用户名: 密码: 验证码:
公路隧道单井送排风式竖井施工监控量测及数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内修建的公路隧道通风竖井数量不多,在设计和施工上还没有成熟的经验。本文以规模位居世界第一、长度位居世界第二的秦岭终南山公路隧道2号通风竖井为依托,开展公路隧道单井送排风式竖井结构力学状态研究,主要成果有:
     首先,查阅国内外相关文献资料,对已建成的公路隧道通风竖井进行调研,同时参照矿业部门建井的成熟经验,总结和归纳了我国公路隧道通风竖井设计和施工方面的相关技术。
     其次,在秦岭终南山公路隧道2号竖井施工过程中进行了现场监控量测,得到了竖井的中隔板和井壁二次衬砌结构的受力情况:井壁结构较中隔板结构受力均匀,井壁二次衬砌内钢筋压应力值大致在40MPa以内,拉应力值大致在20MPa以内,混凝土压应力值大致在2MPa以内,拉应力值大致在1MPa以内;中隔板内钢筋压应力值大致在50MPa以内,拉应力值在30MPa以内,混凝土压应力值大致在2MPa以内,拉应力值在1MPa以内。当施工面距测试段约80米时竖井井壁二次衬砌内部受力逐渐稳定,当施工面距测试段约130米时竖井中隔板内部受力逐渐稳定,不再受上部施工影响。
     最后,用有限元法分析在自重应力和温度应力条件下的竖井结构的受力情况,结果表明,竖井结构主要受压应力作用,井壁结构压应力值大致在10MPa以内,拉应力值大致在1.5MPa以内,中隔板结构压应力值大致在5MPa以内,拉应力值大致在2MPa以内,中隔板与井壁连接处容易产生应力集中现象。中隔板受温度应力影响明显,送风道面主要受拉应力,排风道面主要受压应力,井壁受温度影响较小。
     经对比,现场监控量测结果与有限元计算结果基本一致。在施工及后期运营阶段,2号竖井结构受力较小,安全储备大。表明设计是合理的,施工方案是可行的,结构是安全的。
At present, the number of highway tunnel ventilation shaft construction are very few, and the experience of designs and construction is not yet mature. In this paper, based on ventilation shaft No. 2 in Qinling Zhongnanshan highway tunnel which is the largest and the second longest tunnel in the world, we carry out the research of highway tunnel ventilation shaft structural mechanics-type state ,the main results are as follows:
     At first, we investigate the documents at home and abroad, and carry out the research of the highway tunnel ventilation shaft that have been completed , and take into account mining industry department's mature experience in building wells, and sum up the related technologies of China's highway tunnel ventilation shaft in the designs and construction.
     Secondly, we carried out monitoring measurement in the 2nd shaft of Qinling Zhongnanshan highway tunnel to get the force of the second lining structure and the middle mode structure. The second lining structure has evener stress than the middle mode structure. The compressed stress and the tensile stress of steel bar in the second lining structure are generally less than 40MPa and 20MPa, the compressed stress and the tensile stress of concrete in the second lining structure are generally less than 2MPa and 1MPa . The compressed stress and the tensile stress and of steel bar in the middle mode structure are generally less than 50MPa and 30MPa, the compressed stress and the tensile stress of concrete in the middle mode structure are generally less than 2MPa and 1MPa . When the construction plane is 80m from the second lining structure of the monitoring section , is 130m from the middle mode structure of the monitoring section, the second lining structure and the middle mode structure can not be affected, and the stress situation is stable .
     Finally, we see the force in the condition of the self-stress and thermal stress by finite element analysis method, the results show that the stress of the shaft structure is mainly compressive stress, the compressed stress and the tensile stress of the Shaft wall structure are generally less than 10MPa and 1.5MPa, the compressed stress and the tensile stress of the middle mode structure are generally less than 5MPa and 2MPa . Stress concentration usually exist in the attachment point between of the shaft wall and the middle mode . The influence ofthe middle mode is obvious by thermal stress . The surface of enters and exhaust the gas are affected by tensile stress and compressed stress, the influence caused by thermal stress is smaller in the shaft wall.
     By contrast, monitoring measurement results and the finite element method calculated results are basically the same. During the construction and post-operational phase,the force of ventilation shaft on the 2nd is smaller, and the safety reserve is enough. The result show that the design is reasonable, and construction program is feasible, and the structure is safe.
引文
[1]中华人民共和国交通部.公路隧道通风照明设计规范(JTJ/026.1—1999)[S].北京:人民交通出版社,1999
    [2]中华人民和国交通部.公路隧道设计规范(JTJ D70—2004)[S].北京:人民交通出版社,2004
    [3]齐小勇.秦岭终南山公路隧道通风竖井施工技术研究[D].西安:长安大学,2008
    [4]董方庭,姚玉煌等.井巷设计与施工[M].徐州:中国矿业大学出版社,1994
    [5]王承新,李明雨,袁斌.深覆土层圆形竖井结构有限元分析[J].建筑施工,2008(8)
    [6]铁道第一勘察设计院.西安—安康高速公路秦岭终南山特长隧道运营通风竖井工程竖井及风塔设计[Z].2005
    [7]王毅才.隧道工程[M].北京.人民交通出版社,2006:337-353
    [8]龙志阳.立井井筒支护新技术.立井井筒施工技术—中国凿井技术50年论文集[M].北京:煤炭工业出版社,1999
    [9]赵秋林,魏军政.秦岭终南山特长公路隧道竖井设计及施工方法探讨[J].公路,2005(8)
    [10]陈建勋.秦岭终南山公路隧道通风竖井设计与施工关键技术的研究.陕西省交通厅科技项目可行性研究报告,2006
    [11]李晓红.隧道新奥法及其量测技术[M].北京:科学技术出版社,2002:2-18
    [12]白蔑,喻海良.通用有限元分析ANSYS8.0基础教程[M].北京:清华大学出版社,2005
    [13]吕恒林,崔广心.钢筋混凝土单层井壁破裂的数值模拟研究[J].地下空间,2001,(5)
    [14]张世芳,王小林.深厚表土矿井建设技术[M].北京:煤炭工业出版社,2001:4-7
    [15]郑颖人.地下工程锚喷支护设计指南[M].北京:中国铁道出版社,1988:1-15
    [16]王建华.深埋隧道软弱围岩与初期支护相互作用研究[D].重庆:重庆大学,2005:1-5
    [17]向晓辉.初喷支护加固洞周岩体的作用机理研究[D].北京:中国科学院研究生院,2006:5-10
    [18]M.REHBOCK-SANDER,R.MEIER.Sedrun access and ventilation shaft for the new Saint Gotthard railway base tunnel[J].AITES-ITA 2000Word Tunnel Congress,2000
    [19]沈季良等.建井工程手册(第二版)[M].北京:煤炭工业出版社,1986
    [20]杨善胜.软弱围岩隧道合理支护型式研究[D].西安:长安大学,2008:1-15
    [21]姜久纯.黄土隧道施工监控量测及锚杆的支护效果研究[D].西安:长安大学,2007:55-57
    [22]王宁,雷军.芨芨沟竖井掘砌施工及井筒结构的稳定分析[J].铁道建筑,2006(8)
    [23]郭小红,王梦恕.隧道支护结构中锚杆的功效分析[J].岩土力学.2007,28(10):2234-2239
    [24]吕恒林,崔广心.钢筋混凝土单层井壁破裂的数值模拟研究[J].地下空间,2001,(5)
    [25]五十项经验编委会.井巷施工五十项经验[M].北京:煤炭工业出版社,1997
    [26]周二平,高顺卿.特大直径竖井滑模设计与施工[J].水利水电施工,2001(1)
    [27]中华人民共和国行业标准.公路土工试验规程(JTJ E40-2007)[S].北京:人民交通出版社,2007:10-20
    [28]张祉道.竖井设计与施工及在隧道通风中的应用[J].隧道与地下工程系列讲座(六),2003
    [29]高存成.大台竖井快速施工技术[J].铁道标准设计,2005(9)
    [30]雷军.芨芨沟竖井掘进施工技术[J].铁道标准设计,2005(9)
    [31]王宁,雷军.芨芨沟竖井掘砌施工及井筒结构的稳定分析[J].铁道建筑,2006(8)
    [32]陈璋,陈光明,程久胜,胡益华.龙潭隧道斜井、竖井设计[J].公路,2005(8)
    [33]交通部第一勘察设计院.小河至安康高速公路设计文件[Z].2006
    [34]张涛,郭小红,周国光。雪峰山隧道通风竖井设计[J].中南公路工程,2006,V31(1)
    [35]张开顺,余斌,申家喜.夹活岩特长公路隧道竖井设计及施工方法探讨[J].公路,2006(5)
    [36]中交隧道集团.秦岭终南山特长公路隧道2号竖井施工组织
    [37]许伟,官峰.谈基建矿井的技术管理[J].煤炭企业管理,2005(10)
    [38]邓维国,孔令刚.立井井筒快速施工的组织管理及技术经济效益分析—中国凿井技术50年论文集[M].北京:煤炭工业出版社,1999
    [39]周维垣.高等岩石力学[M].北京:水利水电出版社,1990
    [40]高成雷,朱永全.考虑空间效应的大型竖井结构力学行为分析[J].西部探矿工程, 2005(3)
    [41]Desai C S,Christian J T.Numerical methods in geo-technical engineering [M].New York:McGraw-Hill Book company,1977
    [42]谢贻权,林钟祥.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1988
    [43]博弈创作室编著.ANSYS 7.0基础教程与实例祥解[M].北京:中国水利水电出版社,2003
    [44]张朝晖编著.ANSYS 8.0热分析教程与实例解析[M].北京:中国铁道出版社,2005
    [45]李黎明.ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005
    [46]吴波,刘维宁,高波等.地铁分岔隧道施工性态的三维数值模拟与分析[J].岩石力学与工程学报,2004,23(18)
    [47]邵德胜,周传美.竖井井壁破坏分析和最大负摩擦力的确定[J].金属矿山,1996(7):25-26
    [48]Charles Fairhurst,Juemin Pei.A Comparison Between the Distinct Element Method and the Finite Element Method for Analysis of the Stability of an Excavation in Jointed Rock,Tunnelling and Underground Space Technology,1990
    [49]姚武,郑新.配合比参数对混凝土热膨胀系数的影响[J].同济大学学报,2007(1)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700