pairs between palmitic acid and the terminal amine groups of hyperbranched polymer. In a chloroform/water two-phase system, aqueous Cd2+ ions were spontaneously encapsulated into the cavities of self-assembly nanoreactors in chloroform. After reaction with S2- ions, the CdS QDs with high stability were obtained. By the addition of excess triethylamine, CdS QDs formed in the self-assembly nanoreactors were transferred from organic phase into aqueous phase. After dialysis and rotorary evaporation, aqueous CdS QDs could be redispersed into chloroform solution containing palmitic acid.
     4. In situ Preparation of Magnetic Nonviral Gene Vectors and Magnetofection in Vitro
     A new route to in situ preparing magnetic nonviral gene vectors in the form of organic/inorganic hybrids was realized. The magnetic nonviral gene vectors were prepared in the presence of ferrous salts and HPEI with different molecular weights. HPEI, one of the most promising nonviral vectors, was not only utilized as the nanoreactors and stabilizers to prepare magnetic nanoparticles, but also skillfully used as a base supplier to avoid introducing alkali hydroxide or ammonia. Magnetic nonviral gene vectors with various magnetite contents and saturation magnetizations were gained by changing the weight ratio of HPEI to FeSO4·7H2O and the molecular weight of HPEI. MTT assays suggested that the resulting magnetite/HPEI gene vectors had lower cytotoxicity compared with pure HPEI. The magnetite/HPEI nonviral gene vectors were used for magnetofection. It was found that the luciferase expression level mediated by magnetite/HPEI in COS-7 cells under a magnetic gradient field was approximately 13-fold greater than that of standard HPEI transfection in the best case.
     5. Self-assembly of Nanocrystals at the water/oil Interface by Amphiphilic Hyperbranched Polymers
     A general strategy for realizing the self-assembly of aqueous CdTe and Au NCs at the water/oil interface by means of amphiphilic core-shell hyperbranched polymer has been proposed. In the case of CdTe NCs, for example, aqueous CdTe NCs were firstly transferred into chloroform phase in the presence of palmityl choloride functionalized hyperbranched poly(amidoamine) (HPAMAM-PC), and then self-assembled at the water/chloroform interface by decreasing the pH value of aqueous phase or introducingα-cyclodextrins (α-CDs) to the aqueous phase. The resulting CdTe/HPAMAM-PC self-assembly film was characterized by fluorescence microscopy, UV-Vis, PL, TEM, EDS, FT-IR, DSC and TGA.
     In conclusion, based on hyperbranched polymers, different kinds of nanoreactors were prepared by chemical modification or non-covalent interactions and used to synthesize CdS QDs, Au and Ag NCs. Magnetic NCs were in-situ prepared within HPEI nonviral gene vetors and their magetofection properties were investigated. The self-assembly of CdTe and Au NCs was also realized by amphiphilic hyperbranched polymers. These NCs/hyperbranched polymer hybrid materials may provide important informations to the applications of hyperbranched polymers and NCs.
引文
1. Buhleier, E., Wehner, W. and Vogtle, F. Cascade-chain-like and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis 1978, 2, 155-158.
    2. Tomalia, D. A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J. and Smith, P. A new class of polymers: Starburst-dendritic macromolecules. Polym. J. 1985, 17, 117-132.
    3. Tomalia, D. A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J. and Smith, P. Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 1986, 19, 2466-2468.
    4. Tomalia, D. A., Naylor, A. M. and Goddard III, W. A. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. 1990, 29, 138-175.
    5. Bosman, A. W., Janssen, H. M. and Meijer, E. W. About dendrimers: structure, physical properties and applications. Chem. Rev. 1999, 99, 1665-1688.
    6. Fischer, M. and Vogtle, F. Dendrimers: from design to application-a progress report. Angew. Chem. Int. Ed. 1999, 38, 885-905.
    7. Dykes, G. M. Dendrimers: a review of their appeal and applications. J. Chem. Technol. Biotechnol. 2001, 76, 903-918.
    8. Klajnert, B. and Bryszewska, M. Dendrimers: properties and applications. Acta Biochim.Pol. 2001, 48, 199-208.
    9. Tomalia, D. A. and Fréchet, J. M. J. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2719-2728.
    10. Fréchet, J. M. J. Dendrimers and supramolecular chemistry. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4782-4787.
    11. Fréchet, J. M. J. Dendrimers and other dendritic macromolecules: from building blocks to functional assemblies in nanoscience and nanotechnology. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 3713-3725.
    12. Voit, B. New developments in hyperbranched polymers. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2505-2525.
    13. Jikei, M. and Kakimoto, M. Hyperbranched polymers: a promising new class of materials. Prog.Polym. Sci. 2001, 26, 1233-1285.
    14. Gao, C. and Yan, D. Hyperbranched polymers: from synthesis to applications. Prog. Polym. Sci. 2004, 29, 183-275.
    15. Flory, P. J. Molecular size distribution in three-dimensional polymers. VI. Branched polymer containing A-R-Bf-1-type units. J. Am. Chem. Soc. 1952, 74, 2718-2723.
    16. Hawker, C. J., Lee, R. and Fréchet, J. M. J. One-step synthesis of hyperbranched dendritic polyesters. J. Am. Chem. Soc. 1991, 113, 4583-4588.
    17. Uhrich, K. E., Hawker, C. J., Fréchet, J. M. J. and Turner, S. R. One-pot synthesis of hyperbranched polyethers. Macromolecules 1992, 25, 4583-4587.
    18. Kim, Y. H. and Webster, O. W. Hyperbranched polyphenylenes. Macromolecules 1992, 25, 5561-5572.
    19. Kim, Y. H. Hyperbranched polymers 10 years after. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 1685-1698.
    20. Kim, Y. H. and Webster, O. Hyperbranched polymers (reprinted from star and hyperbranched polymers, 1999, 201-238). J. Macromol. Sci. -Polym. Rev. 2002, 42, 55-89.
    21. Turner, S. R., Walter, F., Voit, B. I. and Mourey, T. H. Hyperbranched aromatic polyesters with carboxylic acid terminal groups. Macromolecules 1994, 27, 1611-1616.
    22. Malmstrom, E. and Hult, A. Hyperbranched polymers: a review. J. Macromol. Sci. -Rev. Macromol. Chem. Phys. 1997, 37, 555-579.
    23. Shi, W. F. and Huang, H. Progress in hyperbranched polymers. Chem. J. Chin. Univ. -Chin. 1997, 18, 1398-1405.
    24. Hult, A., Johansson, M. and Malmstrom, E. Branched polymers II: hyperbranched polymers. Adv. Polym. Sci. 1999, 143, 1-34.
    25. Inoue, K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci. 2000, 25, 453-571.
    26. Jikei, M. and Kakimoto, M.A. Hyperbranched polymers: A promising new class of materials. Prog. Polym. Sci. 2001, 26, 1233-1285.
    27. Voit, B. New developments in hyperbranched polymers. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2505-2525.
    28. Voit, B. I. Hyperbranched polymers: a chance and a challenge. C. R. Chim. 2003, 6, 821-832.
    29. Voit, B. Hyperbranched polymers-all problems solved after 15 years of research? J. Polym. Sci., Part A: Polym.Chem. 2005, 43, 2679-2699.
    30. Mori, H. and Müller, A. H. E. Dendrimers V: Functional and hyperbranched building blocks, photophysical properties, applications in materials and life sciences (Hyperbranched (methy)acrylates in solution, melt, and grafted from surfaces). Top. Curr. Chem. 2003, 228, 1-37.
    31. Kim, Y. H. and Webster, O. W. Water-soluble hyperbranched polyphenylene: "a unimolecular micelle"? J. Am. Chem. Soc. 1990, 112, 4592-4593.
    32. Fréchet, J. M. J., Henmi, M., Gitsov, I., Aoshima, S., Leduc, M. R., Grubbs, R. B. Self-condensing vinyl polymerization-an approach to dendritic materials. Science 1995, 269, 1080-1083.
    33. Suzuki, M, Li, A. and Saegusa, T. Multibranching polymerization: palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine. Macromolecules 1992, 25, 7071-7072.
    34. Sunder, A., Kramer, M., Hanselmann, R., Mülhaupt, R. and Frey, H. Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols. Angew.Chem. Int. Ed. 1999, 38, 3552-3555.
    35. Chang, H. T., Fréchet, J. M. J. Proton-transfer polymerization: a new approach to hyperbranched polymers. J. Am. Chem. Soc. 1999, 121, 2313-2314.
    36. Jikei, M., Chon, S. H., Kakimoto, M. A., Kawauchi, S., Imase, T. and Watanebe, J. Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid. Macromolecules 1999, 32, 2061-2064.
    37. Emrick, T., Chang, H. T. and Fréchet, J. M. J. An A(2)+B(3) approach to hyperbranched aliphatic polyethers containing chain end epoxy substituents. Macromolecules 1999, 32, 6380-6382.
    38. van Benthem, R. A. T. M., Meijerink, N., Gelade, E., de Koster, C. G., Muscat, D., Froehling, P. E., Hendriks, P. H. M.,Vermeulen, C. J. A. A. and Zwartkruis, T. J. G. Synthesis and characterization of bis(2-hydroxypropyl)amide-based hyperbranched polyesteramides. Macromolecules 2001, 34, 3559-3566.
    39.高超,超支化聚合物的分子设计、合成、表征及功能化研究.上海交通大学博士学位论文, 2001.
    40.刘翠华,超支化聚合物的合成及其超分子封装和超分子自组装研究.上海交通大学博士学位论文, 2007.
    41. Yan, D., Müller, A. H. E. and Matyjaszewski, K. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degree of branching. Macromolecules 1997, 30, 7024-7033.
    42. Jia, Z., Chen, H., Zhu, X. and Yan, D. Backbone-thermoresponsive hyperbranched polyethers. J.Am. Chem. Soc. 2006, 128, 8144-8145.
    43. Mecking, S., Thomann, R., Frey, H. and Sunder, A. Preparation of catalytically active palladium nanoclusters in compartments of amphiphilic hyperbranched polyglycerols. Macromolecules 2000, 33, 3958-3960.
    44. Lagt, M. Q., Stiriba, S. E., Gebbink, R. J. M. K., Kautz, H., Frey, H. and van Koten, G. Encapsulation of hydrophilic pincer-platinum(II) complexes in amphiphilic hyperbranched polyglycerol nanocapsules. Macromolecules 2002, 35, 5734-5737.
    45. Aymonier, C., Schlotterbeck, U., Antonietti, L., Zacharias, P., Thomann, R., Tiller, J. C. and Mecking, S. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem. Commun. 2002, 3018–3019.
    46. Pérignon, N., Mingotaud, A. -F., Marty, J. -D., Rico-Lattes, I. and Mingotaud, C. Formation and stabilization in water of metal nanoparticles by a hyperbranched polymer chemically analogous to PAMAM dendrimers. Chem. Mater. 2004, 16, 4856-4858.
    47. Zhang, Y. W., Peng, H. S., Huang, W., Zhou, Y. F., Zhang, X. H. and Yan, D.Y. Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J. Phys. Chem. C 2008, 112, 2330-2336.
    48. Mykhaylyk, O., Antequera, Y. S., Vlaskou, D. and Plank, C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nature Protocol 2007, 2, 2391-2411.
    49. Kramer, M., Stumbe, J. F., Turk, H., Krause, S., Komp, A., Delineau, L., Prokhorova, S., Kautz, H. and Haag, R. pH-responsive molecular nanocarriers based on dendritic core-shell architectures. Angew. Chem. Int. Ed. 2002, 41, 4252-4256.
    50. Liu, C. H., Gao, C. and Yan, D. Y. Synergistic supramolecular encapsulation of amphiphilic hyperbranched polymer to dyes. Macromolecules 2006, 39, 8102-8111.
    51. Whitesides, G. M. and Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418-2421.
    52. Lehn, J. M. Toward self-organization and complex matter. Science 2002, 295, 2400-2403.
    53. Percec, V., Glodde, M., Bera, T. K., Miura,Y., Shiyanovskaya, I., Singer, K. D., Balagurusamy, V. S. K., Heiney, P. A., Schnell, I., Rapp, A., Spiess, H. W., Hudson, S. D. and Duan, H. Self-organization of supramolecular helical dendrimers into complex electronicmaterials. Nature 2002, 419, 384-387.
    54. Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171-1178.
    55. Taylor, P., Xu, C., Fletcher, P. D. I. and Paunov, V. N. A novel technique for preparation ofmonodisperse giant liposomes. Chem. Commun. 2003, 1732-1733.
    56. Kleitz, F., Thomson, S. J., Liu, Z., Terasaki, O. and Schuth, F. Porous mesostructured zirconium oxophosphate with cubic (Ia3d) symmetry. Chem. Mater. 2002, 14, 4134-4144.
    57. Caruso, F., Caruso, R. A. and M?hwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111-1114.
    58. Bucknall, D. G. and Anderson, H. L. Polymers get organized. Science 2003, 302, 1904-1905.
    59. Yan, D. Y., Zhou, Y. F. and Hou, J. Supramolecular self-assembly of macroscopic tubes. Science 2004, 303, 65-67.
    60. Zhou, Y. F. and Yan, D.Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes. Angew. Chem. Int. Ed. 2004, 43, 4896-4899.
    61. Zou, J. H., Ye, X. D. and Shi, W. F. Crosslinkable vesicles self-assembled by amphiphilic hyperbranched polyester. Macromol. Rapid. Commun. 2005, 26, 1741-1745.
    62. Mai, Y. Y., Zhou, Y. F. and Yan, D.Y. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules 2005, 38, 8679-8686.
    63. Ornatska, M., Peleshanko, S., Genson, K. L., Rybak, B., Bergman, K. N. and Tsukruk, V. V. Assembling of amphiphilic highly branched molecules in supramolecular nanofibers. J. Am. Chem. Soc. 2004, 126, 9675-9684.
    64. Ornatska, M., Peleshanko, S., Rybak, B., Holzmueller, J. and Tsukruk, V. V. Supramolecular multiscale fibers through one-dimensional assembly of dendritic molecules. Adv. Mater. 2004, 16, 2206-2212.
    65. Stupp, S. L., Bonheur, V., Walker, K., Li, L., Huggins, K. E., Keser, M. and Amstutz, A. Supramolecular materials: self-organized nanostructures. Science 1997, 276, 384-389.
    66. Onoshima, D. and Imae, T. Dendritic nano- and microhydrogels fabricated by triethoxysilyl focal dendrons. Soft Matter 2006, 2, 141-148.
    67. Jesberger, M., Barner, L., Stenzel, M. H., Malmstrom, E., Davis, T. P. and Barner-Kowollik, C. Hyperbranched polymers as scaffolds for multifunctional reversible addition-fragmentation chain-transfer agents: a route to polystyrene-core-polyesters and polystyrene-block-poly(butyl acrylate)-core-polyesters. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3847-3861.
    68. Liu, C. H., Gao, C. and Yan, D. Y. Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymer,Angew. Chem. Int. Ed. 2007, 46, 4128-4131.
    69. Frey, H. and Haag, R. Dendritic polyglycerol: a new versatile biocompatible material. Rev. Mol. Biotechnol. 2002, 90, 257-267.
    70. Liu, H.B. and Uhrich, K. E. Hyperbranched polymeric micelles: drug encapsulation, release and polymer degradation. Polym. Prepr. 1997, 38, 582-583.
    71. Lim, Y. B., Kim, S. M., Lee, Y., Lee, W. K., Yang, T. G., Lee, M. J., Suh, H. and Park, J. S. Cationic hyperbranched poly(amino ester): a novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior. J. Am. Chem. Soc. 2001, 123, 2460-2461.
    72. Mintzer M. A. and Simanek E. E. Nonviral vectors for gene delivery. Chem. Rev. 2009, 109, 259-302.
    73.张立德,跨世纪的新领域:纳米材料科学, 1993, 45, 13-17.
    74.张立德,牟季美,开拓原子和物质的中间领域-纳米微粒和纳米固体, 1992, 21, 167-173.
    75. Bawendi, M. G., Steigerwald, M. L. and Brus, L. E. The quantum mechanics of larger semiconductor clusters. Annu. Rev. Phys. Chem. 1990, 41, 477.
    76.克莱邦德编,陈建峰、邵磊、刘晓林等译,纳米材料化学(第一版).化学化工出版社, 2004.
    77.钱惠锋,水溶性荧光量子点的合成及修饰.上海交通大学硕士论文,2007.
    78. Cushing, B. L., Kolesnichenko, V. L. and O’Connor, C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004, 104, 3893-3946.
    79. Burda, C., Chen, X., Narayanan, R. and El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025-1102.
    80. Murray, C. B., Norris, D. J. and Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706-8715.
    81. Qu, L. and Peng, X. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049-2055.
    82. Spanhel, L., Haase, M., Weller, H. and Henglein, A. Photochemistry of colloidal semiconductors.
    20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 1987, 109, 5649-5655.
    83. Gaponik, N., Talapin, D. V., Rogach, A. L., Hoppe, K., Shevchenko, E. V., Kornowski, A., Eychmuller, A. and Weller, H. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177-7185.
    84. Zhang, H., Wang, L. P., Xiong, H. M., Hu, L. H., Yang, B. and Li, W. Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv. Mater. 2003, 15, 1712-1715.
    85. Talapin, D. V., Rogach, A. L., Shevchenko, E. V., Kornowski, A., Haase, M. and Weller, H.Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 2002, 124, 5782-5790.
    86. Huynh, W. U., Dittmer, J. J. and Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425-2427.
    87. Bao, H., Gong, Y., Li, Z. and Gao, M. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core?shell structure. Chem. Mater. 2004, 16, 3853-3859.
    88. Li, L., Qian, H. F., Fang, N. H. and Ren J. C. Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J. Lumin. 2006, 116, 59-66.
    89. Qi, L., C?lfen, H. and Antonietti, M. Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers. Nano Lett. 2001, 1, 61-65.
    90. Lemon B. and Crooks, R. M. Preparation and characterization of dendrimer-encapsulated CdS. J. Am. Chem. Soc. 2000, 122, 12886-12887.
    91. Wu, X. C., Bittner, A. M. and Kern K. Synthesis, photoluminescence, and adsorption of CdS/dendrimer nanocomposites. J. Phys. Chem. B 2005, 109, 230-239.
    92. Dameron, C. T., Smith, B. R. and Winge, D. R. Glutathione-coated cadmium-sulfide crystallites in Candida glabrata. J. Bio. Chem. 1989, 264, 17355-17360.
    93. Chan, W. and Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016-2018.
    94. Bruchez, M. P., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013-2015.
    95. Bean, C. P. and Livingston, J. D. Superparamagnetism. J. Appl. Phys. 1959, 30, 120-129.
    96. Lu, A. H., Salabas, E. L. and Schuth, F. Magnetic nanoparticles: synthesis, protection, functionlization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244.
    97. Vaucher, S., Fielden, J., Li, M., Dujardin, E. and Mann, S. Molecule-based magnetic nanoparticles: synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano. Lett. 2002, 2, 225-229.
    98. Kim, D., Lee, N., Park, M., Kim, B. H., An, K. and Hyeon, T. Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 2009, 131, 454-455.
    99. Li, Z., Wei, L., Gao, M. Y. and Lei, H. One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv. Mater. 2005, 17, 1001-1005.
    100. Jana, N. R., Chen, Y. F. and Peng, X. G. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16, 3931-3935.
    101. Wang, X., Zhuang, J., Peng, Q. and Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121-124.
    102. Strable E., Bulte J. W. M., Moskowitz, B., Vivekanandan, K., Allen, M. and Douglas, T. Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem. Mater. 2001, 13, 2201-2209.
    103. Si, S., Kotal, A., Mandal, T. K., Giri, S., Nakamura, H. and Kohara, T. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem. Mater. 2004, 16, 3489-3496.
    104. Lutz, J. -F., Stiller, S., Hoth, A., Kaufner, L., Pison, U. and Cartier, R. One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules 2006, 7, 3132-3138.
    105. Lewin, M., Carlesso, N., Tung, C. -H., Tang, X. -W., Cory, D., Scadden, D. T. and Weissleder, R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotech. 2000, 18, 410-414.
    106. Mornet, S., Vasseur, S., Grasset, F. and Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 2004, 14, 2161-2175.
    107. Gao, J. H., Gu H. W. and Xu, B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097-1107.
    108. Babes, L., Denizot, B., Tanguy, G., Le Jeune, J. J. and Jallet, P. Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J. Colloid Interf. Sci. 1999, 212, 474-482.
    109. Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M., Wust, P., Nadobny, J., Schirra, H., Schmidt, H., Deger, S., Loening, S., Lanksch, W. and Felix, R. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn.Mater. 2001, 225, 118-126.
    110. Zhang, Z. C., Zhang, L. L., Chen, L., Chen, L. G. and Wan, Q. H. Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA. Biotechnol. Progr. 2006, 22, 514-518.
    111. Bucak, S., Jones, D. A., Laibinis, P. E. and Hatton, T. A. Protein separations using colloidalmagnetic nanoparticles. Biotechnol. Progr. 2003, 19, 477-484.
    112. Plank, Christian. Nanomagnetosols: magnetism opens up new perspectives for targeted aerosol delivery to the lung. Trends Biotechnol. 2008, 26, 59-63.
    113. Scherer, F., Anton, M., Schillinger, U., Henkel, J., Bergemann, C., Kruger, A., Gansbacher, B. and Plank, C. Magnetofection enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002, 9, 102-109.
    114. Huth, S., Lausier, J., Gersting, S. W., Rudolph, C., Plank, C., Welsch, U. and Rosenecker, J. Insight into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J. Gene. Med. 2004, 6, 923-936.
    115. Gao, M. Y., Kirstein, S., Mohwald, H., Rogach, A. L., Kornowski, A., Eychmuller, A. and Weller, H. Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. chem. B. 1998, 102, 8360-8363.
    116. Schlamp, M. C., Peng, X., Alivisatos, A. P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer J. Appl. Phys. 1997, 82, 5837-5842.
    117. Mattoussi, H., Radzilowski, L. H., Dabbousi, B. O., Thomas, E. L., Bawendi, M. G., Rubner, M. F. Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. J. Appl. Phys. 1998, 83, 7965-7974.
    118. Gao, M., Lesser, C., Kirstein, S., Mo¨hwald, H., Rogach, A. L., Weller, H. Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films. J. Appl. Phys. 2000, 87, 2297-2302.
    119. Greenham, N. C., Peng, X., Alivisatos, A. P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B, 1996, 54, 17628-17637.
    120. Barnham, K., Marques, J. L., Hassard, J., O’Brien, P. Quantum-dot concentrator and thermodynamic model for the global redshift. Appl. Phys. Lett. 2000, 76, 1197-1199.
    121. Zhang, H., Cui, Z., Wang, Y., Zhang, K., Ji, X., Lü, C., Yang, B., Gao, M. Y. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using Polymerizable Surfactants. Adv. Mater. 2003, 15, 777-780.
    122. Qi, L., C?lfen, H., Antonietti, M. Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers. Nano Lett. 2001, 1, 61-65.
    123. Sooklal, K., Hanus, L. H., Ploehn, H. J., Murphy C. J. A blue-emitting CdS/dendrimernanocomposite. Adv. Mater. 1998, 10, 1083-1087.
    124. Lemon B., Crooks, R. M. Preparation and characterization of dendrimer-encapsulated CdS. J. Am. Chem. Soc. 2000, 122, 12886-12887.
    125. Liu, C., Gao, C, Yan, D. Aliphatic hyperbranched poly(amidoamine)s (PAMAMs): preparation and modification. Chem. Res. Chinese. Univ. 2005, 21, 345-354.
    126. Jones, G., Jackson, W. R., Choi, C. Y., Bergmark, W. R. Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. J. Phys. Chem. 1985, 89, 294-300.
    127.郭尧君,荧光实验技术及其在分子生物学中的应用(第一版),科学出版社, 1979.
    128. Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403-4409.
    129. Muller, A. H., Petruska, M. A., Achermann, M., Werder, D. J., Akhadov, E. A., Koleske, D. D., Hoffbauer, M. A., Klimov, V. I. Multicolor Light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 2005, 5, 1039-1044.
    130. Mamedov, A. A., Belov, A., Giersig, M., Mamedova, N. N., Kotov, N. A. Nanorainbows: graded semiconductor films from quantum dots. J. Am. Chem. Soc. 2001, 123, 7738-7739.
    131. Klimov, V. I., Mikhailovsky, A. A., Xu, S., Malko, A., Hollingsworth, J. A., Leatherdale, C. A., Eisler, H. J., Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314-317.
    132. Coe, S., Woo, W. K., Bawendi, M., Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800-803.
    133. Sundar, V. C., Eisler, H. J., Bawendi, M. G. Room-temperature, tunable gain media from novel II-VI nanocrystal-titania composite matrices. Adv. Mater. 2002, 14, 739-743.
    134. Huynh, W. U., Dittmer, J. J., Libby, W. C., Whiting, G. L., Alivisatos, A. P. Controlling the morphology of nanocrystal-polymer composites for solar cells. Adv. Funct. Mater. 2003, 13, 73-79.
    135. Peng, X. G., Manna, L., Yang, W. D., Wickham, J., Scher, E., Kadavanich, A., Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59-61.
    136. Deng, Z. T., Lie, F. L., Shen, S. Y., Ghosh, I., Mansuripur, M., Muscat, A. J. Water-based route to ligand-delective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence. Langmuir 2009, 25, 434-442.
    137. Yu, W. W., Chang, E., Falkner, J. C., Zhang, J. Y., Al-Somali, A. M., Sayes, C. M., Johns, J.,Drezek, R., Colvin, V. L. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J. Am. Chem. Soc. 2007, 129, 2871-2879.
    138. Steigerwald, M. L. and Brus, L. E. Semiconductor crystallites: a class of large molecules. Acc. Chem. Res. 1990, 23, 183-188.
    139. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.
    140. Weller, H. Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. 1993, 32, 41-53.
    141. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F. and Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B, 1997, 101, 9463–9475.
    142. Cheyne, R. B. and Moffitt, M. G. Hierarchical nanoparticle/block copolymer surface features via synergistic self-assembly at the air?water interface. Langmuir 2005, 21, 10297-10300.
    143. Chechik, V., Zhao, M. and Crooks, R. M. Self-assembled inverted micelles prepared from a dendrimer template phase transfer of encapsulated guests. J. Am. Chem. Soc. 1999, 121, 4910-4911.
    144. Chun, D., Wudl, F. and Nelson A. supramolecular selfassembly driven by complementary molecular recognition. Macromolecules 2007, 40, 1782-1785.
    145. Chen, Y., Shen, Z., Frey, H., Pérez-Prietob, J. and Stiriba, S.-E. Synergistic assembly of hyperbranched polyethylenimine and fatty acids leading to unusual supramolecular nanocapsules. Chem. Commun. 2005, 755–757.
    146. Stiriba, S. -E. Kautz, H. and Frey, H. Hyperbranched molecular nanocapsules comparison of the hyperbranched architecture with the perfect linear analogue. J. Am. Chem. Soc. 2002, 124, 9698-9699.
    147. Radowski, M. R., Shukla, A., Berlepsch, H., B?ttcher, C., Pickaert, G., Rehage, H. and Haag, R. Supramolecular aggregates of dendritic multishell architectures as universal nanocarriers. Angew. Chem. Int. Ed. 2007, 46, 1265-1269.
    148. Kumar, K. R. and Brooks. D. E. Comparison of hyperbranched and linear polyglycidol unimolecular reverse micelles as nanoreactors and nanocapsules. Macromol. Rapid Commun. 2005, 26, 155-159.
    149. Pouton, C. W. and Seymour, L. W. Key issues in non-viral gene delivery. Adv. Drug Deliver. Rev.2001, 46, 187-203.
    150. Wong, S.Y., Pelet, J. M. and Putnam, D. Polymer systems for gene delivery-past, present and future. Prog. Polym. Sci. 2007, 32, 799-837.
    151. Morille, M., Passirani, C., Vonarbourg, A., Clavreul, A. and Benoit, J. -P. Progress in developing cationic vectors for systemic gene therapy against cancer. Biomaterials 2008, 29, 3477-3496.
    152. Liu, F. and Huang, L. Development of non-viral vectors for systemic gene delivery. J. Control. Release 2002, 78, 259-266.
    153. Tang, G. P., Zeng, J. M., Gao, S. J., Ma, Y. X., Shi, L., Li, Y., Too, H. -P. and Wang, S. Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials 2003, 24, 2351-2362.
    154. Brown, M. D., Sch?tzlein, A. G. and Uchegbu, I. F. Gene delivery with synthetic (non-viral) carriers. Int. J. Pharm. 2001, 229, 1-21.
    155. Park, T. G., Jeong, J. H. and Kim, S. W. Current status for polymeric gene delivery systems. Adv. Drug Deliver. Rev. 2006, 58, 467- 486.
    156. Schmidt-Wolf, G. D. and Schmidt-Wolf, I. G. H. Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol. Med. 2003, 9, 67-72.
    157. Gersting, S. W., Schillinger, U., Lausier, J., Nicklaus, P., Rudolph, C., Plank, C., Reinhardt, D. and Rosenecker, J. Gene delivery to respiratory epithelial cells by magnetofection. J. Gene. Med. 2004, 6, 913-922.
    158. Muthana, M., Scott, S. D., Farrow, N., Morrow, F., Murdoch, C., Grubb, S., Brown, N., Dobson, J. and Lewis, C. E. A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Ther. 2008, 15, 902-910.
    159. Chen, G. H., Chen W. J., Wu, Z., Yuan, R. X., Li, H., Gao, J. M. and Shuai, X. T. MRI-visible polymeric vector bearing CD3 single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials 2009, 30, 1962-1970.
    160. Belessi, V., Zboril, R., Tucek, J., Mashlan, M., Tzitzios, V. and Petridis, D. Ferrofluids from magnetic-chitosan hybrids. Chem. Mater. 2008, 20, 3298-3305.
    161. Zhang, J. G., Xu, S. Q., Kumacheva, E. Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 7908-7914.
    162. Lin, C. L., Lee, C. F., Chiu, W. Y. Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. J. Colloid Interface Sci. 2005, 291, 411-420.
    163. Zhu, L. P., Xiao, H, M., Zhang, W. D., Yang, G. and Fu, S. Y. One-pot template-free synthesis ofmonodisperse and single-crystal magnetite hollow spheres by a simple solvothermal route. Crystal Growth & Design 2008, 8 957-963.
    164. Alexey S., Benito R G., Jessica P., Marina S., Michael F. and Luis, M. L. M. Shape control in iron oxide nanocrystal synthesis, induced by trioctylammonium ions. Chem. Mater. 2009, 21, 1326–1332.
    165. Kim, D. K., Mikhaylova, M., Zhang, Y. and Muhammed, M. Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater. 2003, 15, 1617-1627.
    166. Wan, S. R., Huang, J. S., Yan, H. S. and Liu, K. L. Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater. Chem. 2006, 16, 298–303.
    167. Cheng, N., Liu, W. G., Cao, Z. Q., Ji, W. H., Liang, D. C., Guo, G. and Zhang, J. Y. A study of thermoresponsive poly(N-isopropylacrylamide)/polyarginine bioconjugate non-viral transgene vectors. Biomaterials 2006, 27, 4984-4992.
    168. Mintzer, M. A. and Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 2009, 109, 259–302.
    169. Lin, Y., Skaff, H., Emrick, T., Dinsmore, A. D. and Russell, T. P. Nanoparticle assembly and transport at liquid-liquid interfaces. Science 2003, 299, 226-229.
    170. Lin, Y., Boker, A., Skaff, H., Cookson, D., Dinsmore, A. D., Emrick, T. and Russell, T. P. Nanoparticle assembly at fluid interfaces, structure and dynamics. Langmuir 2005, 21, 191-194.
    171. Lin, Y., Skaff, H., B?ker, A., Dinsmore, A. D., Emrick, T. and Russell, T. P. Ultrathin cross-linked nanoparticle membranes. J. Am. Chem. Soc. 2003, 125, 12690-12691.
    172. Cheyne, R. B. and Moffitt, M. G. Controllable organization of quantum dots into mesoscale wires and cables via interfacial block copolymer self-assembly. Macromolecules 2007, 40, 2046-2057.
    173. Balazs, A. C., Emrick, T. and Russell, T. P. Nanoparticle polymer composites, where two small worlds meet. Science 2006, 314, 1107-1110.
    174. Kerim, M., Asfura, G., Constantine, C. A., Lynn, M. J., Thimann, D. A., Ji, X. and Leblanc, R. M. Characterization and 2D self-assembly of CdSe quantum dots at the air-water interface. J. Am. Chem. Soc. 2005, 127, 14640-14646.
    175. Zou, S., Hong, R., Emrick, T., Walker, G. C. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces. Langmuir 2007, 23, 1612-1614.
    176. Benkoski, J. J., Jones, R. L., Douglas, J. F. and Karim, A. Photocurable oil/water interfaces as a universal platform for 2-D self-assembly. Langmuir 2007, 23, 3530-3537.
    177. Kurth, D. G., Lehmann, P. and Lesser, C. Engineering the surface chemical properties of semiconductor nanoparticles: surfactant-encapsulated CdTe-clusters. Chem. Commun. 2000, 949-950.
    178. Tang, Z., Zhang, Z., Wang, Y., Glotzer, S. C. and Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 2006, 314, 274-278.
    179. Reincke, F., Kegel, W. K., Zhang, H., Nolte, M., Wang, D., Vanmaekelbergh, D. and M?hwald, H. Understanding the self-assembly of charged nanoparticles at the water-oil interface. Phys. Chem. Chem. Phys. 2006, 8, 3828-3835.
    180. Reincke, F., Hickey, S. G., Kegel, W. K. and Vanmaekelbergh, D. Spontaneous assembly of a monolayer of charged gold nanocrystals at water-oil interface. Angew. Chem. Int. Ed. 2004, 43, 458-462.
    181. Li, Y. J., Huang, W. J. and Sun, S. G. A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew. Chem. Int. Ed. 2006, 45, 2537-2539.
    182. Duan, H., Wang, D., Kurth, D. G. and M?hwald, H. Directing self-assembly of nanoparticles at water-oil interfaces. Angew. Chem. Int. Ed. 2004, 43, 5639-5642.
    183. Duan, H., Wang, D., Sobal, N. S., Giersig, M., Kurth, D. G. and M?hwald, H. Magnetic colloidosomes derived from nanoparticle interfacial self-assembly. Nano Lett. 2005, 5, 949-952.
    184. Wang, J., Wang, D., Sobal, N. S., Giersig, M., Jiang, M. and M?hwald, H. Stepwise directing of nanocrystals to self-assemble at water-oil interfaces. Angew. Chem. Int. Ed. 2006, 45, 7963-7966.
    185. Xu, J., Xia, J. and Lin, Z. Evaporation-induced self-assembly of nanoparticles from a sphere-on-flat geometry. Angew. Chem. Int. Ed. 2007, 46, 1860-1863.
    186. Wyrwa, D., Beyer, N. and Schmid, G. One-dimensional arrangements of metal nanoclusters. Nano Lett. 2002, 2, 419-421.
    187. Li, L., Qian, H. F., Ren, J. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem. Commun. 2005, 528-530.
    188. Jansen, J. F. G. A., De Brabander-van den Berg, E. M. M. and Meijer, E. W. Encapsulation of guest molecules into a dendritic Box. Science 1994, 266, 1226-1229.
    189. Kr?mer, M., Kopaczynska, M., Krause, S. and Haag, R. Dendritic polyamine architectures with lipophilic shells as nanocompartments for polar guest molecules, a comparative study of their transport behavior. J. Poly. Sci. A 2007, 45, 2287-2303.
    190. Kleij, A. W., van de Coevering, R., Gebbink, R. J. M. K., Noordman, A. -M., Spek, A. L. and van Koten, G. Polycationic (mixed) core-shell dendrimers for binding and delivery of inorganic/organic substrates. Chem. Eur. J. 2001, 7, 181-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700