用户名: 密码: 验证码:
深部典型回采巷道围岩变形破坏特征及控制机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿开采深度的增加,回采巷道围岩变形量大、支护体变形失效多、巷道断面收缩严重等矿压显现强烈,有关深部回采巷道围岩变形破坏机理及支护技术的研究越来越成为确保工作面安全高效生产的重要课题。以淮南矿区13-1煤回采巷道赋存及工程条件为背景,在调研深部典型回采巷道支护及围岩变形破坏现状的基础上,开展深部典型回采巷道围岩变形破坏特征及控制机理研究,采用地应力实测、相似模拟、数值模拟、理论分析和现场实测等综合研究方法对深部典型回采巷道围岩变形破坏特征及控制机理进行了系统的研究,主要研究内容和结果如下:
     1)分析深部回采巷道地质工程条件,开展围岩力学参数、地应力参数测试及掘进回采期间矿压显现规律研究,获得深部典型回采巷道的围岩力学及矿压显现特征。
     2)在深部煤炭开采与环境保护国家重点实验室开展了大尺寸、真三轴应力下煤巷围岩变形破坏特征的模型试验研究。获得了浅埋静水压力、深埋静水压力、初掘采动应力(k=1.5倍900m埋深静水压力,后同)及回采动压(k=2~4.5)等不同应力环境下矩形、直墙拱形共四种尺寸的煤巷围岩应变、变形及破坏特征,结果表明:随加载压力增加,煤巷围岩经历了小应变、浅部拉伸深部压缩的分区应变到高应力下拉应变区范围不断扩展的变化过程,获得了拉压分区应变产生的条件:顶底板、载荷集度介于900m静水压力~k≤2之间、直墙拱形更易出现,研究还发现高应力下拉应变扩展范围超锚索支护长度。监测底鼓随加载压力变化表明:高应力是巷道底鼓量大、底鼓速度加快的主要原因,断面形状对底臌也有一定的影响,直墙拱形较矩形小。断裂丝监测结果显示:巷道破坏先后顺序为:巷帮首先发生破裂,进而传递到底角,最终巷道顶板产生明显离层;试验还得到大断面预留大变形是深部典型回采巷道围岩稳定性控制的有效途径之一。
     3)数值模拟研究深部典型回采巷道围岩稳定性影响因素(采高、面长、埋深、锚索支护体长度)结果表明:(1)回采巷道初掘期间,应变软化是围岩稳定性的主要影响因素。软化模量为Q=2.0GPa时深部典型回采巷道的围岩变形和矿压实测结果更为吻合,且软化后巷道围岩塑性区内出现较多范围的拉破坏区,与模型试验结果一致。(2)工作面回采期间,采用单因素法分析了四因素对面前方回采巷道两帮老顶支承压力峰值的影响,获得了相应的峰值应力变化规律。(3)采用极差分析法确定埋深是影响回采巷道围岩稳定性的主要影响因素,拟合得到了四因素随埋深变化关系式,相关性很好,结果表明:帮部围岩变形呈线性增加,顶底移近呈指数增长,随埋深增加,帮部增速较顶底快,埋深900m时,各移近量相当,加强帮部支护和控制顶板离层应并驾齐驱。
     4)初掘期间,基于M-C、D-P准则,按应变软化、碎胀扩容条件分析了深部软化区、残余区范围的影响因素,研究发现同梯度增加的软化模量、支护力(△Q=1GPa、△Pi=0.15MPa)对巷道围岩软化区、残余区范围的影响,初始段较后续段大,基于D-P准则简化计算得到走向高应力是软化区、残余区范围增长的不利影响因素之一,代入典型条件煤巷参数计算分析了软化区、残余区范围,发现残余区范围超过一般帮锚杆支护长度(小于等于2.5m),需加强帮部支护。
     5)回采期间,基于损伤理论、材料力学理论,构建了坚硬老顶“梁”模型研究了工作面侧、实体煤侧巷道深部围岩弹塑性交界处顶板压力大小对老顶挠度的影响。研究发现随老顶垂直压力增加,挠度增加很快;同时其最大挠度位置随压力大小及距巷表距离发生改变。依据最大拉应力破坏准则,分析了坚硬顶板的拉破断特征,计算得到高应力下巷道顶板基本处于拉破坏失稳阶段。
     6)为防止拉破坏失稳,提出帮角顶板加强支护减少顶板下沉位移,依据超静定梁的求解步骤,采用解除约束的办法分析老顶岩梁受力变形,求出作用于顶板的支护力及其挠度曲线,得出了巷道上方顶板反弹的曲线,理论上解释了顶板压缩变形及压缩区存在的可能。
     7)在总结模型试验、数值计算、理论分析等深部典型回采巷道围岩变形破坏特征的基础上,提出“开掘方向优化”、“强帮护两侧顶”、“断面形状优化”、“分区分级加强”等控制原则,并优化同类条件破坏变形严重的回采巷道支护方案,方案实施后,深部典型回采巷道围岩变形量明显减小,工程效果良好。
With the increment depth of coal mining, the strata behavior severely, such as the characteristics of large deformation, lots of support deformation and failures, severe contraction(shrink) gateway section and so on during excavation and mining period. It was became a more and more important subject that studing on supporting mechanism of deep gateways and the supporting technology to ensure coal mine safety and efficient production, Based on the condition of13-1coal seam typical gateways and reseaching on the situation of the support and deformation of gateways'surrounding rock of Huainan deep mine, the destruction characteristic and control mechanism of surrounding rock were studied, Complex research methods were adopted such as in-situ measurement, similarity simulation,numerical simulation and theoretical analysis for mastering the destruction characteristic and control mechanism of surrounding rock on typical gateways under deep depth. The main research contents and results are as follows:
     1) Based on the surrounding rock conditions of deep typical gateways, by carring out the test of mechanics and in-situ stress parameters and studing strata behavior,its character was obtained.
     2) The three axials model test on deformation characteristic of typical gateway surrounding has been done in the State Key Laboratory Deep Coal Mine&Environment Protection.the strain,deformation and destruction character of four sections gateways with rectangle and straight wall semicircle arch type was obtained on condtions of different load pressure such as shallow and deep hydrostatic pressure, excavtion stress(k=1.5times to the depth of the900m hydrostatic pressure, the same after) and mining stress(k=2~4.5).The result shows:the strain on surrounding rock of gateway was changed from small,shallow tension and deep compression strain partition and tension strain area was gradually englarged under high stress.the conditions of stress partition were:roof and floor,load pressure between900m hydrostatic pressure and k≤2and the semicircle arch type gateways is more prone to this phenomenon,the tension strain area were out of the anchor support during high stress.Floor heave monitoring shows that which was main caustion for floor heave deformation speed was high stress,a certain impact for the section shape different such as the semicircle arch type was smaller than rectangle, wire breakage shows the order of destruction was:sidewall was destroyed firstly and then damage transferred to floor angle,at last obvious separation was produced on roof. Reserved large deformation by larger section was acquired by the test.
     3) The result by numerical simulation on factors of stability on deep typical gateways surrounding rock shows:during excavation, strain softening was the main factors on stable of surrounding rock.The deformation of surrounding rock was more similar to site while Q=2.0(strain softening parameters) and constantly large tension plastic zone area appeared, Consistent with the model test results.(2) during mining period, the four factors'affection of stress on two sidewall's main roof were studied by single factor analysis and the laws were agained.(3) The depth was main factor to surrounding rock deformation by the variance methods.The expression of relation between four factors and depth were fitted,good correlation,it shows:the sidewall dformation increasd lineral with depth, roof and floor deformation exponential growth.The former enlarge faster than the later, the depth was going to900m,each section was simlar,therefore enhanced sidewall support was as same as roof support.
     4) Based on M-C, D-P criterion, strain soften, broken expansion, factors on soften area and expansion area range were studied,it shows:the influence to the range of soften and residual area,initial enlarge taken more actions than later enlarge by the same gradient(△Q=1GPa、△Pi=0.15MPa).Based on D-P criterion,the strike high stress was one of the negative factors for two area.Take typical conditions parameters into the expression,the residual area was out of common anchor support length(≤2.5m), sidewall support needs to be enhanced.
     5) Based on damaged theory and materials mechanics theory,"beam" model was made to analysis hard roof stability during mining period by deflection changed. The deflection increased quickly while the vertical stress on roof increased, and the distance of maximum deflection changed. Based on the maximum tensile stress criterion,tensile fracture characteristics of hard main roof were studied and largely belongs to tensile failure stage.
     6) In order to prevent tensile failure, the roof on sidewall angle were enhanced to reduce deflection. On the basis of solving steps of hyperstatic beams,deformation of main roof were studied by constraint relief measures,the rebound curve of main roof were acquired, the compression area could be expained by this theory.
     7) Based on stuy of defomation and destruction on surrounding rock deep typical gateways,"optimization of excavation direction","strengthen sidewall support and lateral roof suppot","optimization on section of gateways","different support stress during different area" were mentioned and support shceme was optimizated under similar conditions for severely defomation and destruction, after implemented, the deformation of surrounding rock gateways were reduced obviously, good effect has been acquired.
引文
[1]谢和平,周宏伟,薛东杰,等.煤炭深部开采与极限开采深度的研究与思考[J].煤炭学报,2012,04:535-542.
    [2]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社,2005.
    [3]李德忠,夏新川,韩家根,等.深部矿井开采技术[M].徐州:中国矿业大学出版社,2005.
    [4]邹喜正.关于煤矿巷道矿压显现的极限深度[J].矿山压力与顶板管理,1993,02:9-14+80.
    [5]钱七虎.深部岩体工程响应的特征科学现象及“深部”的界定[J].东华理工学院学报,2004,01:1-5.
    [6]勾攀峰,汪成兵,韦四江.基于突变理论的深井巷道临界深度[J].岩石力学与工程学报,2004,24:4137-4141.
    [7]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,16:2854-2858.
    [8]史元伟,张声涛,尹世魁,等.国内外煤矿深部开采岩层控制技术[M]北京:煤炭工业出版社,2009.
    [9]何满潮,钱七虎,等.深部岩体力学基础[M].北京:科学出版社,2010:1-3.
    [10]付国彬,姜志方.深井巷道矿山压力控制[M]徐州:中国矿业大学出版社,1996.
    [11]张丽峰.中国能源供求预测模型及发展对策研究[D].首都经济贸易大学,2006.
    [12]孟令茹,钱永坤,黄福臣.我国工业部门煤炭消耗的定量分析[J].煤炭经济研究,2007,09:41-44.
    [13]中煤协:2020年全国煤炭需求总量将在48亿吨左右[EB/OL] http://energy.people.com.cn/n/2014/0116/c71661-24141092.html'2014-01-16.
    [14]崔民选.中国能源发展报告[M].北京:社会科学文献出版社,2012..
    [15]IEA. World energy outlook OECD-IEA[C]. Paris:International Energy Agency.2006.
    [16]谢和平.深部高应力下的资源开采——现状、基础科学问题与展望[A].科学前沿与未来(第六集)[C].香山科学会议主编,北京:中国环境科学出版社,2002..
    [17]何满潮.工程岩石力学的现状及其展望[A].第八次全国岩石力学与工程学术大会论文集[C].中国岩石力学与工程学会主编,北京:科学出版社,2004.
    [18]晏玉书.我国煤矿软岩巷道围岩控制技术现状及发展趋势[A].何满潮主编:中国 煤矿软岩巷道支护理论与实践[C].北京:中国矿业大学出版社,1996.1-17.
    [19]中国煤炭工业协会.煤矿千米深井开采技术现状[A].中国煤炭工业协会.全国煤矿千米深井开采技术[c].中国煤炭工业协会:2013,7.
    [20]中国煤炭报.全国煤矿千米深井开采技术座谈会召开[EB/OL] http://www.ccoalnews.com/101773/101786/220774.html'2013-07-26.
    [21]袁亮.深井巷道围岩控制理论及淮南矿区工程实践[M].北京:煤炭工业出版社,2006.
    [22]袁亮.淮南矿区煤巷稳定性分类及工程对策[J].岩石力学与工程学报,2004,S2:4790-4794.
    [23]张农,王成,高明仕,等.淮南矿区深部煤巷支护难度分级及控制对策[J].岩石力学与工程学报,2009,12:2421-2428.
    [24]袁亮,薛俊华,刘泉声,等.煤矿深部岩巷围岩控制理论与支护技术[J].煤炭学报,2011,04:535-543.
    [25]霍亮.深埋巷道围岩变形特征与控制措施研究[D].安徽理工大学,2012.
    [26]刘钦甫,刘衡秋,彭苏萍,等.淮南煤田13-1煤层顶板地质特征与稳定性研究[J].煤炭学报,2004,03:318-322.
    [27]田梅青,黄兴.千米深井软岩巷道挤压变形力学特性及控制研究[J].煤炭工程,2012,11:72-74.
    [28]康红普,姜铁明,高富强.预应力在锚杆支护中的作用[J].煤炭学报,2007,07:680-685.
    [29]康红普,王金华,林健.煤矿巷道锚杆支护应用实例分析[J].岩石力学与工程学报,2010,04:649-664.
    [30]陈登红,华心祝.淮南矿区深部回采巷道矿压显现特征及支护技术[J].中国科技论文在线精品论文,2013.
    [31]李大伟.深井与软岩巷道二次支护理论及控制技术[M].北京:煤炭工业出版社,2008.
    [32]于学馥,郑颖人,刘怀恒.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [33]DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis of limit desig.n[J]. Quat. Appl. Math.,1956.
    [34]Jaeger J C, Cook N G W. Foundamentals of rock mechanics[M]. London:Chapman and Hall,1978.
    [35]高红,郑颖人,冯夏庭.岩土材料能量屈服准则研究[J].岩石力学与工程学报, 2007,12:2437-2443.
    [36]郑颖人,沈珠江,龚晓南,著.广义塑性力学——岩土塑性力学原理[M].北京:建筑工业出版社,2002.
    [37]Torres C C, Fairhurst C. The elasto-plastic response of Underground excavations in rock masses that satisfy the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences,1999.
    [38]OBERT L, DUVALL W I. Rock mechanics and the desig.n of structure in rock[M]. New York:John Wiley & Sons,1967.
    [39]AEGER J C, COOK N G W. Fundamentals of rock mechanics[M]. London:Chapman and Hall,1978.
    [40]徐干成,白洪才,郑颖人,等.地下工程支护结构[M].北京:中国水利水电出版社,2002.
    [41]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [42]HKastner. Osterreich Bauzeitischrift, Vol.10(11).1947.
    [43]Dipl.Ing. Hanawener Huwe usw. Gebirgsschlagverhuetung-Beurfeilung der Sicherheit erfordert Sachver.stand Deutgland:Verlag Glueckauf,2006.
    [44]Martin junker et al. Gebirgsbeherrschung von Floezstrecken Deutaland:Verlag Glueckauf,2006
    [45]Dr. Ing.Stanig.taw Prugek (Polen). Verformungen einer einseitig. und zweiseitig. genotzten Abbaubegleit-strecke im Bruchbau Deutsland:Verlag Glueekauf,2004.
    [46]Dipl.Ing. Wolfram Zillig.en. Erweitung einenechteckanker stecke zur gtrehStandartstrecke dorchdenEinsatz der strebeig.enen Gewinungscjnheit. Deutsland: Verlag Glueckauf,2004.
    [47]C.Mark,Niosh,Pittsburgh,PA,Multiple Seam Longwall Mining in The USA,-Lessons for Ground Control.27th International Conference on Ground Control in Mining,USA,2007.
    [48]孙钧.深层隧硐围岩的(粘)弹塑性有限元分析[J].同济大学学报,1981.
    [49]陈宗基.膨胀岩与隧硐稳定[J].岩石力学与工程学报,No.1,1983,01:1-10.
    [50]王仁梁北援孙苟英.巷道大变形的粘性流体有限元分析[J].力学学报,1985,02:97-105.
    [51]朱维申,王平.节理岩体的等效连续模型与工程应用[J].岩土工程学报,1992,02:1-11.
    [52]贺永年,韩立军,邵鹏,等.深部巷道稳定的若干岩石力学问题[J].中国矿业大学学报,2006,03:288-295.
    [53]蒋斌松,张强,贺永年,等.深部圆形巷道破裂围岩的弹塑性分析[J].岩石力学与工程学报,2007,05:982-986.
    [54]袁文伯,陈进.软化岩层中巷道的塑性区与破碎区分析[J].煤炭学报,1986,03:77-86.
    [55]潘阳,赵光明,孟祥瑞.非均匀应力场下巷道围岩弹塑性分析[J].煤炭学报,2011,S1:53-57.
    [56]张小波,赵光明,孟祥瑞.考虑峰后应变软化与扩容的圆形巷道围岩弹塑性D-P准则解[J].采矿与安全工程学报,2013,06:903-910+916.
    [57]李铀,袁亮,刘冠学,等.深部开采圆形巷道围岩破损区与支护压力的确定[J].岩土力学,2014,01:226-231.
    [58]卢兴利.深部巷道破裂岩体块系介质模型及工程应用研究[D].中国科学院研究生院(武汉岩土力学研究所),2010.
    [59]卢兴利,刘泉声,苏培芳.考虑扩容碎胀特性的岩石本构模型研究与验证[J].岩石力学与工程学报,2013,09:1886-1893.
    [60]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报,1994,01:21-32.
    [61]靖洪文,付国彬,董方庭.深井巷道围岩松动圈预分类研究[J].中国矿业大学学报,1996,02:47-51.
    [62]于学馥.轴变论[M].北京:冶金工业出版社,1960.
    [63]樊克恭.巷道围岩弱结构损伤破坏效应与非均称控制机理研究[D].山东科技大学,2003.
    [64]樊克恭,蒋金泉.弱结构巷道围岩变形破坏与非均称控制机理[J].中国矿业大学学报,2007,01:54-59.
    [65]郜进海.薄层状巨厚复合顶板回采巷道锚杆锚索支护理论及应用研究[D].太原理工大学,2005.
    [66]陆士良,付国彬,汤雷.采动巷道岩体变形与锚杆锚固力变化规律[J].中国矿业大学学报,1999,03:1-3.
    [67]张农,王晓卿,阚甲广,等.巷道围岩挤压位移模型及位移量化分析方法[J].中国矿业大学学报,2013,06:899-904.
    [68]韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987.
    [69]Lucio David Pareja. Deep underground hard-rock mining. Issues, strategies, and alternatives doctor dissertation,2000.
    [70]N.A.尤尔钦科.用能量理论计算锚杆支架参数.煤矿掘进技术译文集——描杆支护[M].北京:煤炭工业出版社,1976.
    [71]Vahid Reza Hajiabdolmajid. Mobilization of strength in brittle failure of rock, doctor dissertation.2001.
    [72]Gale, W.J.Strata. Control utilising rock reinforcement techniques and stress control methods, in Australian coal mines [J].Mining Engineer (London),1991.
    [73]方祖烈.拉压域特征及主次承载区的维护理论,世纪之交软岩工程技术现状与展望[M].北京:煤炭工业出版社,1999.
    [74]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,03:2-7.
    [75]I. A. Yurchenko. The energy approach to calculations on bolt supports[J]. Mechanical Machine Components,1970.
    [76]何满潮,钱七虎.深部岩体力学基础[M].徐州:中国矿业大学出版社,1996.
    [77]何满潮.软岩工程力学的理论与实践[M].徐州:中国矿业大学出版社,1996.
    [78]孙晓明,何满潮,杨晓杰.深部软岩巷道锚网索耦合支护非线性设计方法研究[J].岩土力学,2006,07:1061-1065.
    [79]勾攀峰,辛亚军,张和,等.深井巷道顶板锚固体破坏特征及稳定性分析[J].中国矿业大学学报,2012,05:712-718.
    [80]李桂臣.软弱夹层顶板巷道围岩稳定与安全控制研究[D].中国矿业大学,2008.
    [81]康红普,王金华.煤巷锚杆支护成套技术[M].煤炭工业出版社,2007.
    [82]刘正和.回采巷道顶板切缝减小护巷煤柱宽度的技术基础研究[D].太原理工大学,2012.
    [83]严红,何富连,徐腾飞.深并大断面煤巷双锚索桁架控制系统的研究与实践[J].岩石力学与工程学报,2012,11:2248-2257.
    [84]张华磊,王连国,秦昊.回采巷道片帮机制及控制技术研究[J].岩土力学,2012,05:1462-1466.
    [85]王卫军,冯涛.加固两帮控制深井巷道底鼓的机理研究[J].岩石力学与工程学报,2005,05:808-811.
    [86]王卫军,侯朝炯.支承压力与回采巷道底鼓关系分析[J].矿山压力与顶板管理,2002,02:66-67+70-110.
    [87]王卫军,侯朝炯.回采巷道煤柱与底板稳定性分析[J].岩土力学,2003,01:75-78.
    [88]朱德仁,王金华,康红普,等.巷道煤帮稳定性相似材料模拟试验研究[J].煤炭学报,1998,01:44-49.
    [89]勾攀峰,张振普,韦四江.不同水平应力作用下巷道围岩破坏特征的物理模拟试验[J].煤炭学报,2009,10:1328-1332.
    [90]薛亚东,康天合,靳钟铭.巷道围岩裂隙的分形演化规律试验研究[J].太原理工大学学报,2000,06:662-664.
    [91]高明中,段绪华.锚固体梁的失稳破坏形式分析[J].建井技术,1999,04:22-24+27.
    [92]顾金才,顾雷雨,陈安敏,等.深部开挖洞室围岩分层断裂破坏机制模型试验研究[J].岩石力学与工程学报,2008,03:433-438.
    [93]张强勇,陈旭光,林波,等.深部巷道围岩分区破裂三维地质力学模型试验研究[J].岩石力学与工程学报,2009,09:1757-1766.
    [94]陈坤福.深部巷道围岩破裂演化过程及其控制机理研究与应用[D].中国矿业大学,2009.
    [95]陈旭光.高地应力条件下深部巷道围岩分区破裂形成机制和锚固特性研究[D].山东大学,2011.
    [96]康红普.回采巷道锚杆支护影响因素的FLAC分析[J].岩石力学与工程学报,1999,05:534-537.
    [97]李桂臣,张农,王成,等.高地应力巷道断面形状优化数值模拟研究[J].中国矿业大学学报,2010,05:652-658.
    [98]韦四江,勾攀峰,王满想.深井大断面动压回采巷道锚网支护技术研究[J].地下空间与工程学报,2011,06:1216-1221.
    [99]周志利,柏建彪,肖同强,等.大断面煤巷变形破坏规律及控制技术[J].煤炭学报,2011,04:556-561.
    [100]韦四江,孙闯.深部回采巷道支护参数的正交数值模拟[J].河南理工大学学报(自然科学版),2013,03:270-276.
    [101]罗超文,李海波,刘亚群.煤矿深部岩体地应力特征及开挖扰动后围岩塑性区变化规律[J].岩石力学与工程学报,2011,08:1613-1618.
    [102]倪兴华.地应力研究与应用[M].北京煤炭工业出版社,2006.
    [103]陈坤福,靖洪文,韩立军.基于实测地应力的巷道围岩分类[J].采矿与安全工程学报,2007,03:349-352.
    [104]戴永浩,陈卫忠,刘泉声,等.深部高地应力巷道断面优化研究[J].岩石力学与工 程学报,2004,S2:4960-4965.
    [105]马念杰,刘少伟,李英明.基于地应力的煤巷锚杆支护设计与软件研究[J].中国煤炭,2004,02:27-29+4.
    [106]蔡美峰,彭华,乔兰,等.万福煤矿地应力场分布规律及其与地质构造的关系[J].煤炭学报,2-8,11:1248-1252.
    [107]高峰.地应力分布规律及其对巷道围岩稳定性影响研究[D].中国矿业大学,2009.
    [108]李方全.地应力测量[J].岩石力学与工程学报,1985,01:95-111.
    [109]郑西贵,花锦波,张农等.原孔位多次应力解除地应力测试方法与实践[J],采矿与安全工程学报,2013,05:723-727+734.
    [110]孙玉福.水平应力对巷道围岩稳定性的影响[J].煤炭学报,2010,06:891-895.
    [111]刘泉声,刘恺德.淮南矿区深部地应力场特征研究[J].岩土力学,2012,07:2089-2096.
    [112]章冲,薛俊华,张向阳,等.地质力学模型试验中围岩断裂缝测试技术研究与应用[J].岩石力学与工程学报,2013,07:1331-1336.
    [113]张帆,盛谦,朱泽奇.三峡花岗岩峰后力学特性及应变软化模型研究[J].岩石力学与工程学报,2008,S1:2651-2655.
    [114]勾攀峰.巷道锚杆支护提高围岩强度和稳定性的研究[D].中国矿业大学,1998
    [115]张强永,李术才等.岩体数值分析方法与地质力学模型试验原理及工程应用[M].中国水利水电出版社,北京,2005.
    [116]李俊斌.淮南矿区回采工作面长度的探讨[J].煤炭技术,2003,10:40-42.
    [117]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [118]王连国,侯化强,孙建,等.高应力回采巷道围岩破裂机理及危险性评价[J].中国矿业大学学报,2012,03:361-365+396.
    [119]辛亚军,勾攀峰,炱东风,等.非软顶底板煤巷锚杆支护及围岩松动规律[J].采矿与安全工程学报,2012,02:203-208.
    [120]孙金山,卢文波.非轴对称荷载下圆形隧洞围岩弹塑性分析解析解[J].岩土力学,2007,S1:327-332.
    [121]袁文伯,陈进.软化岩层中巷道的塑性区与破碎区分析[J].煤炭学报,1986,03:77-86.
    [122]侯公羽,牛晓松.基于Levy-Mises本构关系及D-P屈服准则的轴对称圆巷理想弹 塑性解[J].岩土力学,2009,06:1555-1562.
    [123]蒋金泉.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2007.
    [124]侯朝炯,马念杰.煤层巷道两帮煤体应力和极限平衡区的探讨[J].煤炭学报,1989,04:21-29.
    [125]唐春安.岩石破裂过程中的突变[M].北京:煤炭工业出版社,1991.
    [126]Lemairre J. How to use damage mechanics[M]. Nuclear Engineering and Desig.n, 1984.
    [127]Chudnovsky A. L. in Workshop on a Continuum Mech. Approach to Damage and Life Prediction. ed. By KremplE.,Bultler S. and Park K.Y.,1980
    [128]Krajcinovic D, Silva M A G.Statidtical aspects of the continuous damage theory.Int.J.solids structures,1982.
    [129]Krajcinovic D., Distributed damage theory of beams in pure bending. J. Applied Mechanics,1979.
    [130]董方庭.最大水平应力支护的理论和应用问题[J].锚杆支护,2000,03:1-5.
    [131]王卫军,侯朝炯,冯涛.动压巷道底鼓[M].北京:煤炭工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700