用户名: 密码: 验证码:
40mg与10mg阿托伐他汀对缺血性心肌病患者外周血循环内皮微颗粒、内皮祖细胞、心肌能量消耗及左室功能影响的比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     他汀作为抗动脉粥样硬化药物,能明显降低冠心病患者心血管事件的发生率,已广泛应用于冠心病患者的二级预防,虽然他汀在心力衰竭患者中应用的安全性已被CORONA and UNIVERSE研究所证实,但目前他汀对缺血性心肌病患者(ischemic cardiomyopathy, ICM)心功能的影响尚无定论,小样本、前瞻性临床研究显示,阿托伐他汀及辛伐他汀可改善CHF患者预后。然而,随后一些研究显示,瑞舒伐他汀不能改善缺血性及非缺血性、收缩性HF患者的预后。目前针对他汀治疗HF患者研究结论不一致,部分原因可能是各研究他汀使用种类、剂量、及研究人群不一致。并且,一些临床试验虽然显示他汀可能改善CHF患者左室功能,但其机制目前仍不完全清楚。
     目前研究显示,外周血循环EPCs(circulating EPCs, cEPCs)不仅与多种心血管危险因素及血管功能相关,并且能预测冠脉疾病患者未来心血管事件及动脉粥样硬化疾病的进展。近来研究显示,晚期心衰患者cEPCs水平降低,缺血性心肌病Ischemic cardiomyopathy, ICM)患者存在骨髓及外周血祖细胞选择性功能受损。内皮细胞在受到炎症刺激时能释放微颗粒,外周血循环内皮微颗粒(circulating endothelial-derived microparticles, cEMP)水平升高能见于包括冠脉疾病在内的多种病理状态,能反映内皮功能受损及不良的临床预后,稳定细胞膜降低EPMs释放被认为是血管疾病治疗的一个靶点。
     基质金属蛋白酶(matrix metalloproteinase, MMP)存在于心肌细胞,能降解所有的心脏基质成分,是心肌基质重塑的推动力量[1-3]。MMP-9能降解凝胶,在左室重塑过程中,MMP-9的重要作用已被多个研究所证实[4-7],MMP-9的缺失能减少心肌梗塞后心室扩大的程度,因此MMP-9可能是心肌梗塞后可供选择的治疗靶点[6,14-16]。
     左室肥厚、重塑将导致心肌能量代谢失衡。目前认为,标准心脏多普勒超声检测的心肌能量消耗(Myocardial energy expenditure, MEE)是衡量心肌生物能量消耗的有效指标,并且MEE与充血性心力衰竭患者,特别是与LVEF降低的患者心功能密切相关,既往研究证实,在CHF患者,降低的LVEF与升高的MEE独立相关。
     目前很少有研究探讨他汀的降脂外作用及不同剂量他汀对cEPCs、cEPMs、MEE及左室功能的影响,因此本研究拟在ICM患者中比较40mg与10mg阿托伐他汀对cEPCs、cEPMs、MEE及左室功能的影响,并探讨阿托伐他汀对ICM的作用机制。
     第一部分40mg与10mmg阿托伐他汀对缺血性心肌病患者oxLDL、hsCRP、外周血循环内皮微颗粒及内皮祖细胞影响的比较
     目的比较40mg与10mg阿托伐他汀对ICM患者oxLDL、hsCRP、外周血循cEMPs及cEPCs的影响,并探讨阿托伐他汀对ICM患者可能作用机制。
     方法选择2007年3月至2010年6月在我院心内科住院确诊的ICM患者100例,患者随机分为2组:阿托伐他汀(辉瑞)10mg/天治疗组及40mg/天治疗组,同期门诊健康体检者非冠心病100例为对照组。随访期1年,所有研究对象在研究初始及随访结束时两次行肌酶、肝功能、血脂、血清尿酸、oxLDL、hsCRP、外周血cEMPs及cEPCs,并记录两组患者阿托伐他汀不良反应的发生率。
     结果随访结束时,10mg/天阿托伐他汀治疗组及对照组均失访3例,40mg/天阿托伐他汀治疗组失访2例,在随访期间,10mg阿托伐他汀治疗组有2例患者因腔隙性牛脑梗塞及3例患者因心功能恶化住院治疗,40mmg阿托伐他汀治疗组有1例患者因腔隙性脑梗塞及2例患者因心功能恶化住院治疗。两研究组间在心血管事件发生率方面差异无显著性。两研究组均无横纹肌溶解症及药物性肝炎的病例出现,40mg阿托伐他汀组不良反应无明显增多;研究前后,两研究组在CK及ALT方面比较,差异均无显著性。研究开始时,两研究组间在血脂、血清oxLDL、hsCRP、BNP、MMP-9、cEMPs、cEPCs、MEE、心功能、纤维蛋白原、尿酸、ALT、CK、高血压、糖尿病、吸烟、体重指数、年龄、性别、家族史、药物及冠脉支架使用方面,差异均无显著性;两研究组在随访期间药物使用方面比较,差异无显著性,P>0.05;两研究组间心脏彩超结果比较,差异无显著性,P>0.05。研究结束时,与10mmg阿托伐他汀治疗组比较,40mg阿托伐他汀治疗组血清TC(F=11.586,P=0.001)、LDL-C(F=7.459,P=0.008) oxLDL(F=16.106,P=0.000)及hsCRP(F=29.497, P=0.000)水平明显降低,差异有显著性;与10mmg阿托伐他汀治疗组比较,40mg阿托伐他汀治疗组外周血cEMPs(F=24.252,P=0.000)水平明显降低,cEPCs(F=4.969,P=0.028)水平明显升高,差异有显著性。
     结论对ICM患者,与10mg阿托伐他汀比较,40mmg阿托伐他汀可能降低患者外周血cEMPs及升高外周血cEPCs水平,阿托伐他汀可能有降脂外的作用。
     第二部分40mg与10mg阿托伐他汀对缺血性心肌病患者心肌能量消耗及左室功能影响的比较
     目的比较40mg与10mg阿托伐他汀对ICM患者心肌能量消耗(Myocardial energy expenditure, MEE)及左室功能的影响,并探讨阿托伐他汀在ICM中的作用机制。
     方法选择2007年3月至2010年6月在我院心内科住院确诊的ICM患者100例,患者随机分为2组:阿托伐他汀(辉瑞)10mg/天治疗组及40mg/天治疗组,同期门诊健康体检者非冠心病100例为对照组。随访期1年,所有实验对象在研究初始及随访结束时两次行BNP(B-type natriuretic peptide),左室收缩末周向室壁应力(Circumferential end-systolic wall stress, cESS), MEE、E/E'及心脏彩超检测。
     结果研究结束时,两研究组间在LVMI(F=3.014,P=0.390)方面差异无显著性,但与10mg阿托伐他汀治疗组比较,40mg阿托伐他汀治疗组LVMI有所降低;与10mg阿托伐他汀治疗组比较,40mg阿托伐他汀治疗组MEE(F=5.319,P=0.023)水平明显降低,差异有显著性;与10mg阿托伐他汀治疗组比较,40mg阿托伐他汀治疗组血清BNP水平(F=4.845,P=0.032)及E/E’(F=10.330,P=0.002)明显降低,差异有显著性;两研究组间在LVEF(F=0.385,P=0.536)方面比较,差异无显著性。
     结论对ICM患者,与10mg阿托伐他汀比较,40mg阿托伐他汀可能降低患者MEE及E/E'水平,阿托伐他汀可能有降脂外的作用。
     第三部分40mg与10mg阿托伐他汀对缺血性心肌病患者血清基质金属蛋白酶-9水平影响的比较
     目的比较40mmg与10mmg阿托伐他汀对ICM患者血清基质金属蛋白酶-9(MMP-9)水平影响,并探讨阿托伐他汀在ICM中的作用机制。
     方法选择2007年3月至2010年6月在我院心内科住院确诊的ICM患者100例,患者随机分为2组:阿托伐他汀(辉瑞)10mg/天治疗组及40mg/天治疗组,同期门诊健康体检者非冠心病100例为对照组。随访期1年,所有研究对象在研究初始及随访结束时两次行血清MMP-9检测。
     结果研究结束时,与10mg阿托伐他汀治疗组比较,40mmg阿托伐他汀治疗组血清MMP-9(F=5.016,P=0.026)水平明显降低,差异有显著性。
     结论对ICM患者,与10mg阿托伐他汀比较,40mg阿托伐他汀可能降低患者血清MMP-9水平。
Background
     Statins, serving as an anti-atherosclerosis drug, can significantly decrease the rates of cardiovascular events in patients with coronary heart disease (CHD), and were extensively administrated in secondary prevention of CHD. At present, consensus on the possible effects of statins on cardiac function in patients with ischemic cardiomyopathy(ICM) have not been achieved, although the safety of statins in patients with heart failure has been demonstrated by the CORONA and UNIVERSE trials. Small prospective clinical studies using atorvastatin and simvastatin for systolic heart failure (HF) have suggested that statins could be beneficial in patients with congestive heart failure(CHF) Conversely, subsequent studies indicated that rosuvastatin couldn't improve the prognosis in patients with ischemic or nonischemic, systolic HF. The incomplete agreement existing on the role of statins in HF may in part be due to the different class and dose of statins administration and different race in these studies. Several clinical trials administrating statins for CHF have documented an improved LV function, but the mechanisms in patients with CHF are still not completely known.
     At present, the level of circulating EPCs(cEPCs) not only correlates with cumulative cardiovascular risk and vascular function7, but also predicts future cardiovascular events and atherosclerotic disease progression in patients with coronary artery disease (CAD). Recently, advanced stages of heart failure were shown to be associated with reduced levels of cEPCs. Study showed ICM was associated with selective impairment of progenitor cell function in the bone marrow and in the peripheral blood.
     Endothelial cells could release microparticles after inflammatory stimulation, and the presence of increased levels of circulating endothelial-derived microparticles (cEMP) have been documented in various pathological conditions including coronary syndromes, in which they reflect endothelial dysfunction and are associated with a poor clinical outcome. Currently, stabilizing cellular membranes to decrease the release of EPMs was considered a target of vascular therapy.
     Matrix metalloproteinase(MMPs), which are present in the myocardium and capable of degrading all the matrix components of the heart, are the driving force behind myocardial matrix remodeling. MMP-9is well-known for its ability to degrade gelatins. The particular importance of MMP-9activity during LV remodeling has recently been demonstrated in several studies. Furthermore, MMP-9may be one of the candidates for selective inhibition after myocardial infarction(MI), because the deficiency in MMP-9alone could reduce LV chamber enlargement after infarction.
     LV hypertrophy, remodeling would lead to myocardial energy metabolic imbalance. In present, myocardial energy expenditure (MEE) derived from standard echocardiographic measurements was regarded as an effective indicator for myocardial bioenergetics and significantly correlated with cardiac function in CHF patients, especially in CHF patients with reduced LV ejection fraction(LVEF). Previous study demonstrated depressed EF was independently associated with higher MEE and increased MEE could predict cardiac death.
     However, currently, there were few data to delineate the effect of different doses statins on cEPCs and cEPMs. Thus, the present study was designed to investigate the differences of40mg versus10mg atorvastatin on cEPCs, cEMPs, MEE and LV function in patients with ICM.
     Part one Comparison of40mg versus10mg atorvastatin on oxLDL, hsCRP, circulating endothelial-derived microparticles and endothelial progenitor cells in patients with ischemic cardiomyopathy
     Objective This study was designed to investigate the differences of40mg versus lOmg atorvastatin on oxLDL, hsCRP, circulating endothelial-derived microparticles(EMPs) and endothelial progenitor cells(EPCs) in patients with ischemic cardiomyopathy (ICM).
     Methods100patients with ICM and100healthy examined people as normal control group were recruited to this study. Patients were randomly divided into two groups:10mg atorvastatin group (n=50) and40mg atorvastatin group (n=50).All subjects were followed up for1year. The levels of serum lipids, oxLDL, hsCRP, circulating EPCs and EMPs were examined in all subjects. The incidences of adverse reactions in two study groups were taken down.
     Results3,2and3patients withdrew in lOmg atorvastatin group,40mg atorvastatin group and control group respectively because of moving to other provinces. The incidences of cardiovascular events in10mg atorvastatin group and in40mg atorvastatin group were10.6%(5/47) and6.25%(3/48) during the period of follow-up. There were no significant differences in the rates of cardiovascular events between the two study groups. There was no rhabdomyolysis and drug-induced hepatitis in the two study groups during the follow-up. No excessive episodes of adverse reactions occurred in the40mg atorvastatin group. Subjects did not differ in CK and ALT between the two study groups at the end of study.Subjects did not differ in lipids, oxLDL, hsCRP, cEMPs, cEPCs, MEE, cardiac function, CK, ALT, fibrinogen, urine acid, age, gender, family medical history, index weight, number with hypertension, number with diabetes, number ever smoking, drugs, echocardiographic indices and the rate of stent implanted between the two study groups. At the end of the study, the levels of serum TC(F=11.586,P=0.001), LDL(F=7.459,P=0.008), oxLDL(F=l6.106,P=0.000) and hsCRP(F=29.497,P=0.000) significantly decreased in40mg atorvastatin group in contrast to1Omg atorvastatin group. At the end of the study, the levels of cEMPs(F=24.252,P=0.000) significantly decreased but the levels of cEPCs(F=4.969,P=0.028)significantly increased in40mg atorvastatin group in contrast to10mg atorvastatin group.
     Conclusions40mg atorvastatin might decrease the levels of circulating EMPs and increase the number of circulating EPCs in patients with ICM in comparison with lOmg atorvastatin. Furthermore, atorvastatin might have the beyond lipids-decreased effects.
     Part two Comparison of40mg versus10mg atorvastatin on myocardial energy expenditure level and left ventricular function in patients with ischemic cardiomyopathy
     Objectives The present study was to investigate the differences of40mg versus10mg atorvastatin on myocardial energy expenditure (MEE) and E/E' in patients with ischemic cardiomyopathy (ICM).
     Methods100patients with ICM and100healthy examined people as normal control group were recruited to this study. Patients were randomly divided into two groups:10mg atorvastatin group (n=50) and40mg atorvastatin group (n=50).All subjects were followed up for1year. The levels of B-type natriuretic peptide(BNP), circumferential end-systolic wall stress(cESS), MEE, E/E' and echocardiography were examined in all subjects.
     Results At the end of this study, the decrease in LVMI(F=3.014,P=0.390)was observed in40mg atorvastatin group in contrast to10mg atorvastatin group although there were no significant differences between the two study groups. At the end of the study, the levels of MEE (F=5.319,P=0.023)significantly decreased in40mg atorvastatin group in contrast to10mg atorvastatin group.At the end of the study, the levels of serum BNP(F=4.845,P=0.032)and E/E'(F=10.330,P=0.002) significantly decreased in40mg atorvastatin group in contrast to10mg atorvastatin group,P<0.05. Subjects did not differ in LVEF(F=0.385,P=0.536) between the two study groups at the end of the study.
     Conclusions40mg atorvastatin might significantly decrease the levels of MEE and E/E'obtained from Doppler echocardiography in comparison with10mg atorvastatin in patients with ICM. Moreover the effect might be independent of the decrease of lipids.
     Part three Comparison of40mg versus10mg atorvastatin on the levels of serum matrix metalloproteinase-9in patients with ischemic cardiomyopathy
     Objectives The present study was to investigate differences of40mg versus10mg atorvastatin on the levels of serum matrix metalloproteinase-9(MMP-9) in patients with ischemic cardiomyopathy (ICM).
     Methods100patients with ICM and100healthy examined people as normal control group were recruited to this study. Patients were randomly divided into two groups:10mg atorvastatin group (n=50) and40mg atorvastatin group (n=50).All subjects were followed up for1year. The levels of serum MMP-9were examined in all subjects.
     Results At the end of this study, the levels of MMP-9(F=5.016,P=0.026) significantly decreased in40mg atorvastatin group in contrast to10mg atorvastatin group.
     Conclusions40mg atorvastatin might significantly decrease the levels of serum MMP-9in comparison with10mg atorvastatin in patients with ICM.
引文
[1]Creemers EE, Cleutjens JP, Smits JF, Daemen MJ:Matrix metalloproteinase inhibition after myocardial infarction:a new approach to prevent heart failure? Circ Res 2001,89:201-210.
    [2]Whittaker P, Boughner DR, Kloner RA:Role of collagen in acute myocardial infarct expansion. Circulation 1991,84:2123-2134.
    [3]Kim HE, Dalal SS, Young E, Legato MJ, Weisfeldt ML, D'Armiento J: Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 2000,106:857-866.
    [4]Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JPM, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P:Inhibition of plasminogen activators or matrix metalloproteinases prevent cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 1999,10:1135-1142.
    [5]Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA:Doppler tissue imaging:a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 1999,30:1527-1533.
    [6]Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ:Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures:A comparative simultaneous Doppler-catheterization study. Circulation 2000,102:1788-1794.
    [7]Dokainish H, Zoghbi WA, Lakkis NM, Al-Bakshy F, Dhir M, Quinones MA, Nagueh SF:Optimal noninvasive assessment of left ventricular filling pressures: a comparison of tissue Doppler echocardiography and B-type natriuretic peptide in patients with pulmonary artery catheters. Circulation 2004,109:2432-2439.
    [8]Hillis GS, Meller JE, Pellikka PA, Gersh BJ, Wright RS, Ommen SR, Reeder GS, Oh JK. Noninvasive estimation of left ventricular filling pressure by E/e'is a powerful predictor of survival after acute myocardial infarction. J Am Coll Cardiol 2004,43:360-367.
    [9]Okura H, Takada Y, Kubo T, Iwata K, Mizoguchi S, Taguchi H, Toda I, Yoshikawa J, Yoshida K.Tissue Doppler-derived index of left ventricular filling pressure, E/E', predicts survival of patients with non-valvular atrial fibrillation. Heart 2006,92:1248-1252.
    [10]Shastry S, Hayden MR, Lucchesi PA, Tyagi SC:Matrix metalloproteinase in left ventricular remodeling and heart failure. Curr Cardiol Rep 2003,5:200-204.
    [11]Vorovich EE, Chuai S, Li M, Averna J, Marwin V, Wolfe D, Reilly MP, Cappola TP:Comparison of matrix metalloproteinase 9 and brain natriuretic peptide as clinical biomarkers in chronic heart failure. Am Heart J 2008,155:992-997.
    [12]Tyagi SC, Kumar S, Voelker DJ, Reddy HK, Janicki JS, Curtis JJ:Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem 1996,63:185-198.
    [13]Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L: Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure. Circ Res 1998,82:482-495.
    [14]Erbs S, Linke A, Schuler G, et al. Intracoronary administration of circulating blood-derived progenitor cells after recanalization of chronic coronary artery occlusion improves endothelial function[J]. Circ Res,2006,98(5):48.
    [15]Hur J,Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neo2 vasculogenesis[J]. Arterioscler Thromb Vase Biol,2004,24(2):288-293.
    [16]Gehling UM, Ergun S, Schumacher U, et al. In vitro differenti2 ation of endothelial cells from AC1332positive progenitor cells[J]. Blood,2000,95(10): 3106-3112.
    [17]Wojakowski W,Tendera M. Mobilization of bone marrow2derived progenitor cells in acute coronary syndromes[J]. Folia Histochem Cytobiol,2005, 43(4):229-232.
    [18]Chironi GN, Boulanger CM, Simon A, et al. Endothelial microparticles in diseases[J]. Cell Tissue Res,2009,335(1):143-151.
    [19]Curtis AM, Wilkinson PF, Gui M, et al. p38 mitogen-activated proteinkinase targets the production of proinflammatory endothelial microparticles[J]. J Thromb Haemost,2009,7(4):701-709.
    [20]Sapet C, Simoneini S, Loriod B, et al. Thrombin. induced endothelial microparticle generation:identi-ficafion ofanovelpathway involving ROCK-1 activation by caspase-2[J]. Blood,2006,108(6):1868-1876.
    [21]Simoneini S, Njock MS, Roberts, et al. TRAIL/AP02L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro:a potential mechanism linking inflammation and coagulation[J]. Circ Res,2009, 104(8):943-951.
    [22]DisflerJH, Huber LC, Hueber AJ, et al. The release of microparticles by apoptotic cells and their effects on macrophages[J]. Apoptosis,2005,10(4): 731-741.
    [23]Enjeti AK, Lincz LF, SeldonM. Detection and measurement of microparticles: all evolving research tool for vascularbiology[J]. Semin Thromb Hemost,2007, 33(8):771-779.
    [24]Ierssel SH, Craenenbroeek EM, Conraads VM, et al. Flow cytometric detection of endothelial microparticles (EMP):Effects of centdfugation and storage alter with the phenotype studied[J]. Thromb Res,2010,125(4):332-339.
    [25]Pericleous c, Giles I, RahmanA. Are endothelial microparticles potential markers of vascular dysfunctionin the antiphospholipid syndrome? [J]. Lupus, 2009,18(8):671-675.
    [26]Brumatti G, Sheridan C, Martin SJ. Expression and purification of recombinant annexinV for the detection of membrane alteration sonapoptotic cells[J]. Methods,2008,44(3):235-240.
    [27]AmabileN, Gu6rinAP, Lemyer A, et al. Circulating endothelial microparficles are associated with vascular dysfunction in patients with end-stage renal failure[J]. JAmSoc Nephroi,2005,16(11):3381-3388.
    [28]Feng B, Chen YH, Luo Y, et al. Circulating level ofmicroparticlesand their correlation-with arterialelasticityand endothelium-dependent dilation inpatientswithtype2 diabetes mellitus[J]. Atherosclerosis,2010,208(1): 264-269.
    [29]AmabileN, Heiss C, Real WM, et al. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonaryhypertension[J]. Am J Respir Crit Care Med,2008,177(11):1268-1275.
    [30]Bakouloula B, Morel O, Faure A, et al. Procoagulant membrane microparticles correlate with these verit), Of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med,2008,177(5):536-543.
    [31]Wemer N, Wassmann S, Ahlers P, et al. CirculatingCD31+/annexin V+apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease[J]. Arterioscler Thromb VaseBiol,2006, 26(11):112-116.
    [32]Bulut D, Maier K, Bulut-Streich N, et al. Circulating endothelial microparticles correlate inversely with ischemic left ventricular dysfunction[J]. J Card Fail, 2008,14(4):336-340.
    [33]Bulut D, Tuns H, Mugge A. CD31+/AnnexinV+microparticles in healthy off swings of patients with coronary artery disease[J]. EurJ Clinlnvest,2009, 39(1):17-22.
    [34]SimakJ, Geldennan MP. Circulating endothelial microparfcles in acute ischemic stroke:a link toseverity, lesionvolume andoutcome[J]. JThrombHaemost, 2006,4(6):1296-1302.
    [35]Vasa M, Fichtlscherer S, Aicher A, et al.Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease[J]. Circ Res,2001,89(1):E1-E7.
    [36]Hill JM, Zalos G, Halcox JP, et al.Circulating endothelial progenitor cells, vascular function, and cardiovascular risk[J]. N Engl J Med, 2003,348(7):593-600.
    [37]Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al.Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair[J]. Circulation,2005,111 (22):2981-2987.
    [38]Werner N, Kosiol S, Schiegl T, et al.Circulating endothelial progenitor cells and cardiovascular outcomes[J]. N Engl J Med,2005,353(10):999-1007.
    [39]Valgimigli M, Rigolin GM, Fucili A, et al.CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure[J]. Circulation,2004,110(10):1209-1212.
    [40]Kissel CK, Lehmann R, Assmus B,et al. Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure[J]. J Am Coll Cardiol,2007,49(24):2341-2349.
    [41]Lacroix R, Sabatier F, Mialhe A, et al. Activation of plasminogen into plasmin at the surface ofendothelial microparticles:a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro[J]. Blood,2007,110(7):2432-2439.
    [42]Curtis AM, Zhang L, Medenilla E, et al. Relationship of microparticles to progenitor cells as a measure of vascular health in a diabetic population[J]. Cytometry B Clin Cytom,2010,78(5):329-337.
    [43]Tramontano AF, O'Leary J, Black AD, et al.Statin decreases endothelial microparticle release from human coronary artery endothelial cells:implication for the Rho-kinase pathway[J].Biochem Biophys Res Commun,2004,320(1): 34-38.
    [44]Inzhutova Al, Larionov AA, Petrova MM, et al. Stabilization of cellular membranes as a target of vascular therapy [J].Kardiologiia,2011,51 (4):52-55.
    [45]Hurskainen T. Expression and localization of matrix metalloproteinases (MMPs)-2,-9,-14 (MT-MMP-1) and the tissue inhibitors of metalloproteinases (TIMPs) in human placent and some malignant tumorsimplications for trophoblasts and tumor cell invasion. Acta Universitatis Ouluensis Medica, 1996, D382(4):17-36.
    [46]Reponen P. The Primary structure and developmental expression of mouse type Ⅳ collagenases. ActaUniversitatis Ouluensis, A Scirntiae Rerum Naturalium, 1994,A262(1):1-33.
    [47]Hulboy D L, Rudolph L A, Matrisian L M. Matrix metalloproteinases as mediators of reproductivefunction. Molecular Human Reproduction,1997,3(1): 27-45.
    [48]Giannelli G, Falk-Marzillier J, Schirald O, et al. Induction of cell migration by matrix metalloproteinase-2 cleavage of laminin-5. Science,1997,277(11): 225-228
    [49]Creemers EE, Cleutjens JP, Smits JF, et al. Matrix metalloproteinase inhibition after myocardial infarction:a new approach to prevent heart failure? Circ Res. 2001,89:201-210.
    [50]Whittaker P, Boughner DR, Kloner RA. Role of collagen in acute myocardial infarct expansion. Circulation.1991,84:2123-2134.
    [51]Kim HE, Dalal SS, Young E, et al. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest.2000,106:857-866.
    [52]Heymans S, Luttun A, Nuyens D, et al. Inhibition of plasminogen activators or matrix metal loproteinases prevent cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med.1999; 10:1135-1142.
    [53]Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000,106:55-62.
    [54]Shastry S, Hayden MR, Lucchesi PA, et al. Matrix metalloproteinase in left ventricular remodeling and heart failure. Curr Cardiol Rep.2003,5:200-204.
    [55]Vorovich EE, Chuai S, Li M, et al. Comparison of matrix metalloproteinase 9 and brain natriuretic peptide as clinical biomarkers in chronic heart failure. Am Heart J.2008,155:992-997.
    [56]Tyagi SC, Kumar S, Voelker DJ, et al. Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem. 1996,63:185-198.
    [57]Spinale FG, Coker ML, Thomas CV, et al. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure. Circ Res.1998,82:482-495.
    [58]Thomas CV, Coker ML, Zellner JL, et al. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation.1998,97:1708-1715.
    [59]Li YY, Feldman AM, Sun Y, et al. Differential expression of tissue inhibitors of metal loproteinases in the failing human heart. Circulation.1998,98:1728-1734.
    [60]Coker ML, Thomas CV, Clair MJ, et al. Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Physiol. 1998,43:H1516-H1523.
    [61]Cheng G, Xu G, Cai HW, Wang HH, Bao XF:Effect of atorvastatin on non-ischemic heart failure and matrix metalloproteinase-2 and 9 in rats. Acta Pharmacol Sin 2007,28:511-517.
    [62]Spinale FG, Coker ML, Krombach SR, et al. Matrix metalloproteinase inhibition during the development of congestive heart failure:effects on left ventricular dimensions and function. Circ Res.1999,85:364-376.
    [63]Lee RT. Matrix metalloproteinase inhibition and the prevention of heart failure.Trends Cardiovasc Med.2001,11:202-205.
    [64]Spinale FG, Wilbur NM. Matrix metalloproteinase therapy in heart failure. Curr Treat Options Cardiovasc Med.2009,11:339-346.
    [65]Stanley WC, Lopaschuk CD, Hall JL, et al. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovase Res,1997,33 (2):243-257.
    [66]Van der Vusse CJ, Clatz JF, Stam HC, et al. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev,1992,72(4):881-940.
    [67]Tuunanen H, Enqblom E, Naum A, et al. Free fattv acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation,2006,114(20):2130-2137.
    [68]Van Bilsen M, Smeets PJ, Cilde Al, et al. Metabolic remodeling of the failing heart:the cardiac bum-out syndrome? Cardiovasc Res,2004,61(2):218-226.
    [69]Arpa-Gutierrez FJ, Cruz-Martinez A, Campos-Conzalez Y, et al. Mitochondrial respiratory chain diseases. Evaluation in 52 patients. Rev Neurol,2005,41(8): 449-454.
    [70]Stanton LW, Carrard LJ, Damm D, et al. Altered patterns of gene pression in response to myocardial infarction. Circ Res,2000,86(9):939-945.
    [71]张会亮,张荣利,罗国安,等,大鼠心肌梗塞急性期缺血交界区基因表达谱特征.医学研究杂志,2006,35(5):11-33.
    [72]Hu Q, Wang X, Lee J, et al. Profound bioenergetics abnormalities in pen-infarct myocardial regions. Am J Physiol Heart Circ Physiol,2006,291(2):H648-657.
    [73]Stanley WC, Recchia FA. Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev,2005,85(3):1093-129.
    [74]Brouwer KF, Degens H, Aartsen WM, et al. Specific and sustained down-regulation of genes involved in fatty acid metabolism is not a hallmark of progression to cardiac failure in mice. J Mol Cell Cardio,2006,40(6):838-845.
    [75]Osorio JC, Stanley WC, Linke A, et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing induced heart failure. Circulation,2002,106(5):606-612.
    [76]Celtman EM, Smith JL, Beecher D. et al. Altered regional myocardial metabolism in congestive cardiomyopathy detected by positron tomography. Am J Med,1983,74(5):773-785.
    [77]Brouwer KF, Degens H, Aartsen WM, Specific and sustained down-regulation of genes involved in fatty acidmetabolism is not a hallmark of progression to cardiac failure in mice, J Mol Cell Cardiol,2006,40 (6):838-845.
    [78]Tuunanen H, Engblom E, Naum A. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart fail ure. Circulation, 2006,114 (20):2130-2137.
    [79]Asahara T, Murohara T, Alison S, et al. Isolation of putative progenitor endothelial cells of angiogenesis[J]. Science,1997,275(5302):964-967.
    [80]Shen AN, DU ZY, Wang P, Xie ZB, Xu DL:Value of Doppler echocardiography derived myocardial energy expenditure measurements in chronic heart failure patients. Zhonghua Xin Xue Guan Bing Za Zhi 2010,38:209-214.
    [81]Palmieri V, Roman MJ, Bella JN, Liu JE, Best LG, Lee ET, Howard BV, Devereux RB:Prognostic implications of relations of left ventricular systolic dysfunction with body composition and myocardial energy expenditure:the Strong Heart Study. J Am Soc Echocardiogr 2008,21:66-71.
    [1]Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization[J]. Circ Res,1999,85(3):221-228.
    [2]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science,1997,275 (5302):964-967.
    [3]Bhattacharya V, McSweeney PA, Shi Q, et al. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34(+) bone marrow cells[J].Blood,2000,95(2):581-585.
    [4]Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells[J]. Blood,2000, 95(10):3106-3112.
    [5]Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation[J]. Circ Res,2000,87(9):728-730.
    [6]Vasa M, Fichtlscherer S, Aicher A, et al.Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease[J]. Circ Res,2001,89(1):El-E7.
    [7]Hill JM, Zalos G, Halcox JP, et al.Circulating endothelial progenitor cells, vascular function, and cardiovascular risk[J]. N Engl J Med,2003,348(7): 593-600.
    [8]Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al.Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair [J]. Circulation,2005,111(22):2981-2987.
    [9]Werner N, Kosiol S, Schiegl T, et al.Circulating endothelial progenitor cells and cardiovascular outcomes[J]. N Engl J Med,2005,353(10):999-1007.
    [10]Valgimigli M, Rigolin GM, Fucili A, et al.CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure[J]. Circulation,2004,110(10):1209-1212.
    [11]Kissel CK, Lehmann R, Assmus B,et al. Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure[J]. J Am Coll Cardiol,2007,49(24):2341-2349.
    [12]Lacroix R, Sabatier F, Mialhe A, et al. Activation of plasminogen into plasmin at the surface ofendothelial microparticles:a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro[J]. Blood,2007,110(7):2432-2439.
    [13]Curtis AM, Zhang L, Medenilla E, et al. Relationship of microparticles to progenitor cells as a measure of vascular health in a diabetic population[J].Cytometry B Clin Cytom,2010,78(5):329-337.
    [14]Tramontano AF, O'Leary J, Black AD, et al.Statin decreases endothelial microparticle release from human coronary artery endothelial cells:implication for the Rho-kinase pathway[J].Biochem Biophys Res Commun,2004,320(1): 34-38.
    [15]Inzhutova Al, Larionov AA, Petrova MM, et al. Stabilization of cellular membranes as a target of vascular therapy [J].Kardiologiia,2011,51(4):52-55.
    [16]Itabe H, Yamamoto H, Imanaka T, et al. Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody[J]. J Lipid Res, 1996,37(1):45-53.
    [17]Chironi GN, Boulanger CM, Simon A, et al. Endothelial microparticles in diseases[J]. Cell Tissue Res,2009,335(1):143-151.
    [18]Curtis AM, Wilkinson PF, Gui M, et al. p38 mitogen-activated proteinkinase targets the production of proinflammatory endothelial microparticles [J]. J Thromb Haemost,2009,7(4):701-709.
    [19]Sapet C, Simoneini S, Loriod B, et al. Thrombin. induced endothelial microparticle generation:identi-ficafion ofanovelpathway involving ROCK-1 activation by caspase-2[J]. Blood,2006,108(6):1868-1876.
    [20]Simoneini S, Njock MS, Robert S, et al. TRAIL/AP02L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro:a potential mechanism linking inflammation and coagulation[J]. Circ Res,2009, 104(8):943-951.
    [21]Disfler JH, Huber LC, Hueber AJ, et al. The release of microparticles by apoptotic cells and their effects on macrophages[J]. Apoptosis,2005,10(4): 731-741.
    [22]Enjeti AK, Lincz LF, SeldonM. Detection and measurement of microparticles: all evolving research tool for vascularbiology[J]. Semin Thromb Hemost,2007, 33(8):771-779.
    [23]Ierssel SH, Craenenbroeek EM, Conraads VM, et al. Flow cytometric detection of endothelial microparticles (EMP):Effects of centdfugation and storage alter with the phenotype studied[J]. Thromb Res,2010,125(4):332-339.
    [24]Pericleous c, Giles I, RahmanA. Are endothelial microparticles potential markers of vascular dysfunctionin the antiphospholipid syndrome?[J]. Lupus, 2009,18(8):671-675.
    [25]Brumatti G, Sheridan C, Martin SJ. Expression and purification of recombinant annexinV for the detection of membrane alteration sonapoptotic cells[J]. Methods,2008,44(3):235-240.
    [26]AmabileN, Gu6rinAP, Lemyer A, et al. Circulating endothelial microparficles are associated with vascular dysfunction in patients with end-stage renal failure[J]. JAmSoc Nephroi,2005,16(11):3381-3388.
    [27]Feng B, Chen YH, Luo Y, et al. Circulating level ofmicroparticlesand their correlation with arterialelasticityand endothelium-dependent dilation inpatientswithtype2 diabetes mellitus[J]. Atherosclerosis,2010,208(1): 264-269.
    [28]AmabileN, Heiss C, Real WM, et al. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonaryhypertension[J]. Am J Respir Crit Care Med,2008,177(11):1268-1275.
    [29]Bakouloula B, Morel O, Faure A, et al. Procoagulant membrane microparticles correlate with these verit), Of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med,2008,177(5):536-543.
    [30]Wemer N, Wassmann S, Ahlers P, et al. CirculatingCD31+/annexin V+apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease [J]. Arterioscler Thromb VaseBiol,2006, 26(11):112-116.
    [31]Bulut D, Maier K, Bulut-Streich N, et al. Circulating endothelial microparticles correlate inversely with ischemic left ventricular dysfunction[J]. J Card Fail, 2008,14(4):336-340.
    [32]Bulut D, Tuns H, Mugge A. CD31+/AnnexinV+microparticles in healthy off swings of patients with coronary artery disease[J]. EurJ ClinInvest,2009, 39(1):17-22.
    [33]SimakJ, Geldennan MP. Circulating endothelial microparfcles in acute ischemic stroke:a link toseverity, lesionvolume andoutcome[J]. JThrombHaemost,2006,4(6):1296-1302.
    [34]Sapet C, Simoncini S, Loriod B, et al. Thrombin-induced endothelial microparticle generation:identification of a novel pathway involving ROCK-Ⅱ activation by caspase-2[J]. Blood,2006,108(6):1868-1876.
    [35]Boulanger CM, Amabile N, Guerin AP, et al. In vivo shear stress determines circulating levels of endothelial microparticles in end-stage renal disease[J]. Hypertension,2007,49(4):902-908.
    [36]Kagawa H, Komiyama Y, Nakamura S, et al. Expression of functional tissue factor on small vesicles of lipopolysaccharide-stimulated human vascular endothelial cells[J]. Thromb Res,1998,91(6):297-304.
    [37]Nomura S, Shouzu A, Omoto S, et al. Activated platelets and oxidized LDL induce endothelial membrane vesiculation:clinical significance of endothelial cellderived microparticles in patients with type 2 diabetes [J].Clin Appl Thromb Hemost,2004,10(3):205-215.
    [38]Pirro M, Schillaci G, Bagaglia F, et al.Microparticles derived from endothelial progenitor cells in patients at different cardiovascular risk[J].Atherosclerosis, 2008,197(2):757-67.
    [39]Chen J, Chen S, Chen Y,et al.Circulating endothelial progenitor cells and cellular membrane microparticles in db/db diabetic mouse:possible implications in cerebral ischemic damage[J]. Am J Physiol Endocrinol Metab,2011,301(1):E62-E71.
    [40]Kissel CK, Lehmann R, Assmus B, et al.Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure[J]. J Am Coll Cardiol,2007,49(24):2341-2349.
    [41]Erbs S, Linke A, Schuler G, et al. Intracoronary administration of circulating blood-derived progenitor cells after recanalization of chronic coronary artery occlusion improves endothelial function[J]. Circ Res,2006,98(5):48.
    [42]Hur J,Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neo2 vasculogenesis[J]. Arterioscler Thromb Vasc Biol,2004,24(2):288-293.
    [43]Gehling UM, Ergun S, Schumacher U, et al. In vitro differenti2 ation of endothelial cells from AC1332positive progenitor cells[J]. Blood,2000,95(10): 3106-3112.
    [44]Wojakowski W,Tendera M. Mobilization of bone marrow2derived progenitor cells in acute coronary syndromes[J]. Folia Histochem Cytobiol,2005, 43(4):229-232.
    [45]Rabelink TJ, de Boer HC, de Koning EJ, et al.Endothelial Progenitor Cells: More Than an Inflammatory Response[J]? Arterioscler Thromb Vase Biol, 2004,24 (5):834-838.
    [46]Kupatt C, Horstkotte J, Vlastos GA, et al.Endothelial Progenitor Cells Are Rapidly Recruited to Myocardium and Mediate Protective Effect of Ischemic Preconditioning via "Imported" Nitric Oxide Synthase Activity[J]. Circulation,2005,111 (9):1114-1120.
    [47]Kupatt C, Horstkotte J, Vlastos GA, et al.Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia[J]. FASEB J, 2005,19(11):1576-1578.
    [48]Pompilio G, Capogrossi MC, Cannata A, et al.Endothelial progenitor cells:a potential versatile tool for the treatment of ischemic cardiomyopathies-a clinician's point of view[J]. Int J Cardiol,2004,95(Suppl 1):S34-S37.
    [49]Zorn-Pauly K, Schaffer P, Pelzmann B,et al.Oxidized LDL induces ventricular myocyte damage and abnormal electrical activity--role of lipid hydroperoxides[J]. Cardiovasc Res,2005,66(1):74-83.
    [50]Hulsmans M, Holvoet P.The vicious circle between oxidative stress and inflammation in atherosclerosis. J Cell Mol Med.2010 Jan;14(1-2):70-8.
    [51]Galle J, Hansen-Hagge T, Wanner C, Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis,2006,185(2):219-26.
    [52]Kathryn J. Moore, Mason W. Scavenger Receptors in Atherosclerosis:beyond lipid uptake.Arteriosclerosis, Thrombosis, and Vascular Biology.2006,26: 1702-1711.
    [53]De Keyzer D, Karabina SA, Wei W,et al.Increased PAFAH and oxidized lipids are associated with inflammation and atherosclerosis in hypercholesterolemic pigs. Arterioscler Thromb Vasc Biol.2009,29(12):2041-6.
    [54]Wang WY, Li J, Yang D,et al. OxLDL stimulates lipoprotein-associated phospholipase A2 expression in THP-1 monocytes via PI3K and p38 MAPK pathways. Cardiovasc Res.2010,85(4):845-52.
    [55]Vickers KC, Maguire CT, Wolfert R,et al.Relationship of lipoprotein-associated phospholipase A2 and oxidized low density lipoprotein in carotid atherosclerosis. J Lipid Res.2009,50(9):1735-43.
    [56]Suzuki T, Solomon C, Jenny NS,et al.Lipoprotein-associated phospholipase A(2) and risk of congestive heart failure in older adults:the Cardiovascular Health Study. Circ Heart Fail.2009,2(5):429-36.
    [57]Zhang B, Fan P, Shimoji E,et al.Modulating effects of cholesterol feeding and simvastatin treatment on platelet-activating factor acetylhydrolase activity and lysophosphatidylcholine concentration. Atherosclerosis.2006,186(2):291-301.
    [58]Zalewski A, Macphee C.Role of lipoprotein-associated phospholipase A2 in atherosclerosis:biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vase Biol.2005,25(5):923-31.
    [59]Lavi S, McConnell JP, Rihal CS,et al.Local production of lipoprotein-associated phospholipase A2 and lysophosphatidylcholine in the coronary circulation:association with early coronary atherosclerosis and endothelial dysfunction in humans. Circulation.2007,115(21):2715-21.
    [60]Pepys MB, Baltz ML.Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol.1983;34:141-212.
    [61]Thompson D, Pepys MB, Wood SP.The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure. 1999,7(2):169-77.
    [62]Shrive AK, Holden D, Myles DA,et al. Structure solution of C-reactive proteins: molecular replacement with a twist. Acta Crystallogr D Biol Crystallogr.1996,52(Pt 6):1049-57.
    [63]Potempa LA, Siegel JN, Fiedel BA,et al. Expression, detection and assay of a neoantigen (Neo-CRP) associated with a free, human C-reactive protein subunit. Mol Immunol.1987,24(5):531-41.
    [64]Khreiss T, Jozsef L, Potempa LA,et al.Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation.2004 Apr 27;109(16):2016-22. Epub 2004 Mar 29.
    [65]Black S, Kushner I, Samols D, et al. C-reactive Protein[J]. J Biol Chem, 2004,279:48487-48490.
    [66]Pepys MB,Hirschfield GM. C-reactive protein:a criticalupdate[J]. J Clin Invest,2003,111:1805-1812.
    [67]Volanakis JE. Complement activation by C-reactive proteincomplexes[J]. Ann N Y Acad Sci,1982,389:235-250.
    [68]Mold C, Gewurz H, Du Clos TW, et al. Regulation ofcomplement activation by C-reactive protein [J]. Immuno-pharmacology,1999,42:23-30.
    [69]de Carvalho JF, Hanaoka B, Szyper-Kravitz M, et al.C-reactive protein and its implications in systemic lupuserythematosus [J]. Acta Reumatol Port, 2007,32:317-322.
    [70]Eisenhardt SU, Thiele JR, Bannasch H, et al. C-reac-tive protein:how conformational changes influence infl-ammatory properties[J]. Cell Cycle, 2009,8:3885-3892.
    [71]Gershov D, Kim S, Brot N, et al. C-reactive proteinbinds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains anantiinflammatory innate immune response:implications forsystemic autoimmunity[J]. J Exp Med,2000,192:1353-1364.
    [72]Szalai AJ. C-reactive protein (CRP) and autoimmunedisease:facts and conjectures[J]. Clin Dev Immunol,2004,11:221-226.
    [73]Vogt B, Fuhrnrohr B, Muller R, et al. CRP and thedisposal of dying cells: consequences for systemic lupuserythematosus and rheumatoid arthritis[J]. Autoimmunity,2007,40:295-298.
    [74]Haim M, Benderly M, Tanne D, et al. C-reactive protein, bezafibrate, and recurrent coronary events in patients with chronic coronary heart disease[J]. Am HeartJ,2007,154:1095-1101.
    [75]Shimada K, Fujita M, Tanaka A, et al. Elevated serumC-reactive protein levels predict cardiovascular events inthe Japanese coronary artery disease (JCAD)study[J].Circ J,2009,73:78-85.
    [76]Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women [J].N Engl J Med,2000,342:836-843.
    [77]Aukrust P, Halvorsen B, Yndestad A, et al. Chemokinesand cardiovascular risk[J].Arterioscler Thromb VascBiol,2008,28:1909-1919.
    [78]Morrow DA, de Lemos JA, Sabatine MS, et al. Clinicalrelevance of C-reactive protein during follow-up of patients with acute coronary syndromes in the Aggrastat-to-Zocor Trial[J]. Circulation,2006,114:281-288.
    [79]Blake GJ, Ridker PM. C-reactive protein and other inflammatory risk markers in acute coronary syndromes [J].J Am Coll Cardiol,2003,41:37S-42S.
    [80]Bansal S, Ridker PM. Comparison of characteristics offuture myocardial infarctions in women with baseline highversus baseline low levels of high-sensitivity C-reactiveprotein[J]. Am J Cardiol,2007,99:1500-1503.
    [81]Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease:applicationto clinical and public health practice:A statement forhealthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association[J]. Circulation,2003, 107:499-511.
    [82]Jiang S, Bao Y, Hou X, et al. Serum C-reactive proteinand risk of cardiovascular events in middle-aged and older chinese population [J]. Am J Cardiol,2009,103:1727-1731
    [83]Fisher M, Cushman M, Knappertz V, et al. An assessment of the joint associations of aspirin and statin usewith C-reactive protein concentration [J]. Am Heart J,2008,156:106-111.
    [84]Senes M, Erbay AR, Yilmaz FM, et al.Coenzyme Q10 and high-sensitivity C-reactive protein in ischemic and idiopathic dilated cardiomyopathy[J]. Clin Chem Lab Med,2008,46(3):382-386.
    [85]Nomura S. Statin and endothelial cell-derived microparticles[J]. Thromb Haemost, 2008,100(3):377-378.
    [86]Shishehbor MH, Patel T, Bhatt DL. Using statins to treat inflammation in acute coronary syndromes:Are we there yet[J]?Cleve Clin J Med, 2006,73(8):760-766.
    [87]Okura H, Asawa K, Kubo T, et al. Impact of Statin Therapy on Systemic Inflammation, Left Ventricular Systolic and Diastolic Function and Prognosis in Low Risk Ischemic Heart Disease Patients without History of Congestive Heart Failure[J]. Intern Med,2007,46(17):1337-1343.
    [88]Li MC, Liu JL. Effect of Atorvastatin on Cardiac Function and Plasma C-reactiveprotein and Uric Acid Elevels in Patients Ischemic Cardiomyopathy[J]. Journal of Medical Research,2008,37(10):86-88.
    [89]LaRosa JC, Deedwania PC, Shepherd J, et al.Comparison of 80 versus 10 mg of atorvastatin on occurrence of cardiovascular events after the first event (from the Treating to New Targets [TNT] trial) [J]. Am J Cardiol, 2010,105(3):283-287.
    [90]Tikkanen MJ, Szarek M, Fayyad R, et al.Total cardiovascular disease burden: comparing intensive with moderate statin therapy insights from the IDEAL (Incremental Decrease in End Points Through Aggressive Lipid Lowering) trial[J]. J Am Coll Cardiol,2009,54(25):2353-2357.
    [91]Johnson C, Waters DD, DeMicco DA, et al.Comparison of effectiveness of atorvastatin 10 mg versus 80 mg in reducing major cardiovascular events and repeat revascularization in patients with previous percutaneous coronary intervention (post hoc analysis of the Treating to New Targets [TNT] Study) [J]. Am J Cardiol,2008,102(10):1312-1317.
    [92]LaRosa JC, Grundy SM, Kastelein JJ, et al.Safety and efficacy of Atorvastatin-induced very low-density lipoprotein cholesterol levels in Patients with coronary heart disease (a post hoc analysis of the treating to new targets [TNT] study)[J]. Am J Cardiol,2007,100(5):747-752.
    [1]Cleland JG, Coletta AP, Nikitin NP, et al. Clinical trials update from the American College of Cardiology:Darbepoetin alfa, ASTEROID, UNIVERSE, paediatric carvedilol, UNLOAD and ICELAND. Eur J Heart Fail.2006, 8:326-329.
    [2]van der Harst P, Slart RH, Tio RA, et al. Effects of Rosuvastatin on coronary flow reserve and metabolic mismatch in patients with heart failure (from the CORONA Study). Am J Cardiol.2010,105:517-521.
    [3]Horwich TB, MacLellan WR. Atorvastatin and statins in the treatment of heart failure. Expert Opin Pharmacother.2007,8:3061-3068.
    [4]Kishi T, Yamada A, Okamatsu S, et al. Atorvastatin might improve ventricular electrostability and decelerate the deterioration of renal function in patients with heart failure and diabetes mellitus. J Cardiol.2009,53:341-348.
    [5]Dilaveris P, Giannopoulos G, Riga M, et al. Beneficial effects of statins on endothelial dysfunction and vascular stiffness. Curr Vasc Pharmacol. 2007,5:227-237.
    [6]Levy WC. Observational studies of statins in systolic heart failure. Heart Fail Clin.2008,4:201-208.
    [7]Node K, Fujita M, Kitakaze M, et al. Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation.2003,108:839-843.
    [8]Bielecka-Dabrowa A, Goch JH, Mikhailidis DP, et al. The influence of atorvastatin on parameters of inflammation and function of the left ventricle in patients with dilated cardiomyopathy. Med Sci Monit.2009,15:MS12-23.
    [9]Krum H, Latini R, Maggioni AP. Statins and symptomatic chronic systolic heart failure:a post-hoc analysis of 5010 patients enrolled in Val-HeFT. Int J Cardiol.2007,119:48-53.
    [10]Shen AN, DU ZY, Wang P, et al. Value of Doppler echocardiography derived myocardial energy expenditure measurements in chronic heart failure patients. Zhonghua Xin Xue Guan Bing Za Zhi.2010,38:209-214.
    [11]Palmieri V, Roman MJ, Bella JN, et al. Prognostic implications of relations of left ventricular systolic dysfunction with body composition and myocardial energy expenditure:the Strong Heart Study. J Am Soc Echocardiogr. 2008,21:66-71.
    [12]Rivas-Gotz C, Khoury DS, Manolios M, et al. Tune interval between onset of mitral inflow and onset of early diastolic velocity by tissue Doppler:a novel index of left ventricular relaxation:experimental studies and clinical application. J Am Coil Cardiol,2003,42:1463-1470.
    [13]Diwan A, McCuIloch M, Lawrie GM, et al. Doppler estimation of left ventricular filling pressures in patients with mitral valve disease. Circulation, 2005,111:3281.3289.
    [14]Ommen SR,Nishimura RA,Appleton CP, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures:A comparative simultaneous Doppler-catheterization study. Circulation,2000,102:1788-1794.
    [15]Hillis GS, Moiler JE, Pellikka PA, et al. Noninvasive estimation of left ventricular filling pressure by E/E'is a powerful predictor of survival after acute myocardial infarction. J Am Coil Cardiol,2004,43:360-367.
    [16]Dokainish H, Zoghbi WA, Lakkis NM, et al. Optimal noninvasive assessment of left ventricular filling pressures:a comparison of tissue Doppler echocardiography and B—type natriuretic peptide in patients with pulmonary artery catheters. Circulation,2004,109:2432-2439.
    [17]Walter JP,Carsten T, John ES, 或 al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. European Heart Journal, 2007,28:2539-2550.
    [18]Galderrisi M. Diagnosis and Management of Left Ventricular Diastolic Dysfunction in the Hypertensive Patient. Am J Hypertens,2010,10: 1038-1042.
    [19]Okura H, Asawa K, Kubo T, et al. Impact of statin therapy on systemic inflammation, left ventricular systolic and diastolic function and prognosis in low risk ischemic heart disease patients without history of congestive heart failure. Intern Med.2007,46:1337-1343.
    [20]Palmieri V, Bella JN, Arnett DK, et al. Associations of aortic and mitral regurgitation with body composition and myocardial energy expenditure in adults with hypertension:the Hypertension Genetic Epidemiology Network study. Am Heart J.2003,145:1071-1077.
    [21]Shimizu G, Hirota Y, Kita Y. Left vent ricular midwall mechanics in systemic arterial hypertension:myocardial function is depressed in pressure overload hypert rophy. Circulation.1991,83:1676-1684.
    [22]Huan Loh P, Windram JD, Tin L, et al. The effects of initiation or continuation of statin therapy on cholesterol level and all-cause mortality after the diagnosis of left ventricular systolic dysfunction. Am Heart J.2007,153:537-544.
    [23]Sankaranarayanan R, Maini S, James MA, et al. Do statins improve heart failure outcome in post-myocardial infarction patients with moderate to severe left ventricular dysfunction? Congest Heart Fail.2010,16:181-186.
    [24]Cohen GI, Pietrolungo JF, Thomas JD,et al.A practical guide to assessment of ventricular diastolic function using Doppler echocardiography. J Am Coll Cardiol.1996,27(7):1753-60.
    [25]Brunner-La Rocca HP, Rickli H, Attenhofer Jost CH,et al.Left ventricular end-diastolic pressure can be estimated by either changes in transmitral inflow pattern during valsalva maneuver or analysis of pulmonary venous flow. J Am Soc Echocardiogr.2000 Jun;13(6):599-607.
    [26]Van Bilsen M, Smeets PJ, Cilde Al, et al. Metabolic remodeling of the failing heart:the cardiac bum-out syndrome? Cardiovasc Res,2004,61(2):218-226.
    [27]Arpa-Gutierrez FJ, Cruz-Martinez A, Campos-Conzalez Y, et al. Mitochondrial respiratory chain diseases. Evaluation in 52 patients. Rev Neurol,2005,41(8): 449-454.
    [28]Stanton LW, Carrard LJ, Damm D, et al. Altered patterns of gene pression in response to myocardial infarction. Circ Res,2000,86(9):939-945.
    [29]张会亮,张荣利,罗国安,等,大鼠心肌梗死急性期缺血交界区基因表达谱特征.医学研究杂志,2006,35(5):11-33.
    [30]Hu Q, Wang X, Lee J, et al. Profound bioenergetics abnormalities in pen-infarct myocardial regions. Am J Physiol Heart Circ Physiol,2006,291(2):H648-657.
    [31]Stanley WC, Recchia FA. Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev,2005,85(3):1093-129.
    [32]Brouwer KF, Degens H, Aartsen WM, et al. Specific and sustained down-regulation of genes involved in fatty acid metabolism is not a hallmark of progression to cardiac failure in mice. J Mol Cell Cardio,2006,40(6):838-845.
    [33]Osorio JC, Stanley WC, Linke A, et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing induced heart failure. Circulation,2002,106(5):606-612.
    [34]Celtman EM, Smith JL, Beecher D. et al. Altered regional myocardial metabolism in congestive cardiomyopathy detected by positron tomography. Am J Med,1983,74(5):773-785.
    [35]Brouwer KF, Degens H, Aartsen WM, Specific and sustained down-regulation of genes involved in fatty acidmetabolism is not a hallmark of progression to cardiac failure in mice, J Mol Cell Cardiol,2006,40 (6):838-845.
    [36]Tuunanen H, Engblom E, Naum A. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart fail ure. Circulation, 2006,114 (20):2130-2137.
    [37]Asahara T, Murohara T, Alison S, et al. Isolation of putative progenitor endothelial cells of angiogenesis[J]. Science,1997,275(5302):964-967.
    [38]Tuunanen H, Enqblom E, Naum A, et al. Free fattv acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation,2006,114(20):2130-2137.
    [39]Lamb HJ, Beyerbaeht HP,vall der Laarse A, et al. Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial metabolism. Circulation,1999,99:2261-2267.
    [40]de Simone G Chinali M, Galderisi M, et al. Myocardial mechano-energetic efficiency in hypertensive adults. Journal of Hypertension,2009,27(3): 650-655.
    [41]Tian R Ingwall JS. The energetic basis for reduced contractile reserve in isolated rat hearts. Am J Physiol,1996,270:H1207-H1216.
    [42]AM卡茨,主编.高天礼,译.心脏生理学.北京:科学出版社,1979.255.
    [43]Bing RJ, Hammond MM, Handelsman JC, et al. The measurement of coronary blood flow,oxygen consumption,and efficiency of the left ventricle in man. Am Heart J,1949,38:1-24.
    [44]Starling EH,Visscher MB. The relation of energy output of the heart. J Physiol, 1926,62:243.
    [45]Starling EH, Evans LL. The respiratory exchanges of the heart in the diabetic animal. J Physiol,1914,49:67.
    [46]Sarnoff SJ, Bmunwald E, WrelCh GH Jr,et al. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol,1958,192:156.
    [47]Shimizu G, Hirota Y, Kita Y et al. Left ventricular midwall mechanics in systemic medal hypertension:myocardial function is depressed in pressure—overload hypertrophy. Circulation,1991,83:676-684.
    [48]Palmieri V Bella JN, AmettDK Oberman A, Kitzman DW, Hopkins PN, et al. Associations of aortic and mitral regurgitation with body composition and myocardial energy expenditure in adults with hypertension: the hypertension genetic epidemiology network study. Am Heart J,2003,145:1071-1077.
    [49]Vittorio E Mary JR, Jonathan NB, et al. Prognostic implications of relations of left ventricular systolic dysfunction with body composition and myocardial energy expenditure:The Strong Heart Study. J Am Soc Echocardiogr,2008, 21(1):66-71.
    [50]沈安娜,黄蓉,王鹏,等.原发性高血压患者心肌能量消耗水平与左室重构及收缩功能的相关性.中华高血压杂志,2010,3:285-289.
    [51]白书昌,沈安娜,王鹏,et al.原发性高血压患者心肌能量消耗水平变化与左心室舒张功能的关系.中华老年心脑血管病杂志,2011,13(4):340-343.
    [52]沈安娜,杜智勇,工鹏,et al.多普勒超声心动图检测慢性心力衰竭患者心肌生 物能量消耗水平的变化及临床意义.中华心血管病杂志,2010,38(3):209-214.
    [53]Katz AM. Cellular mechanisms in congestive heart failure. Am J Cardiol. 1988,62:3 A-8 A.
    [54]Tikkanen MJ, Szarek M, Fayyad R, et al. Total cardiovascular disease burden: comparing intensive with moderate statin therapy insights from the IDEAL (Incremental Decrease in End Points Through Aggressive Lipid Lowering) trial. J Am Coll Cardiol.2009,54:2353-2357.
    [55]Johnson C, Waters DD, DeMicco DA, et al. Comparison of effectiveness of atorvastatin 10 mg versus 80 mg in reducing major cardiovascular events and repeat revascularization in patients with previous percutaneous coronary intervention (post hoc analysis of the Treating to New Targets [TNT] Study). Am J Cardiol.2008,102:1312-1317.
    [56]LaRosa JC, Grundy SM, Kastelein JJ, et al. Treating to New Targets (TNT) Steering Committee and Investigators:Safety and efficacy of Atorvastatin-induced very low-density lipoprotein cholesterol levels in Patients with coronary heart disease (a post hoc analysis of the treating to new targets [TNT] study). Am J Cardiol.2007,100:747-752.
    [57]Huan Loh P, Windram JD, Tin L, et al. The effects of initiation or continuation of statin therapy on cholesterol level and all-cause mortality after the diagnosis of left ventricular systolic dysfunction. Am Heart J.2007,153:537-544.
    [1]Creemers EE, Cleutjens JP, Smits JF, et al. Matrix metalloproteinase inhibition after myocardial infarction:a new approach to prevent heart failure? Circ Res. 2001,89:201-210.
    [2]Whittaker P, Boughner DR, Kloner RA. Role of collagen in acute myocardial infarct expansion. Circulation.1991,84:2123-2134.
    [3]Kim HE, Dalal SS, Young E, et al. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest.2000,106:857-866.
    [4]Heymans S, Luttun A, Nuyens D, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevent cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med.1999,10:1135-1142.
    [5]Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z. Libby P, Lee RT, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000,106:55-62.
    [6]Shastry S, Hayden MR, Lucchesi PA, et al. Matrix metalloproteinase in left ventricular remodeling and heart failure. Curr Cardiol Rep.2003,5:200-204.
    [7]Vorovich EE, Chuai S, Li M, et al. Comparison of matrix metalloproteinase 9 and brain natriuretic peptide as clinical biomarkers in chronic heart failure. Am Heart J.2008,155:992-997.
    [8]Tyagi SC, Kumar S, Voelker DJ, et al. Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem. 1996,63:185-198.
    [9]Spinale FG, Coker ML, Thomas CV, et al. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure. Circ Res.1998,82:482-495.
    [10]Thomas CV, Coker ML, Zellner JL, et al. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation.1998,97:1708-1715.
    [11]Li YY, Feldman AM, Sun Y, et al. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation.1998,98:1728-1734.
    [12]Coker ML, Thomas CV, Clair MJ, et al. Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Physiol. 1998,43:H1516-H1523.
    [13]Spinale FG, Coker ML, Krombach SR, et al. Matrix metalloproteinase inhibition during the development of congestive heart failure:effects on left ventricular dimensions and function. Circ Res.1999,85:364-376.
    [14]Lee RT. Matrix metalloproteinase inhibition and the prevention of heart failure.Trends Cardiovasc Med.2001,11:202-205.
    [15]Spinale FG, Wilbur NM. Matrix metalloproteinase therapy in heart failure. Curr Treat Options Cardiovasc Med.2009,11:339-346.
    [16]Hurskainen T. Expression and localization of matrix metalloproteinases (MMPs)-2,-9,-14 (MT-MMP-1) and the tissue inhibitors of metalloproteinases (TIMPs) in human placent and some malignant tumorsimplications for trophoblasts and tumor cell invasion. Acta Universitatis Ouluensis Medica, 1996, D382(4):17-36.
    [17]Reponen P. The Primary structure and developmental expression of mouse type IV collagenases. ActaUniversitatis Ouluensis, A Scirntiae Rerum Naturalium, 1994,A262(1):1-33.
    [18]Hulboy D L, Rudolph L A, Matrisian L M. Matrix metalloproteinases as mediators of reproductivefunction. Molecular Human Reproduction,1997,3(1): 27-45.
    [19]Giannelli G, Falk-Marzillier J, Schirald O, et al. Induction of cell migration by matrix metalloproteinase-2 cleavage of laminin-5. Science,1997,277(11): 225-228.
    [20]Woessner J F. Matrix, metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J,1991,5(8):2145-2154.
    [21]Murphy G, Docherty J P. The matrix metalloproteinases and their inhibitors. Am J Resp Cell Mol Biol,1992,7(2):120-125.
    [22]Baragi V M, Fliszar C J, Conroy M C, et al. Contribution of the C-terminal domain of metalloproteinases to binding by tissue inhibitor of metalloproteinases C-terminal truncated stromelysin and matrilysin exhibit equally compromised binding affinities as compared to full-length stromelysin. J Biol Chem,1994,269(17):12692-12697.
    [23]Puente X S, Pendas A M, Liano E, et al. Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res,1996,56(5):944-949.
    [24]Zhu C, Woessner J F JR. A tissue inhibitor of metalloproteinases and a-macroglobulins in the ovulating rat ovary:Possible regulators of collagen matrix breakdown. Biology of Reprod,1991,45(2):334-342.
    [25]Bjorn S F, Hastrup N, Lund L R, et al. Co-ordinated expression of MMP-2 and its putative activator,MT1-MMP, in human placentation. Mol Hum Reprod, 1997,3(8):713-723.
    [26]Rizzello V, Poldermans D, Boersma E, et al. Opposite patterns of left ventricular remodeling after coronary revascularization in patients with ischemic cardiomyopathy:role of myocardial viability. Circulation.2004, 110:2383-2388.
    [27]赵云阁,欧尔比特.安尼瓦尔,祝诚.细胞外基质与基质金属蛋白酶.生物化学与生物物理进展,1999,26(3):223-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700