用户名: 密码: 验证码:
两亲性高分子光引发剂及其在制备金属纳米粒子方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光固化技术由于具有快速、高效、无溶剂、室温反应等优点而广泛应用在涂料、油墨、光刻胶、粘合剂、电子封装材料等领域中。作为紫外光固化体系的重要组成部分,光引发剂的研究一直受到研究者的重视。相对于小分子光引发剂,高分子型光引发剂通过灵活的结构设计可以有效的避免迁移、毒性和体系相容性问题,因此是光引发剂发展的重要方向。将夺氢型的小分子光引发剂和共引发剂胺引入到同一高分子链中,有利于夺氢反应的进行,可以有效的提高光引发体系的引发效率。
     本文正是基于高分子光引发体系的优点,将夺氢型小分子光引发剂和共引发剂胺引入到同一高分子链中,开发了不同结构的两亲性高分子光引发剂,这些两亲性高分子光引发剂不仅在紫外光固化技术中具有优异的光引发性能,并且还能应用于光化学方法合成各类功能性的金属纳米粒子中。
     将小分子米嗤酮光引发剂(MK)和间苯二缩水甘油醚(RDE)通过开环加成反应得到高分子米嗤酮光引发剂(PMKPR),该引发剂与小分子模型化合物具有相似的紫外吸收和更高的对乙氧基化双酚A丙烯酸酯(A-BPE-10)聚合的光引发效率。与小分子模型化合物相比,PMKPR在固化体系中具有较高的稳定性和较低的迁移率。进一步将MK分别与双环氧基聚乙二醇(PEO)、双环氧基聚丙二醇(PPO)反应得到了具有不同分子链柔顺性的高分子米嗤酮光引发剂PMKPG和PMKPP,玻璃化转变温度分别为-24.9 oC和-12.5 oC,常温下为粘性固体,它们具有与PMKPR相似的紫外吸收。与PMKPP和PMKPR相比,PMKPG在引发苯氧基乙二醇丙烯酸酯(AMP-10G)和A-BPE-10聚合时具有更好的光引发效率,而PMKPP则可以更有效的引发三羟甲基丙烷三丙烯酸酯(TMPTA)的光聚合。将不同比例的MK、哌嗪和PEO引入到同一高分子链中,合成了一系列不同两亲性的高分子米嗤酮光引发剂APMKs,当[MK]:[PEO]:[哌嗪]=2:3:1时,APMK具有水溶性,随着PEO含量的增加,APMK在极性和非极性溶剂和单体中的溶解性提高,光引发性能也随着PEO含量的增加而提高,引发水溶性单体聚乙二醇二丙烯酸酯(PEGDA)聚合的转化率达到94%。
     将不同比例的PEO和硫杂蒽酮(TX)引入到超支化聚乙烯亚胺(PEI)中,得到了具有两亲性的超支化硫杂蒽酮光引发剂(AHPTXs),该光引发剂具有与小分子模型化合物相似的紫外吸收和较弱的荧光发射,在多种极性和非极性的溶剂和单体中都有良好的溶解性。随着分子中PEO含量的增加,引发水溶性单体PEGDA和油溶性单体A-BPE-10光聚合的引发效率都有提高,最高可以分别达到87%和86%。进一步将PEO和TX引入到硅纳米粒子上,制备了纳米光引发剂,该光引发剂具有良好的溶解性能,具有与小分子相似的紫外吸收和较弱的荧光发射,并且在引发PEGDA和A-BPE-10聚合时表现出了较好的光引发性能,有望用于纳米复合材料。
     利用两亲性光引发剂APMK作为光催化剂和稳定剂,在紫外光照射下于水溶液中合成了两亲性银纳米粒子,随着光照时间增加,粒径分布逐渐均一,平均粒径为20 nm,在极性和非极性溶剂中均有良好的溶解性,在水溶液中该纳米粒子在紫外光照下可以进一步引发单体聚合。用两亲性光引发剂APMK作为光催化剂、含巯基的聚醚胺PEA-SH作为稳定剂,在光照下制备了具有两亲性、温度响应性和pH响应性的金纳米粒子,得到的金纳米粒子的平均粒径为9 nm,可以溶于多种有机溶剂中,根据TGA的结果可以得到金纳米粒子表面的聚合物密度为0.2 chains/nm2,当改变温度和pH时会发生相转变。该方法制备的金纳米粒子在生物传感器、药物缓释方面有良好的应用前景。
Photopolymerization have been widely used in coatings, inks, photoresists, adhesives and electronic package materials because of its outstanding properties, such as fast-curing, high efficiency, non-solvent and reaction at room temperature. As one of the most important components of photo-curing systems, photoinitiator attracts more attention. Compared with low molecular weight photoinitiators, polymeric photoinitiators can avoid migration, toxicity and bad compatibility with cured system through the flexible structure design, which is a trend of photoinitiator. Incorporation of hydrogen-abstraction low molecular weight photoinitiator and coinitiator amine into the same polymeric chain is benefit to the hydrogen-abstraction reaction and improves the photoinition efficiency.
     This thesis focuses on the designing of amphiphilic polymeric photoinitiators through introducing hydrogen-abstraction low molecular weight photoinitiator and coinitiator amine into the same polymeric chain as well as its application in the preparation of metal nanoparticles using photochemical method.
     Polymeric Michler’s ketone photoinitiator (PMKPR) was synthesized through open-ring addition reaction between low molecular weight Michler’s ketone (MK) and resorcinol diglycidyl ether (RDE), which possesses similar UV-vis absorption with low-molecular-weight model compounds and can initiate the photopolymerization of 2,2-bis[4-(acryloxypolyethoxy)phenyl] propane (A-BPE-10).
     Polymeric Michler’s ketone photoinitiators with different flexible chain (PMKPG and PMKPP) were synthesized by incorporating MK and polyethylene glycol diglycidyl ether (PEO) and poly(propylene glycol) diglycidyl ether (PPO) into the same polymeric chain, respectively. These polymeric photoinitiators possess the similar characteristic UV-vis absorption of PMKPR, and their photobleaching behavior is similar. The Tg of PMKPR, PMKPG and PMKPP is 58.1 oC, -24.9 oC and -12.5 oC, respectively. Compared with PMKR and PMKPP, PMPPG possesses higher photoinitiation efficiency in initiating the photopolymerization of phenoxy ethyleneglycol acrylate (AMP-10G) and A-BPE-10, while PMKPP shows better efficiency in initiating the photopolymerizaiton of trimethylopropane triacrylate (TMPTA).
     A series of amphiphilic polymeric Michler’s ketone photoinitiators (APMKs) were synthesized by incorporating PEO short chain, MK, and coinitiator piperazine into the same polymeric chain, which possess good amphiphilic ability and become water-soluble when the molar ratio of [MK]/[PEO]/[piperazine] is 2:3:1. APMKs also exhibit the similar absorption to MK derivates. With increasing of PEO content, APMK shows better solubility both in polar and non-polar monomers as well as the photoinitiation efficiency. As for photopolymerization of water-soluble polyethylene glycol diacrylate (PEGDA), the final conversion is higher than 94%. Therefore, APMKs will be expected to find potential in many fields. Amphipathic hyperbranched polymeric thioxanthone (TX) photoinitiators (AHPTXs) were synthesized by introducing TX, and polyethylene glycol monoethylether glycidyl ether (E-PEO) into periphery of hyperbranched poly(ethylene imine) (HPEI). AHPTXs possess similar UV-vis absorption spectra to TX derivatives, and weaker ?uorescence emission in comparison to low-molecular weight analogues, which can be easily dispersed in many solvents and acrylate monomers as well as water. In comparison to low-molecular weight analogues photoinitiator systems, AHPTXs are very efficient in photopolymerization of acrylamide (AM), PEGDA and A-BPE-10.
     Nanophotoinitiator was synthesized by introducing TX and PEO into the silica nanoparticles through esterification, which also shows good solubility in many monomers, similar spectra and weaker fluorescence emission in comparison to low molecular weight analogue and also shows good efficiency in photoinitiating the polymerization of PEGDA and A-BPE-10. Amphiphilic silver nanoparticles were synthesized in aqueous solution in the presence of APMK under UV irradiation. With the increasing of irradiation time, particles become uniform and the average particle size is 20 nm, which possess good solubility in both polar and non-polar solvents, and the particles can further photoinitiate the polymerization of monomers. Amphiphilic and multi-responsive gold nanoparticles (AuNPs) were synthesized in the presence of APMK and poly(ether amine) containing thiol groups (gPEA-SH) under UV irradiation, which possess a multi-stimuli response to temperature and pH and can be dissolved in many solvents. The density of gPEA-SH on the surface of AuNPs is about 0.2 chains/nm2 from the result of TGA. Phase transition appears upon changing the temperature or pH value. This kind of AuNP will have potential in biosensors and drug delivery.
引文
[1] Fouassier J.P. Photoinitiation Polymerization and Photocuring Fundamental and Applications, Hanser, New York, 1995
    [2] Jonsson S., Sundell P.E., Hultgren J., et al. Radiation chemistry aspects of polymerization and crosslinking. A review and future environmental trends in‘non-acrylate’chemistry. Prog. Org. Coat., 1996, 27 (1-4), 107-122
    [3] Mosmer N., Salz U. New developments of polymeric dental composites. Polym. Sci., 2001, 26, 535-576
    [4] Nguyen K.T., West J.L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002, 23, 4307-4316
    [5] Fouassier J.P., Rabek J.F. Radiation curing in polymer science and technology, London: Chapman & Hall, 1993
    [6]张存林,李军,杨永源.光聚合引发剂研究进展.功能高分子学报. 1998, 11, 573-579
    [7] Allen N.S. Photoinitiators for UV and visible curing of coatings: mechanisms and properties. J. Photochem. Photobiol. A: Chem., 1996, 100, 101-107
    [8]姜学松.含共引发剂胺的高分子型硫杂蒽酮光引发剂的研究.博士学位论文,上海交通大学, 2004
    [9]韦军.含共引发剂胺的聚(脲)氨酯高分子型二苯甲酮光引发剂的研究.博士学位论文.上海交通大学, 2006
    [10]王洪宇.高效可聚合和高分子型二苯甲酮光引发剂的研究.博士学位论文.上海交通大学, 2006
    [11] Fouassier J.P., Yamashita K. Visible light-induced polymerization reactions: Then seven-role of the electron transfer process in the dye/iron arene complex/amine system. J. Appl. Polym. Sci., 1996, 62, 1877-1885
    [12] Turro N.现代分子光化学.科学出版社,北京: 1987.
    [13]李善军.高分子光化学原理及应用.复旦大学出版社,上海: 1993.
    [14] Maxwell B.E., Wilson R.C. Understanding benzoin’s mode of action in powder coatings. Prog. Org. Coat., 2001, 43, 158-166
    [15] Kizilcan N.J. Oligomeric benzoin photoinitiators. J. Appli. Polym. Sci., 2002, 85, 500-508
    [16] Deka S.R., Kakati D.K. Benzoin-terminated polyurethane as macrophotoinitiator for synthesis of polyurethane-polymethyl methacrylate block copolymers. J. Appli. Polym. Sci., 2009, 111, 3089-3093
    [17] Angiolini L., Caretti D., Carlini C., et al. Polymeric photoinitiators having benzoin methylether moieties connected to the main chain through the benzyl aromatic ring and their activity for ultraviolet-curable coatings. Polymer, 1999, 40, 7197-7207
    [18] Adam W., Arnold M.A. A comparative photomechanistic study (spin trapping, EPR spectroscopy,transient kinetics, photoproducts) of nucleoside oxidation (dG and 8-oxodG) by triplet-excited acetophenones and by the radicals generated fromα-oxy-substituted derivatives through Norrish-type I cleavage. J. Am. Chem. Soc., 2002, 124, 3893-3904
    [19] Dietz J.E., Peppas N.A. Reaction kinetics and chemical changes during polymerization of multifunctional (meth)acrylates for the production of highly crosslinked polymers used in information storage systems. Polymer, 1997, 38, 3767-3781
    [20] Fouassier J.P., Borer A. Sensitization ofα-aminoketone photoinitiators: a time-resolved CIDNP and laser spectroscopy investigation. Macromolecules, 1992, 25, 4182-4193
    [21] Ye G.D., Zhou H., Yang J.W., et al. Photoinitiating behavior of macrophotoinitiator containing aminoalkylphenone group: FFFFree-radical polymerization. J. Therm. Anal. Calorim., 2006, 85, 771-777
    [22] Suyama K., Shirai M. Photobase generators: Recent progress and application trend in polymer systems. Prog. Polym. Sci., 2009, 34, 194-209
    [23] Colley C.S., Grills D.C., Besley N.A., et al. Probing the Reactivity of Photoinitiators for Free Radical Polymerization: Time-Resolved Infrared Spectroscopic Study of Benzoyl Radicals. J. Am. Chem. Soc., 2002, 124, 14952-14958
    [24] Decker C., Elzaouk B. Laser-induced crosslinking polymerization of acrylic photoresists. J. Appl. Polym. Sci., 1997, 65, 833-844
    [25] Rutsch W., Dietliker K., Leppard D., et al. Recent developments in photoinitiators. Prog. Org. Coat., 1996, 27, 227-239
    [26]吕九琢,徐亚贤,袁光,等.紫外线固化涂料用光敏引发剂的研究进展.石油化工高等学校学报. 2001, 14(2), 44-49
    [27] Castelvetro V., Molesti M., Rolla P. UV-curing of acrylic formulations by means of polymeric photoinitiators with the active 2,6-dimethylbenzoylphosphine oxide moieties pendant from a tetramethylene side chain. Macromol. Chem. Phys., 2002, 203, 1486-1496
    [38] Ghosh P., Pal G. Photopolymerization of methyl methacrylate using morpholine–bromine charge transfer complex as the photoinitiator. Eur. Polym. J., 1998, 34, 677-682
    [29] Allen N.S., Corrale T., Edge M., et al. Photochemistry and photopolymerization activities of novel phenylthiobenzophenone and diphenylthiophene photoinitiators. Polymer, 1998, 39, 903-909
    [30] Green A., Pinar M.B., Peinado F.C.C., et al. Photochemistry and photopolymerization activities of novel alkylthiobenzophenone photoinitiators. Eur. Polym. J., 1998, 34, 303-308
    [31] Paczkowski J., Kucybala Z., Scigalski F., et al. Sulfur-containing initiators and coinitiators of free radical polymerization. J. Photochem. Photobiol. A: Chem., 2003, 159, 115-125
    [32] Allonas X., Grotzinger C., Fouassier J.P. Network formation in polyurethanes based on triisocyanate and diethanolamine derivatives. Eur. Polym. J., 2001, 37, 897-906
    [33] Wang H.Y., Wei J., Jiang X.S., et al. Novel polymerizable sulfur-containing benzophenones as free radical photoinitiators for photopolymerization. Macromol. Chem. Phys., 2006, 207, 1080-1086
    [34] Dietliker K., Jung T., Benkhoff J., et al. New Developments in Photoinitiators, Macromol. Symp.,2004, 217, 77-97
    [35] Mondai J.A., Ghosh H.N., Ghanty T.K., et al. Twisting dynamics in the excited singlet state of Michler’s ketone. J. Phys. Chem., 2006, 110, 3432-3446
    [36] Schuster D.I., Goldstein M.D., Bane P. Photochemisrty of unsaturated ketones in solution. 51. Photophysical and photochemical studies of Michler’s ketone. J. Am. Chem. Soc., 1977, 99, 187-193
    [37] Singh A.K., Palit D.K., Mittal J.P. Excited state dynamics of Michler’s ketone: a laser flash photolysis study. Res. Chem. Inter., 2001, 27, 125-136
    [38] Veldhoven E.V., Zhang H., Retting W., et al. Femtosecond fluorescence studies of two-dimensional dynamics in photoexcited Michler’s ketones. Chem. Phys. Letter, 2002, 363, 189-197
    [39] Lemercier G., Martineau C., Mulatier J.C., et al. Analogs of Michler’s ketone for two-photon absorption initiation of polymerization in the near infrared: synthesis and photophysical properties. New J. Chem., 2006, 30, 1606-1613
    [40] Zheng M., Yang M.J., Liu S.Z., et al. Photopolymerization of propargyl acetate with Michler’s ketones as photoinitiator. Chinese J. Polym. Sci., 1995, 13(1), 74-77
    [41] Wan T., Wang X.Q., Yuan Y., et al. Preparation of a kaolinite-poly(acrylic acid acrylamide) water superabsorbent by photopolymerization. J. Appl. Polym. Sci., 2006, 102, 2875-2881
    [42] Ghosh P., Biswas S., Niyogi U. Photopolymerization of methyl methacrylate using a combination of Michler’s ketone and benzoyl peroxide as photoinitiator. Eur. Polym. J., 1989, 25, 1285-1289
    [43] Linden L.A. Applied photochemistry in dental science. Proc. Indian Acad. Sci., 1993, 105, 405-419
    [44]马小玲,万涛,姚杰,卢快,臧天顺.紫外光聚合法合成有机硅改性苯丙微乳液.石油化工, 2008, 37, 291-295
    [45] Wan T., Wang X.Q., Yi Y., et al. Preparation of bentointe-poly[(acrylic acid)-acrylamide] water superabsorbent by photopolymerization. Polym. Int., 2006, 55, 1413-1419
    [46] Hsu S.L.C., Fan M.H. Synthesis and characterization of novel negative-working aqueous base developable photosensitive polyimide precursors. Polymer, 2004, 45, 1101-1109
    [47] Onen A., Yagci Y. Synthesis of a novel addition-fragmentation agent based on Michler’s ketone and its use as photo-initiator for cationic polymerization. Polymer, 2001, 42, 6681-6685
    [48] Reilly J., Laurence W. Water soluble Michler’s ketone analogs in combined photoinitiator composition and polymerizable composition [US]. Patent 4576975, 1986-03-18
    [49] Xiao P., Wang Y., Dai M.Z., et al. Synthesis and photopolymerization kinetics of benzophenone piperazine one-component initiator. Polym. Adv. Technol., 2008, 19, 409-413
    [50] Wang H.Y., Wei J., Jiang X.S., et al. Effect of N-phenylmaleimide on a novel chemically bonded polymerizable photoinitiator comprising the structure of planar N-phenylmaleimide and benzophenone for photopolymerization. Polym. Int., 2007, 56, 200-207
    [51] Yang J.W., Zeng Z.H., Chen Y.L. Amine-linked thioxanthone as water-compatible photoinitiators. J. Polym. Sci. A: Polym. Chem., 1998, 36, 2563-2570
    [52] Cokbaglan L., Arsu N., Yagci Y., et al. 2-Mercaptothioxanthone as a novel photoinitiator for freeradical polymerization. Macromolecules, 2003, 36, 2649-2653
    [53] Aydin M., Arsu N., Yagci Y. One-component bimolecular photoinitiating systems, thioxanthone acetic acid derivatives as photoinitiators for free radical polymerization. Macromol. rapid commun., 2003, 24, 718-723
    [54] Aydin M., Arsu N., Yagci Y. et al. Mechanistic study of photoinitiated free radical polymerization using thioxanthone thioacetic acid as one-component type II photoinitiator. Macromolecules, 2005, 38, 4133-4138
    [55] Allen N.S., Pullen G., Shah M., et al. Photochemistry and photoinitiator properties of 2-substituted anthraquinones: 2. Photopolymerization and flash photolysis. Polymer, 1995, 36, 24, 4665-4674
    [56] Pullen G.K., Allen N.S., Edge M., et al. Anthraquinone Photoinitiators for Free Radical Polymerization: Structure Dependence on Photopolymerization activity. Eur. Polym. J., 1996, 32, 943-955
    [57] Jakubiak J., Allonas X., Fouassier J.P., et al. Camphorquinone-amines photoinitiating systems for the initiation of free radical polymerization. Polymer, 2003, 44, 5219-5226
    [58] Ullrich G., Herzog D., Liska R., et al. Photoinitiators with functional groups. VII. covalently bonded camphorquinone-amines. J. Polym. Sci. A: Polym. Chem., 2004, 42, 4948-4963
    [59] Angiolini L., Caretti D., Rossetti S., et al. Radical polymeric photoinitiators bearing side-chain camphorquinone moieties linked to the main chain through a flexible spacer. J. Polym. Sci. A: Polym. Chem., 2005, 43, 5879-5888
    [60] Kawamma K.C., Abe Y. Light-sensitive composition. US Pat 4837128, 1989-06-06.
    [61] Williams J.L.R., Specht D.P., Farid S. Ketocoumarins as photosensitizers and photoinitiators. Polym. Eng. Sci., 1983, 23, 1022-1024
    [62] Fouassier J.P., Wu S.K. Visible laser lights in photoinduced polymerization. VI. Thioxanthone and ketocoumarins as photoinitiators. J. Appl. Polym. Sci., 1992, 44, 1779-1786
    [63] Allonas X., Fouassier J.P., Kaji M., et al. Two and three component photoinitiating systems based on coumarin derivatives. Polymer, 2001, 42, 7627-7634
    [64] Nguyen C.K., Hoyle C.E., Ye T., et al. Three component ketocoumarin, amine, maleimide photoinitiator I. Eur. Polym. J., 2007, 43, 172-177
    [65] Senyurt A.F., Hoyle C.E. Three component ketocoumarin, amine, maleimide photoinitiator. Eur. Polym. J., 2006, 42, 3133-3139
    [66] Bonham J.A., Rossman M.A., Halomethyl-1,3,5-triazines containing a sensitizer moiety. US Pat 5187045, 1993-02-16
    [67] Wang H.Y., Wei J., Jiang X.S., et al. Highly efficient, polymerizable, sulfur-containing photoinitiator comprising a structure of planar N-phenylmaleimide and benzophenone for photopolymerization. J. Polym. Sci. A: Polym. Chem., 2006, 44, 3738-3750
    [68] Wang H.Y., Wei J., Jiang X.S., et al. Novel chemical-bonded polymerizable sulfur-containing photoinitiators comprising the structure of planar N-phenylmaleimide and benzophenone for photopolymerizaiton. Polymer, 2006, 47, 4967-4975
    [69] Wang H.Y., Shi Y.T., Wei J., et al. ESR and kinetic study of a novel polymerizable photoinitiator comprising the structure of N-phenylmaleimide and benzophenone for photopolymerization, J. Appl. Polym. Sci., 2006, 101, 2347-2354
    [70] Catalina F., Peinado C., Blanco M., et al. Synthesis, photochemical and photoinitiation activity of water soluble copolymers with pendent benzil chromophores. Polymer, 1998, 39, 4399-4408
    [71] Oliver E.W., Evans D.H. Determination of formal potentials and anion radical lifetimes for hexaarylbiimidazole derivatives. J. Electroanal. Chem., 1997, 432, 145-151
    [72] Takahiro H. Hexaaryl biimidazole compounds as photoinitiators, photosensitive composition and method of manufacturing patterns using the compounds . US Pat 6524770, 2003-02-25
    [73]史永涛.用于丙烯酸酯类光聚合的六芳基而咪唑光引发剂的研究.博士学位论文.上海交通大学, 2006
    [74] Shi Y.T., Yin J., Kaji M., et al. Synthesis of a novel hexaarylbiimidazole with ether groups and characterization of its photoinitiation properties for acrylate derivate. Polym. Eng. Sci., 2006, 46, 474-479
    [75] Shi Y.T., Yin J., Kaji M., et al. Photopolymerization of acrylate derivatives initiated by hexaarylbiimidazole with ether groups. Polym. Int., 2006, 55, 330-339
    [76] Shi Y.T., Wang B.H., Jiang X.S., et al. Photoinitiation properties of heterocyclic hexaarylbiimidazoles with high UV-Vis absorbance. J. Appl. Polym. Sci., 2007, 105, 2027-2035
    [77] Lalevée J., Blanchard N., El-Roz M., et al. New photoinitiators based on the silyl radical chemistry: polymerization ability, ESR spin trapping, and laser flash photolysis investigation. Macromolecules, 2008, 41, 4180-4186
    [78] Lalevée J., El-Roz M., Allonas X., et al. Free-radical-promoted cationic photopolymerization under visible light in aerated media: new and highly efficient silane-containing initiating systems. J. Polym. Sci.Part A: Polym. Chem., 2008, 46, 2008-2014
    [79] Lalevée J., Allonas X., Fouassier J.P. Tris(trimethylsilyl)silane (TTMSS)-Derived Radical Reactivity toward Alkenes: A Combined Quantum Mechanical and Laser Flash Photolysis Study. J. Org. Chem., 2007, 72, 6434–6439
    [80] Lalevée J., Blanchard N., Chany A.C., et al. Silyl radical chemistry and conventional photoinitiators: A route for the design of efficient systems. Macromolecules, 2009, 42, 6031-6037
    [81] Muller U., Utterodt A., Morke W., et al. New insights about diazonium salts as cationic photoinitiators. J. Photochem Potobiol. A: Chem., 2001, 140, 53-66
    [82] Selvaraju C., Sivakumar A., Ramamurthy P. Excited state reactions of acridinedione dyes with onium salts: mechanistic details. J. Photochem Potobiol. A: Chem., 2001, 138, 213-226
    [83] Crivello J.V., Jang M. Anthracene electron-transfer photosensitizers for onium salt induced cationic photopolymerizations. J. Photochem Potobiol. A: Chem., 2003, 159, 173-188
    [84] Everett J.P., Schmidt D.L., Rose G.D. Synthesis of some onium salts and their comparison as cationic photoinitiators in an epoxy resist. Polymer, 1997, 38, 1719-1723
    [85] Charles K. Generation of bases and anions from inorganic and organometallic photoinitiators. Coord. Chem. Rev., 2001, 211, 353-368
    [86]洪啸呤,冯汉保.涂料化学.北京:科学出版社.
    [87] Moon S.Y., Chung C.M. Two-component photoresists containing thermally crosslinkable photoacid generators. Polym. Eng. Sci., 2000, 40, 1248-1255
    [88] Narasimhan B., Wanat S.F., Rahman M.D. Novel strategies for novolak resin fractionation: consequences for advanced photoresist applications. Polym. Eng. Sci., 2000, 40, 2251-2261
    [89] Esumi K., Matsumoto T., Seto Y., et al. Preparation of gold-, gold/silver-denderimer nanocomposites in the presence of benzoin in ethanol by UV irradiation. J. Colloid Inteface Sci., 2005, 284, 199-203
    [90] Kim D., Stansbury J.W. Kinetic pathway investigations of three-component photoinitiator systems for visible-light activated free radical polymerizations. J. Polym. Sci. A: Polym. Chem., 2009, 47, 887-898
    [91] Rivarola C.R., Biasutti M.A., Barbero C.A. A visible light photoinitiator system to produce acrylamide based amart hydrogels : Ru(bpy)3+2 as photopolymerization initiator and molecular probe of hydrogel microenvironments. Polymer, 2009, 50, 3145-3152
    [92] Janina K., Jerzy P. Three-cationic carbocyanine dyes as sensitizers in very efficient photoinitiating systems for multifunctional monomer polymerization. J. Polym. Sci. A: Polym. Chem., 2009, 47, 4636-4654
    [93] Ullrich G., Ganster B., Salz U., et al. Photoinitiators with functional groups. IX. Hydrophilic bisacylphosphine oxides for acidic aqueous formulations. J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 1686-1700
    [94] Wang Y.L., Jiang X.S., Yin J. A water-soluble supramolecular-structured photoinitiator between methylatedβ-cyclodextrin and 2,2-dimethoxy-2-phenylace tophenone. J. Appl. Polym. Sci., 2007, 105, 3817-3823
    [95]李蕾,程源,王平.水溶性光引发剂及研究进展.化工生产与技术, 2006, 13(6), 40-45
    [96] Zhang J., Xiao P., Shi S.Q., et al. Preparation and characterization of a water soluble methylatedβ-cyclodextrin/camphorquinone complex. Polym. Adv. Technol., 2009, 20, 723-728
    [97] Wang L, Liu X., Li. Y. Synthesis and evaluation of a surface-active photoinitiator for microemulsion polymerization. Macromolecules, 1998, 31, 3446-3453
    [98] Tasdelen M.A., Karagoz B., Bicak N., et al. Phenacylpyridinium oxalate as a novel water-soluble photoinitiator for free radical polymerization. Polym. Bull., 2008, 59, 759-766
    [99] Wang Y.L., Jiang X.S., Yin J. A water-soluble supramolecular-structured photoinitiator between methylatedβ-cyclodextrin and 2,2-dimethoxy-2-phenylacetophenone. J. Appl. Polym. Sci., 2007, 105, 3817-3823
    [100] Li S.J., Wu F.P., Li M.Z., et al. Host/guest complex of Me-β-CD/2,2-dimethoxy-2-phenyl acetophenone for initiation of aqueous photopolymerization: Kinetics and mechanism. Polymer, 2005, 46, 11934-11939
    [101] Liska R. Photoinitiators with functional groups. V. New water-soluble photoinitiators containing carbohydrate residues and copolymerizable derivatives thereof. J. Polym. Sci. Part A: Polym. Chem., 2002, 40, 1504-1518
    [102] Jiang X.S., Yin J. Water-soluble polymeric thioxanthone photoinitiator containing glucamine as coinitiator. Macromol. Chem. Phys., 2008, 209, 1593-1600
    [103] Jiang X.S., Luo J., Yin J. A novel amphipathic polymeric thioxanthone photoinitiator. Polymer, 2009, 50, 37-41
    [104]杨保平,崔锦峰,陈建敏,周惠娣.自由基型高分子光引发剂的研究进展.涂料工业, 2005, 35(1), 36-42
    [105]梁驻军,杨洪梅,顾欣宇,闫庆金.大分子光引发剂研究进展.精细与专用化学品, 2003, 19, 15-18
    [106]李晓红,马家举.大分子光引发剂的研究进展.山西化工, 2007, 27(6), 22-26
    [107] Jiang X.S., Yin J. Polymeric photoinitiator containing in-chain thioxanthone and coinitiator amines. Macromol. Rapid Commun., 2004, 25, 748-752
    [108] Jiang X.S., Yin J. Copolymeric photoinitiator containing in-chain thioxanthone and coinitiator amine for photopolymerization. J. Appl. Polym. Sci., 2004, 94, 2395-2400
    [109] Jiang X.S., Yin J. Study of macrophotoinitiator containing in-chain thioxanthone and coinitiator amines. Polymer, 2004, 45, 5057-5063
    [110] Jiang X.S., Xu H.J., Yin J. Polymeric amine bearing side-chain thioxanthone as a novel photoinitiator for photopolymerization. Polymer, 2004, 45, 133-140
    [111] Jiang X.S., Yin J. Dendritic macrophotoinitiator containing thioxanthone and coinitiator amine, Macromolecules, 2004, 7850-7853
    [112] Wang Y.L., Jiang X.S., Yin J. Novel polymeric photoinitiators comprising of side-chain benzophenone and coinitiator amine: photochemical and photopolymerization behaviors. Eur. Polym. J., 2009, 45, 437-447
    [113] Wang H.Y., Wei J., Jiang X.S., et al. Novel polymerizable N-aromatic maleimides as free radical initiators for photopolymerization. Polym. Int., 2007, 55, 930-937
    [114] Jiang X.S., Li H., Wang H.Y., et al. A novel negative photoinitiator-free photosensitive polyimide. Polymer, 2006, 47, 2942-2945
    [115] Wei J., Wang H.Y., Jiang X.S., et al. A highly efficient polyurethane-type polymeric photoinitiator contining in-chain benzophenone and coinitiator amine for photopolymerizaiton of PU prepolymers. Macromol. Chem. Phys., 2006, 207, 2321–2328
    [116] Wei J., Wang H.Y., Jiang X.S., et al. Effect on photopolymerization of the structure of amine coinitiators contained in novel polymeric benzophenone photoinitiators. Macromol. Chem. Phys., 2006, 207, 1752-1763
    [117] Wei J., Wang H.Y., Jiang X.S., et al. Study of novel PU-polymeric photoinitiators comprising of side-chain benzophenone and coinitiator amine: Effect of macromolecular structure on photopolymerization. Macromol. Chem. Phys., 2007, 208, 287-294
    [118] Wei J., Wang H.Y., Jiang X.S., et al. Novel photosensitive thio-containing polyurethane as macrophotoinitiator comprising side-chain benzophenone and coinitiator amine for photopolymerization. Macromolecules, 2007, 40, 2344-2351
    [119]聂俊,肖浦.一种高分子型二苯甲酮光引发剂及其制备方法。中国专利,200610019353. 1[P]. 2007-01-03
    [120] Allen N.S., Pullen G., Shah M., et al. Photochemistry and photoinitiator properties of 2-substituted anthraquinones 1: Absorption and luminescence characteristies. Photochem Photobiol A: Chem, 1995, 91, 73-79
    [121] Allen N.S., Pullen G., Edge M., et al. Photochemistry and photopolymerization activity of monomers and copolymers of 2-substituted amidoanthraquinone and acryloxyanthraquinone with methyl methacrylate. Photochem Photobiol A: Chem. 1997, 109, 71-75
    [122] Peinado C., Alonso A., Catalina F., et al. Using linear and branched polysilanes for the photoinitiated polymerization of a commercial siliconeacrylate resin.: A real time FTIR study. J. Photochem. Photobiol. A, 2001, 141, 85-91
    [123] Lozano A.E., Alonso A., Catalina F., et al. A theoretical study of the addition of silyl radicals to olefinic monomers. Macromol. Theory Simul., 1999, 8, 93-101
    [124] Alonso A., Peinado C., Lozano A.E. Rate constants of the reaction of silyl macroradicals generated by chain cleavage of poly(dihexyl silylene) with olefinic monomers. J. Macromol. Sci., Part A: Pure Appl. Chem., 1999, 36, 605-619.
    [125] Siegel R.W. Nanostructured materials–mind over matter-. Nanostruct. Mater., 1993, 3, 1-18
    [126] Johnston R.L. Atomic & Molecular Clusters. Taylor & Francis, London, 2002.
    [127] Kreibig U., Vollmer M. Optial Properties of Metal Clusters. Springer, Berlin, 1995.
    [128] El-Sayed M.A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 2001, 34, 257-264
    [129] Daniel M.C., Astruc D. Gold nanoparticles: assemble, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis and nanotechnology. Chem. Rev., 2004, 104, 293-346
    [130] Kamat P.V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B, 2002, 106, 7729-7744
    [131] Liz-Marzan L.M. Nanometals: formation and color. Mater. Today, 2004, 7, 26-31
    [132] Marsh D.H., Rance G.A., Whitby R.J., et al. Assembly, structure and electrical conductance of carbon nanotube-gold nanoparticle 2D heterostructures. J. Mater. Chem., 2008, 18, 2249-2256
    [133] Kumar S., Gandhi K.S., Kumar R. Modeling of formation of gold nanoparticles by citrate method. Ind. Eng. Chem. Res., 2007, 46: 3128-3136
    [134] Zhu T., Vasilev K., Kreiter M., et al. Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosucinic acid. Langmuir, 2003, 19, 9518-9525
    [135] Brust M., Walker M., Bethell D., et al. Synthesis of thiol-derivatised gold naoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun., 1994, 801-802
    [136] Templeton A.C., Wuelfing W.P., Murray R.W. Monolayer-protected cluster molecules. Acc. Chem. Res., 2000, 33, 27-36
    [137] Brust M., Fink J., Betheel D., et al. Synthesis and reactions of functionalized gold nanoparticles. J. Chem. Soc., Chem. Commun., 1995, 1655-1656
    [138] Yee C.K., Jordan R., Ulman A., et al. Novel one-phase synthesis of thiol-functionalized gold, palladium, and iridium nanoparticles using superhydride. Langmuir, 1999, 15, 3486-3491
    [139] Yu Y.Y., Chang S.S., Lee C.L., et al. Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem B, 1997, 20, 1622-1624
    [140]冯兴丽.电化学合成金纳米粒子的机理研究和贵金属纳米粒子的相转移技术.山东大学硕士学位论文, 2007
    [141] Huang C.J., Chiu P.H., Wang Y.H., et al. Electrochemically controlling the size of gold nanoparticles. J. Electrochem. Soc., 2006, 153, 193-198
    [142] Pai A., Shah S., Devi S. Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater. Chem. Phys., 2009, 530-532
    [143] Hauck T.S., Ghazani A.A., Chan W.C.W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small, 2008, 4, 153-159
    [144] Niidome T., Yamagata M., Okamoto Y., et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Controlled Release, 2006, 114, 343-347
    [145] Itoh H., Tahara A., Naka K., et al. Photochemical assembly of gold nanoparticles utilizing the photodimerization of thymine. Langmuir, 2004, 20, 1972-1976
    [146] Chen H.J., Jia J.B., Dong S.J. Photochemical formation of silver and gold nanostructures at the air-water interface and their electrocatalytic properties. Nanotechnology, 2007, 18, 2424-2431
    [147] Ravaine S., Fanucci G.E., Seip C.T., et al. Photochemical generation of gold nanoparticles in Langmuir-Blodgett films. Langmuir, 1998, 14, 708-713
    [148] Watanabe K., Menzel D., Nilius N., et al. Photochemistry on metal nanoparticles. Chem. Rev., 2006, 106, 4301-4320
    [149] Dong S.A., Zhou S.P. Photochemical synthesis of colloidal gold nanoparticles. Mater. Sci. Eng. B, 2007, 140, 153-159
    [150] Metraux G.S., Jin R.C., Mirkin C.A.. Photoinduced phase separation of gold in two-component nanoparticles. Small, 2006, 2, 1335-1339
    [151] Henglein A.. Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem. Mater., 1998, 10, 444-450
    [152] Eustis S., El-Sayed M.A. Molecular mechanism of the photochemical generation of gold nanoparticles in ethylene glycol: support for the disproportionation mechanism. J.Phys. Chem. B, 2006, 110, 14014-14019
    [153] Chen C.J., Osgood R.M. Direct observation of local-field-enhanced surface photochemical reactions. Phys. Rev. Lett., 1983, 50, 1705-1708
    [154] Wang L., Wei G., Guo C., et al. Photochemical synthesis and self-assembly of gold nanoparticles.Colloids Surf. A, 2008, 312, 148-153
    [155] Eustis S., Hsu H.Y., El-Sayed M.A. Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism. J. Phys. Chem. B, 2005, 109, 4811-4815
    [156] Han M.Y., Quek C.H. Photochemical synthesisi in formamide and room-temperature coulomb staircase behavior of size-controlled gold nanoparticles. Langmuir, 2000, 16, 362-367
    [157] Scaiano J.C., Aliaga C., Maguire S., et al. Magnetic field control of photoinduced silver nanoparticle formation. J. Phys. Chem. B, 2006, 110, 12856-12859
    [158] McGilvray K.L., Decan M.T., Wang D., et al. Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J. Am. Chem. Soc., 2006, 128, 15980-15981
    [159] Marin M.L., McGilvray K.L., Scaiano J.C. Photochemical strategies for the synthesis of gold nanoparticles from Au(III) and Au(I) using photoinduced free radical generation. J. Am. Chem. Soc., 2008, 130, 16572-16584
    [160] Housni A., Ahmed M., Liu S.Y., et al. Monodisperse protein stabilized gold nanoparticles via a simple photochemical process. J. Phys. Chem. C, 2008, 112, 12282-12290
    [161] Gonzalez C.M., Liu Y., Scaiano J.C. Photochemical strategies for the facile synthesis of gold-silver alloy and core-shell bimetallic nanoparticles. J. Phys. Chem., 2009, 113, 11861-11867
    [162] Yagci Y., Sangermano M., Rizza G. A visible light photochemical route to silver-epoxy nanocomposites by simultaneous polymerization-reduction approach. Polymer, 2008, 49, 5195-5198
    [163] Sangermano M., Yagci Y., Rizza G. In situ synthesis of silver-epoxy nanocomposites by photoinduced electron transfer and cationic polymerization processes. Macromolecules, 2007, 40, 8827-8829
    [164] Kell A.J., Alizadeh A., Yang L., et al. Monolayer-protected gold nanoparticle coalescence induced by photogenerated radicals. Langmuir, 2005, 21, 9741-9746
    [165] Radziuk D., Shchukin D., Mohwald H. Sonochemical design of engineered gold-silver nanoparticles. J Phys. Chem. C, 2008, 112, 2462-2468
    [166] Okitsu K., Mizukoshi Y., Yamamoto T.A., et al. Sonochemical synthesis of gold nanoparticles on chitosan. Mater. Lett., 2007, 61 (16): 3429-3431
    [167] Choi S.H., Zhang Y.P., Gopalan A., et al. Preparation of catalytically efficient precious metallic colloids byγ-irradiation and characterization. Colloids Surf. A, 2005, 256, 165-170
    [168] Kang T., Hong S., Choi I., et al. Reversible pH-driven conformational switching of tethered superoxide dismutase with gold nanoparticle enhanced surface Plasmon resonance spectroscopy. J. Am. Chem. Soc., 2006, 128, 12870–12878
    [169] Zheng P.W., Jiang X.W., Zhang X., et al. Formation of gold@polymer core shell particles and gold particle clusters on a template of thermoresponsive and pH-responsive coordination triblock copolymer. Langmuir, 2006, 22, 9393–9396.
    [170] Zhang T., Zheng Z.H., Ding X.B., et al. Smart surface of gold nanoparticles fabricated by combination of RAFT and click chemistry. Macromol. Rapid Commun., 2008, 29, 1716–1720
    [171] Liu J.W., Lu Y. Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity. Adv. Mater., 2006, 18, 1667–1671
    [172] Bhattacharjee R.R., Chakraborty M., Mandal T.K. Reversible association of thermoresponsive gold nanoparticles: polyelectrolyte effect on the lower critical solution temperature of poly(vinyl methyl ether). J. Phys. Chem. B, 2006, 110, 6768-6775
    [173] Voronov A., Kohut A., Peukert W. Synthesis of amphipilic silver nanoparticles in nanoreactors from invertible polyester. Langmuir, 2007, 23, 360-363
    [174] Zubarev E.R., Xu J., Sayyad A., et al. Amphiphilic gold nanoparticles with V-shaped arms. J. Am. Chem. Soc., 2006, 128, 4958-4959
    [175] Wang B.B., Li B., Zhao B., et al. Amphiphilic Janus gold nanoparticles via combining“solid-state grafting-to”and“grafting-from”methods. J. Am. Chem. Soc., 2008, 130, 11594-11595
    [176] Shang L., Wang Y.Z., Jiang J.G., et al. pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir, 2007, 23, 2714-2721
    [177] Mirkin C.A., Letsinger R.L., Mucic R.C., et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382, 607-610
    [178] Wuelfing W.P., Gross S.M., Miles D.T., et al. Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte. J. Am. Chem. Soc., 1998, 120, 12696-12697
    [179] Shan J., Nuopponen M., Jiang H., et al. Amphiphilic gold nanoparticles grafted with poly(N-isopropylacrylamide) and polystyrene. Macromolecules, 2005, 38, 2918-2926
    [180] Kim D.J., Kang S.M., Kong B., et al. Formation of thermoresponsive gold nanoparticle/PNIPAAm hybrids by surface-initiated, atom transfer radical polymerization in aqueous media. Macromol. Chem. Phys., 2005, 206, 1941-1946
    [181] Zhou Y.M., Jiang K.Q., Chen Y.Q., et al. Gold nanoparticle-incorporated core and shell crosslinked micelles fabricated from thermoresponsive block copolymer of N-isopropylacrylamide and a novel primary-amine containing monomer. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 4518-4531
    [182] Tang T., Krysmann M.J., Hamley L.W. In situ formation of gold nanoparticles with a thermoresponsive block copolymer corona. Colloids Surf., A, 2008, 317, 764-767
    [183] Karg M., Pastoriza-Santos I., Perez-Juste J., et al. Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small, 2007, 3, 1222-1229
    [184] Raula J., Shan J., Nuopponen M., et al. Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization. Langmuir, 2003, 19, 3499-3504
    [185] Li D.X., He Q., Cui Y., et al. Thermosensitive copolymer networks modify gold nanoparticles for nanocomposite entrapment. Chem.–Eur. J., 2007, 13, 2224–2229
    [186] Singh N., Lyon L.A. Au nanoparticle templated synthesis of pNIPAm nanogels. Chem. Mater., 2007, 19, 719-726
    [187] Wang Y., Wei G.W., Wen F., et al. Synthesis of gold nanoparticles stabilized with poly(N-isopropylacrylamide)-co-poly(4-vinyl pyridine) colloid and their application in responsive catalysis. J. Mol. Catal. A: Chem., 2008, 280, 1-6
    [188] Kuang M., Wang D.Y., Mohwald H. Fabrication of thermoresponsive plasmonic microspheres with long-term stability from hydrogel spheres. Adv. Funct. Mater., 2005, 15, 1611-1616
    [189] Zhang T., Wu Y.P., Pan X.M., et al. An approach for the surface functionalized gold nanoparticles with pH-responsive polymer by combination of RAFT and click chemistry. Eur. Polym. J., 2009, 45, 1625-1633
    [190] Li D.X., He Q., Cui Y., et al. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine). Chem. Mater., 2007, 19, 412-417
    [191] Li D.X., He Q., Yang Y., et al. Two-stage pH response of poly(4-vinylpyridine) grafted gold nanoparticles. Macromolecules, 2008, 41, 7254-7256
    [192] Smith A.E., Xu X.W., Abell T.U., et al. Tuning nanostructure borphology and gold nanoparticle“locking”of multi-responsive amphiphilic diblock copolymers. Macromolecules, 2009, 42, 2958-2964
    [193] Nuopponen M., Tenhu H. Gold nanoparticles protected with pH and temperature- sensitive diblock copolymers. Langmuir, 2007, 23, 5352-5357
    [194] Bronstein L.M., Gourkova S.N., Sidorov A.Y., et al. Interaction of metal compounds with‘double-hydrophilic’block copolymers in aqueous medium and metal colloid formation. Inorg. Chim. Acta., 1998, 280, 348-354
    [195] Ishii T., Otsuka H., Kataoka K., et al. Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by -biotinyl-PEG-block-[poly(2-(N,N-dimethylamino)ethyl methacrylate)]. Langmuir, 2004, 20, 561-564
    [196] Oishi M., Hayashi H., Uno T., et al. One-pot synthesis of pH-responsive PEGylated nanogels containing gold nanoparticles by autoreduction of chloroaurate ions within nanoreactors. Macromol. Chem. Phys., 2007, 208, 1176-1182
    [197] Raumer M.V., Suppan P., Haselbach E. Photoreduction of triplet benzophenone by amines: role of their structure. Chem. Phys. Lett., 1996, 252, 263-266
    [198] Nayak B.R., Mathias L.J. A novel photoinimer for the polymerization of acrylates and methacrylates. J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 5661-5670
    [199] Yu Q., Nauman S., Santerre J.P., et al. UV photopolymerization behavior of dimethacrylate oligomers with camphorquinone/amine initiator system. J. Appl. Polym. Sci., 2001, 82, 1107-1117
    [200] Lecamp L., Youssef B., Bunel C. Photoinitiated polymerization of a dimethacrylate oligomer: 2. Kinetic studies. Polymer, 1998, 40, 1403-1409
    [201] Temel G., Arsu N., Yagci Y. Polymeric side chain thioxanthone photoinitiator for free radical polymerization. Polym. Bull., 2006, 57, 51-56
    [202] Cook W.D. Thermal aspects of the kinetics of dimethacrylate photopolymerization. Polymer, 1992, 33, 2152-2161
    [203] Cook W.D. Photopolymerization kinetics of dimethacrylates using the camphorquinone/amineinitiator system. Polymer, 1992, 33, 600-609
    [204] Bhasikuttan A.C., Singh A.K., Palit D.K., et al. Laser flash photolysis studies on the monohydroxy derivatives of benzophenone. J. Phys. Chem. A, 1998, 102, 3470-3480
    [205] Spange S., Vilsmeier E., Adolph S., et al. Unusual solvatochromism of the 4,4'-bis(dimethylamino)benzophenone (Michler's ketone)-tetracyanoethene electron donor-acceptor complex. J. Phys. Org. Chem., 1999, 12, 547–556
    [206] Roffey C. Photogeneration of Reactive Species for UV-curing, Wiley, Sussex, UK, 1997
    [207] Herlihy S.L. Multi-functional thioxanthone photoinitiators [GB]. Patent WO03033492, 2003-04-24
    [208] Williams E.C., Ran R., Pittman C.U. Photoamorceurs de thioxanthone liquids [US]. Patent WO9842697, 1998-10-01
    [209] Gacal B., Akat H., Balta D.K., et al. Synthesis and characterization of polymeric thioxanthone photoinitatiors via double click reactions. Macromolecules, 2008, 41, 2401-2405
    [210] Corrales T., Catalina F., Peinado C., et al. Photochemical study and photoinitiation activity of macroinitiators based on thioxanthone. Polymer, 2002, 43, 4591-4597
    [211]李贺敏,金华,朱红军.聚乙二醇缩水甘油醚的合成.精细化工中间体, 2005, 35(3): 45-47
    [212] Mori H., Lanzendorfer M.G., Muller A.H.E. Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxysilane containing hydroxy groups. Macromolecules, 2004, 37, 5228-5238
    [213] Mori H., Muller A.H.E., Klee J.E. Intelligent colloidal hybrids via reversible pH-Induced complexation of polyelectrolyte and silica nanoparticles. J. Am. Chem. Soc., 2003, 125, 3712-3713
    [214] Schumacher M., Ruppel M., Yuan J.Y., et al. Smart organic-inorganic nanohybrids based on amphiphilic block copolymer micelles and functional silsesquioxane nanoparticles. Langmuir, 2009, 25, 3407-3417
    [215] Parrish B., Emrick T. Aliphatic polyesters with pendant cyclopentene groups: controlled synthesis and conversion to polyester-graft-PEG copolymers. Macromolecules, 2004, 37, 5863-5865
    [216] Sharghi H., Beni A.S., Khalifeh R. Synthesis of some novel thioxanthone-fused azacrown ethers, and their use as new catalysts in the efficient, mild, and regioselective conversion of epoxides toβ-hydroxy thiocyanates with ammonium thiocyanate. Helv. Chim. Acta, 2007, 90, 1373-1385
    [217] Lutz J.F. Polymerization of oligo(ethylene glycol) (meth)acrylates : toward new generations of smart biocompatible materials. J. Polym. Sci. Part A : Polym. Chem., 2008, 46, 3459-3470
    [218] Fournier D., Hoogenboom R., Thijs H.M.L., et al. Tunable pH- and temperature-sensitive copolymer libraries by reversible addition-fragmentation chain transfer copolymerization of methacrylates. Macromolecues, 2007, 40, 915-920
    [219] Su Y.L., Wang J., Liu H.Z. FTIR spectroscopic investigation of effects of temperature and concentration on PEO?PPO?PEO block copolymer properties in aqueous solutions. Macromolecules, 2002, 35, 6426?6431
    [220] Su Y.L., Wang J., Liu H.Z. Formation of a hydrophobic microenvironment in aqueousPEO-PPO-PEO block copolymer solutions investigated by fourier transform infrared spectroscopy. J. Phys. Chem. B, 2002, 106, 11823?11828
    [221] Chen S., Guo C., Liu H.Z., et al. Thermodynamic analysis of micellization in PEO?PPO?PEO block copolymer solutions from the hydrogen bonding point of view. Mol. Simul., 2006, 32(5): 409?418
    [222] Ren Y.R., Jiang X.S., Yin J. Poly(ether tert-amine): a novel family of multiresponsive polymer. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 1292-1297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700