用户名: 密码: 验证码:
基于混沌和图像矩的鲁棒零水印技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于零水印采取零嵌入的方式,并未修改原始数字媒体,因而数字媒体的视觉质量和完整性等得到了保证,也不存在嵌入式水印中的鲁棒性与不可见性的矛盾。尽管前对零水印安全技术的研究取得了一定的进展,但已有的零水印方案对几何攻击的抵抗能力很差。因此,开展具有高鲁棒性的零水印技术研究非常必要。
     围绕这一主题,本文首先分类并全面综述了水印技术研究现状,接着介绍了混沌和图像矩技术,然后将混沌和图像矩技术应用于抗攻击的鲁棒零水印技术研究中,在复合混沌构造、笛卡儿坐标矩和极坐标矩的应用、多倍零水印以及图像篡改定位等方面进行深入研究。本文主要工作及贡献包括:
     (1)利用定义在笛卡儿坐标空间的Tchebichef不变矩和经过复合混沌优化后的SVR,提出一种抗几何攻击零水印方案。为了改善数字水印抵抗几何攻击的性能,基于定义在笛卡儿坐标空间的Tchebichef不变矩和优化的回归型支持向量机(Support Vector for Regression, SVR)提出一种鲁棒零水印方案。该方案定义了一种复合混沌系统,并给出了该复合混沌系统的密钥空间、随机复杂度及抗预测能力分析。把该复合混沌系统应用于水印的加密,提高了零水印方案的安全性。同时,利用该复合混沌系统给出了改进的变尺度混沌优化SVR方法。对非线性Hermite函数进行的函数逼近测试结果表明在采用复合混沌对SVR优化后,各项性能测试指标都得到了改善。将检测图像的受攻击样本与水印图像的Tchebichef不变矩通过优化的SVR进行关联和训练,构造SVR MIMO系统模型用于零水印的检测。仿真结果和性能分析表明,提出的零水印方案具有较好的抗几何攻击能力,综合性能优于其它同类算法。
     (2)提出了一种基于定义在极坐标空间上的Bessel-Fourier矩特征向量的鲁棒可视零水印算法
     定义在笛卡儿坐标空间上的离散正交矩,其几何变换不变性较难获取。而定义在极坐标空间Bessel-Fourier矩是最新提出的一种正交矩,它具备良好的旋转不变性且易获得,同时比其他同类正交矩性能更优越。因而本文基于Bessel-Fourier矩特征向量提出了一种鲁棒可视零水印算法。首先,对图像进行平移、缩放规范化处理,然后计算规范化图像的Bessel-Fourier矩幅度,得到的幅度值具有旋转不变性,将其二值化后构造成特征图像,并与logo图像作异或操作后生成校验图像,将校验图像保存在可信机构(Trusted Authority, TA)。在对检测图像进行版权认证时,将提取的特征图像与校验图像作异或操作后同原始logo图像做比较,从视觉上就可判断检测图像有无版权,同时也可以客观指标准确率AR (Accuracy Rate)来衡量。
     (3)设计了基于曲率特征域的多倍零水印版权认证方案
     基于曲率特征域,提出了一种多倍零水印版权认证方案。该方案设计一种图像增强和噪声抑制方法并应用于曲率多特征的提取,利用Bessel-fourier矩相位分量提出一种受攻击图像旋转角度的简单估计算法,并采用具有强泛化能力和快速学习特点的极限学习机(Extreme Learning Machine, ELM)训练模型来完成对多倍零水印的检测。利用提出方案对Lena图像、卡通图像、医疗图像、遥感图像和艺术图像等类型图像进行了测试,试验结果表明提出的无损版权认证方案比现有的四种方法具有更好的整体性能,尤其在抗大尺度剪切和大角度旋转攻击方面。最后,对影响算法性能的几个因素分别作出了定性和定量的分析,这些因素包括相位及幅度分量、特征向量维度和ELM优化。
     (4)提出了一种基于混沌映射的图像认证和篡改定位零水印方法
     基于混沌映射提出了一种零水印图像认证方案,实现在同时遭受信号处理和篡改攻击时,能正确提取水印信息,而且能检测被篡改区域的准确位置和具体形状。Arnold映射良好的置乱性能、Rossler耦合混沌的大密钥空间及对初值的极端敏感性增强了零水印的安全性和鲁棒性。仿真和理论分析表明提出的方案比现有的图像认证和篡改定位水印方案具有更优的性能。
Because zero-watermarking scheme does not change the content of original digital media at the same time of protecting image copyright, hence, the visual quality and integrity of original digital media are assured and the contradiction between robustness and invisibility does not exist. In spite that the research of zero-watermarking makes certain progress, but the current zero-watermarking schemes have poor ability against geometrical attacks. Therefore, it is very necessary to undertake the research on zero-watermarking technology with strong robustness.
     This dissertation provides a comprehensive overview of the watermarking technology. Also, chaos and image moment are briefly introduced. Afterwards, the dissertation applies chaos and image moment to robust zero-watermarking research, which focuses on the construction of composite chaos, the application of image moments defined in Cartesian coordinate and polar coordinate, multiple zero-watermarking and tamper localization of image. The main contents and contributions are as follows.
     (1) A zero-bit watermarking algorithm resisting to geometrical attacks is proposed using Tchebichef moment invariants and the optimized support vector for regression.
     The problem to improve the performance of resisting geometric attacks in digital watermarking is addressed in this dissertation. Based on Tchebichef moment invariants defined in the Cartesian coordinate and the optimized support vector for regression (SVR), a zero-bit watermarking algorithm is presented. The scheme develops a kind of composite chaos and gives the analysis of key space, randomicity and complexity, and the ability against prediction for composite chaos. The watermarking image is encrypted with composite chaos which can strengthen the safety of the proposed algorithm. Meanwhile, an improved mutative scale chaos optimization algorithm for SVR is presented utilizing composite chaos. The nonlinear Hermite function is adopted for the function approximating test, and the test results indicate each performance index is improved using the optimized SVR. Finally, the SVR MIMO training model is constructed for the detection of zero-watermarking using the relationship between Tchebichef moment invariants of detected image and watermarking characteristics. Performance analysis and simulations demonstrate that the proposed algorithm possesses better security and stronger robustness than some similar methods.
     (2) Based on Bessel-Fourier moment feature vector, a robust visible zero-watermarking algorithm is presented.
     The geometrical invariability of the discrete orthogonal moments defined in the Cartesian coordinate is difficult to obtain. Bessel-Fourier moment defined in the polar coordinate, as a new image moment, has a good rotation invariability which can be easily gained, and has better performance than other similar orthogonal moments. Therefore, this dissertation presents a robust visible zero-watermarking algorithm based on Bessel-Fourier moment feature vector. First, image normalization is used for the invariance of translation and scaling. Then the magnitudes of Bessel-Fourier moments of normalized image are computed, which have rotation invariance and are used to construct the feature image. Finally, the verification image is generated by performing XOR operation between the feature image and logo image, which is then saved into TA (trusted authority). When the detected image is tested, XOR operation between the verification image and the extracted feature image from the detected image is performed, then the result of XOR operation is compared with the logo image, and the copyright property of the detected image can be deduced by vision on the comparison result, which can also be measured by the object index of AR (Accuracy Rate).
     (3) A multiple zero-watermarking scheme is designed in curvature-feature domain.
     The scheme designs a multiple zero-watermarking algorithm based on Bessel-Fourier moment and extreme learning machine (ELM) in curvature-feature domain, develops a method for strengthening of feature and depressing of noise influence in curvature-feature domain, presents a simple estimation algorithm of the rotation angle for the rotation-attacked image using Bessel-Fourier moment phase component, and adopts ELM model with strong generalization ability and fast learning speed to complete the detection for the multiple zero-watermarking. The experimental results, including five types of images, indicate the proposed lossless copyright authentication scheme has better overall performance compared to other four current methods, especially in the aspect of resisting high ratio cropping and large angle rotation attacks. Finally, both quantitative and qualitative analysis for some factors affecting the algorithm performance are given, and these factors include phase and magnitude components, feature vector dimension and ELM optimization.
     (4) A chaos mapping-based zero-watermarking scheme for image authentication and tamper localization is developed.
     Based on chaos mapping, an image authentication scheme with zero-watermarking is proposed. The main advantage of the proposed scheme not only can extract correctly the watermarking under common signal processing and tamper attack, but also can detect the precise location and concrete shape of the tampered region. The good scrambling performance of Arnold cat mapping, large key space and extreme sensibility to initial value of Rossler coupling chaos can strengthen the safety and robustness of zero-watermarking. Simulation and theoretical analysis indicate the proposed scheme has better performance than the existing watermarking algorithms for image authentication and tamper localization.
引文
[1]. Dittmann J, Steinmetz A, and Steinmetz R. Content-based digital signature for motion pictures authentication and content-fragile watermarking[C]//Proceedings of the IEEE International Conference on Multimedia Computing Systems.1999:209-213.
    [2]. Lin C Y and Chang S F. A robust image authentication method surviving JPEG lossy compression[C]//Proceedings of SPIE International Conference on Storage and Retrieval of Image/Video Database.1998:296-307.
    [3]. Saad S M. Design of a robust and secure digital signature scheme for image authentication over wireless channels [J]. Information Security, IET,2009,3(1):1-8.
    [4]. Mi-Ae K, Kil-Sang Y, and Won-Hyung L. Digital signature with localization for image authentication[C]//Proceedings of the IEEE International Conference on Consumer Electronics.2011:725-726.
    [5]. Wang S, Zhao W, and Wang Z. A novel gray scale watermarking algorithm in wavelet domain[C]//Procedings of IEEE International Conference on Information and Automation. 2008:470-475.
    [6].宋伟,侯建军,李赵红.一种基于Logistic混沌系统和奇异值分解的零水印算法[J].物理学报,2009,58(7):4449-4456.
    [7]. Kutter M and Jordan F B. Digital watermarking of color images using amplitude modulation[J]. J. Electronic Image,1998,7(2):326-332.
    [8]. Lichtenauer J, Setyawan I, and Kalker T. Exhaustive geometrical search and the false positive watermark detection probability[C]// Proceedings of SPIE-Security and Watermarking of Multimedia Contents.2003:203-214.
    [9]. Hartung F, Su J K, and Girod B. Spread spectrum watermarking:malicious attacks and counterattacks[C]//Proceedings of SPIE-Security and Watermarking of Multimedia Contents.1999:147-158.
    [10]. Akhaee M A, Sahraeian S, and Marvasti F. Contourlet-based image watermarking using optimum detector in a noisy environment [J]. IEEE Trans.on Image Processing,2010,19(4): 967-980.
    [11]. Ruanaidh J J K and Pun T. Rotation,scale and translation invariant digital image watermarking[C]//Proceedings of the 1997 International Conference on Image Processing. 1997:536-539.
    [12]. Wu M, Miller M, and Bloom J A. A Rotation,scale,and translation resilient public watermark[C]//Proceeding of IEEE International Conference onAcoustics,Speech,and Signal Processing.1999:2065-2068.
    [13]. Lin C Y, Wu M, and Bloom J A. Rotation, scale, and translation-resilient public watermarking for images [C]// Proceedings of SPIE-Security and Watermarking of Multimedia Contents.2000:90-98
    [14]. Loo P and Kingsbury N. Motion estimation based registration of geometrically distorted images for watermark recovery [C]// Proceedings of the SPIE-Security and Watermarking of Multimedia Contents.2001:606-617.
    [15]. Alshaykh O K and Doherty J F. Invariant image analysis based on radontransform and SVD[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,1996,43(2):123-133.
    [16]. Simitopoulos D, Koutsonanos D, and Strintzis M G. Image watermarking resistant to geometric attacks using generalized Radon transformations [C]// Proceedings of 14th International Conference on Digital Signal Processing.2002:85-88.
    [17]. Wood J. Invariant pattern recognition:a review[J]. Pattern Recognition,1996,29(1):1-17
    [18]. Alghoniemy M and Tewfik A H. Geometric invariance in image watermarking [J]. IEEE Trans, on Image Processing,2004,13(2):145-153.
    [19]. Hu M K. Visual pattern recognition by moment invariants [J]. IRE Trans. on Information Theory,1962,8(2):179-187.
    [20]. Flusser J. Pattern recognition by affine moment invariants[J]. Pattern Recognition,1993, 26(1):167-174.
    [21]. Zhang L, Xiao W W, Ji Z, et al. Local affine transform invariant image watermarking by Krawtchouk moment invariants [J]. IET Information Security,2007,1(3):97-105.
    [22]. Yap P, Paramedran R, and Ong S. Image analysis by Krawtchouk moments[J]. IEEE Trans, on Image Processing,2003,12(11):1367-1377
    [23]. Hyvarinen A and Oja E. Independent component analysis:algorithms and applications[J]. Neural Networks,2000,13:411-430.
    [24]. Brown L G. A survey of image registration techniques[J]. ACM Computing Surveys,1992, 24(4):325-376.
    [25]. Thevenaz P, Ruttimann U E, and Unser M. A Pyramid approach to subpixel registration based on intensity[J]. IEEE Trans, on Image Processing,1998,7(1):27-41.
    [26]. Zitova B and Flusser J. Image registration methods:A survey[J]. Image and Vision Computing,2003,21(11):977-1000.
    [27]. Goshtasby A. Registration of images with geometric distortions[J]. IEEE Trans. on Geoscience and Remote Sensing,1998,26(1):60-64.
    [28]. Braudaway G W and Mintzer F. Automatic recovery of invisible image watermarks from geometrically distorted images[J]. Journal of Electronic Imaging,2000,9(4):477-483.
    [29]. Dong P, Brankov J G, and Galatsanos N. Geometric robust watermarking based on a new mesh model correction approach[C]//International Conference on Image Processing.2002: 493-496.
    [30]. Cheng H. A review of video registration methods for watermark detection in digital cinema applications[C]//IEEE International Symposium on Circuits and Systems.2004:704-707.
    [31]. Ozer I B, Ramkumar M, and Akansu A N. A new method for detection of watermarks in geometrically distorted images[C]//IEEE International Conference on Acoustics,Speech,and Signal Processing.2000:1963-1966.
    [32]. Averbuch A and Keller Y. FFT based image registration[C]//Proceedings of International Conference on Acoustics,Speech and Signal Processing.2002:3608-3611.
    [33]. Zheng J L, Hai F Z, and Bang H Z. Fractional Fourier domain digital watermarking [J]. Acta Photonica Sinica,2003,32(3):332-335.
    [34].刘九芬,黄达人,黄继武.图像水印抗几何攻击研究综述[J].电子与信息学报,2004,26(9):1495-1503.
    [35].刘九芬,王振武,黄达人.抗几何攻击的小波变换域图像水印算法[J].浙江大学学报(工学版),2003,37(4):386-392.
    [36]. Kang X G and Huang J W. An image watermarking algorithm robust to geometric distortion[C]//Lecture Notes in Computers Science:Proc. of IWDW 2002.2002:212-213.
    [37].刘瑞祯,谭铁牛.基于奇异值分解的数字图像水印方法[J].电子学报,2001,29(2):168-171.
    [38]. Gruhl D and Bender W. Affine invariance.1995; Available from: http://nif.www.Media. mit.edu/DataHiding/affine/affine.html.
    [39]. Kutter M. Watermarking resisting to translation, rotation and scaling [C]// Proceedings of the SPIE—ultimedia Systems and Applications.1998:423-431.
    [40]. Herrigel A, Voloshynovskiy S, and Rytsar Y. The watermark template attack[C]// Proceedings of the SPIE Security and Watermarking of Multimedia Contents.2001: 394-405.
    [41]. Pereira S and Ruanaidh J. Template based recovery of Fourier-based watermarks using log-polar and log-log maps[C]// IEEE International Conference on Multimedia Computing and Systems.1999:870-874.
    [42]. Pereira S and Pun T. Robust template matching for affine resistant image watermarks [J]. IEEE Trans. on Image Processing,2000,9(6):1123-1129.
    [43].楼偶俊,王钲旋.基于特征点模板的Contourlet域抗几何攻击水印算法研究[J].计算机 学报,2009,32(2):308-317.
    [44]. Kutter M, Bhattacharjee S K, and Ebrehimi T. Toward second generation watermarking schemes [C]// Proceedings of IEEE International Conference Image Processing.1999: 320-323.
    [45]. Ho Y K and Wu M Y. Robust object-based watermarking scheme via shape self-similarity segmentation.[J]. Pattern Recognition Letters,2004,25(15):1673-1680.
    [46]. Bas P, Chassery J M, and Macq B. Geometrically invariant watermarking using feature points[J]. IEEE Trans. on Image Processing,2002,11(9):1014-1028.
    [47]. Tang C W and Hang H M. A feature-based robust digital image watermarking scheme [J]. IEEE Trans. on Signal Processing,2003,51(4):950-959.
    [48]. Ji Z, Jiang L, and Jin L. An improved second generation digital image watermarking scheme[C]// Proceedings of the SPIE 5208.2004:218-223.
    [49]. Harris C and Stephens M. A combined corner and edge. detector[C]// in Fourth Alvey Vision Conf.1988:147-151.
    [50]. Zheng D and Wang S. RST invariant image watermarking algorithm with mathematical modeling and analysis of the watermarking processes. [J]. IEEE Trans. on Image Processing, 2009,18(5):1055-1068.
    [51].王向阳,孟岚,杨红颖.一种基于多尺度特征的彩色图像数字水印算法[J].中国科学,F辑:信息科学,2009,39(9):966-976.
    [52].楼偶俊.基于Contourlet域特征点的抗几何攻击水印方法[J].计算机研究与发展,2010,47(1):113-120.
    [53]. Du J and Woo C S. Recovery of watermark using differential affine motion estimation[C]// Proceedings of the 3th Australasian Information Security Workshop 2005:81-88.
    [54]. Periaswamy S and Farid H. Elastic registration in the presence of intensity variations [J]. IEEE Trans, on Medical Imaging,2003,22(7):865-874.
    [55]. Dugelay J L, Roche S, and Rey C G. Still-image watermarking robust to local geometric distortions[J]. IEEE Transactions on Image Processing,2006,15(9):2831-2842.
    [56]. Voloshynovskiy S and Deguillaume F. Multibit digital watermarking robust against local nonlinear geometrical distortions[C]// Proceedings of the International Conference on Image Processing.2001:999-1002.
    [57]. Lai C H and Wu J L. Robust image watermarking against local geometric attacks using multiscale block matching method[J]. Journal of Visual Communication and Image Representation,2009,20(6):377-388.
    [58]. Sadowskyn O, Cohen J D, and Taylor R H. Projected tetrahedra revisited:a barycentric formulation applied to digital radiograph reconstruction using higher-order attenuation functions[J]. IEEE Trans. on Visualization and Computer Graphics,2006,12(4):461-473.
    [59].温泉,孙锬锋,王树勋.基于零水印的数字水印技术研究[C]//全国第三届信息隐藏学术研讨会2001:102-109.
    [60].温泉,孙锬锋,王树勋.零水印的概念与应用[J].电子学报,2003,31(2):214-216
    [61]. Furon T. A Constructive and Unifying Framework for Zero-Bit Watermarking[J]. IEEE Trans. information forensics and security,2007,2(2):149-163.
    [62]. Chen T, Horng G, and Leew B. A publicly verifiable copyright proving scheme resistant to malicious attacks[J]. IEEE Trans, on Industrial Electronics,2005,52(1):327-334.
    [63]. Chang C C and Lin P Y. Adaptive watermark mechanism for rightful ownership protection [J]. Journal of System and Software,2008,81:1118-1129
    [64]. Boyer J P, Duhamel P, and Blanc-Talon J. Performance Analysis of Scalar DC-QIM for Zero-Bit Watermarking [J]. IEEE Trans. information forensics and security,2007,2(2): 283-289.
    [65].高山青,罗向阳,刘镔.一种基于混沌阵列的鲁棒零水印算法[J].计算机科学,2005,32(9):76-81.
    [66].高仕龙.一种DT-CWT域内的自适应图像零水印算法[J].四川大学学报:自然科学版,2008,45(3):493-497.
    [67].张立保,马新悦,陈琪.基于感兴趣区的图像零水印算法[J].通信学报,2009,30(11):117-120.
    [68]. Shakeri M and Jamzad M, A Robust Zero-Watermark Copyright Protection Scheme Based on DWT and Image Normalization [C]//International Conference on Advances in Image and Video Technology,2012:359-370.
    [69].徐涛,张艳宁,孙瑾秋.基于几何特征的3维网格模型零水印算法[J].中国图象图形学报,2009,14(9):1818-1824.
    [70]. Jing L, Zhang Y, and Chen G. Zero-watermarking for Copyright Protection of Remote Sensing Image[C]//The 9th International Conference on Signal Processing.2008: 1083-1086
    [71]. Furon T and Jegourel C. Estimating the probability of false alarm for a zero-bit watermarking technique[C]//The 16th International Conference on Digital Signal Processing.2009:1-8.
    [72].范礼,高铁杠,杨群亭.基于小波提升与Sobel膨胀特征提取的零水印版权认证方案[J].计算机应用研究,2010,27(2):726-729.
    [73]. Zhang L, Cai P, Tian X, et al. A novel zero-watermarking algorithm based on DWT and edge detection[C]//The 4th International Congress on Image and Signal Processing (CISP), 2011:1016-1020.
    [74]. Rawat S and Raman B. A blind watermarking algorithm based on fractional Fourier transform and visual cryptography[J]. Signal Processing,2012,92(6):1480-1491.
    [75]. Chen T H, Chang C C, and Wu C S. On the security of a copyright protection scheme based on visual cryptography [J]. Computer Standards & Interfaces,2009,31(3):1-5.
    [76]. Tsai H H, Tseng H C, and Lai Y S. Robust lossless image watermarking based on a-trimmed mean algorithm and support vector machine[J]. Journal of System and Software,2010,83(1): 1015-1028.
    [77]. Lou D C, Tso H K, and Liu J L. A copyright protection scheme for digital images using visual cryptography technique[J]. Computer Standards & Interfaces,2007,29:125-131.
    [78]. Sang J, Liao X, and Alam M S. Neural-network-based zerowatermark scheme for digital images[J]. Optical Engineering,2006,45(9):097006-1-097006-9.
    [79]. Hu C and Wang X. Zero watermark protocol based on time-stamp and digital signature[C]// International Forum on Information Technology and Applications.2009:193-196.
    [80]. Fan L, Gao T G, and Yang Q T. A novel zero-watermark copyright authentication scheme based on lifting wavelet and Harris corner detection[J]. Wuhan University Journal of Nature Science,2010,15(5):408-414.
    [81]. Rahmani H, Mortezaei R, and Moghaddam M E. A new lossless watermarking scheme based on DCT coefficients[C]//The 6th International Conference on Digital Content, Multimedia Technology and its Applications (IDC),2010:28-33.
    [82]. Chen H, Luo T, Yu M, et al. A Zero-watermark Method Based on Texture Characteristic of Image Blocks for Stereo Images[J]. American Journal of Engineering and Technology Research,2011,11(12):1617-1620.
    [83].黄润生,黄浩.混沌及其应用[M].武汉大学出版社,2005.
    [84]. Lorenz E N. Deterministic Non-periodic Flows[J]. Journal of the Atmosphereric Sciences, 1963,20:130-141.
    [85]. Henon M N. A Two Dimensional Mapping with a Strange Attractor[J]. Communications in Mathematical Physics,1976,50(1):69-77.
    [86]. Rossler O. Continuous chaos-four prototype equations[J]. Annals New York Academy of Science,1979,316:376-392.
    [87]. Li T and Yorke J. Period three implies chaos[J]. Americal Mathmatics Monthly,1975, 82(10):985-992.
    [88].倚恩,斯图尔特著,潘涛译.上帝掷骰子吗-混沌之数学[M].上海远东出版社,1996.
    [89].郝柏林.分叉、混沌、奇怪吸引子、湍流及其它[J].物理学进展,1987,3(3):392-437.
    [90].程极泰.混沌的理论与应用[M].上海科学技术出版社,1991.
    [91]. Teh C H and Chin R T. On image analysis by the methods of moments[J]. IEEE Trans. on Pattern Analytical Machine Intelligene,1988,10(4):496-512.
    [92]. Teague M. Image analysis via the general theory of moments[J]. Journal of the Optical Society of America A-Optics Image Science and Vision,1980,70(8):920-930.
    [93]. Kan C and Srinath M D. Invariant character recognition with Zemike and orthogonal Fourier-Mellin moments[J]. Pattern Reeognition,2002,35(1):143-154.
    [94].王耀明.图像的矩函数:原理、算法及应用[M].华东理工大学出版社,2002.
    [95]. Shen J J and Shen W. On geometric and Orthogonal moments[J]. International Journal of Pattern Recognition and Artificial Intelligence,2000,4(7):875-894.
    [96]. Bhatia A B and Wolf E. On the circle polynomials of Zernike and related orthogonal sets [J]. Cambridge Philosophieal Society,1954,50:40-48.
    [97]. Sheng Y and Shen L. Orthogonal Fourier-Mellin moments for invariant pattern recognition [J]. Optical Society of America,1994,11(6):1748-1757.
    [98]. Zhu H Q, Shu H Z, Liang J, et al. Image analysis by discrete orthogonal dual-Hahn moments [J]. Pattern Recognition Letters,2007,28(13):1688-1794.
    [99]. Mukundan R, Ong S H, and Lee P A. Image analysis by Tchebichef moments[J]. IEEE Trans. on image processing,2001,10(9):1357-1364
    [100]. Stankovic S, Djurovic I, and Pitas I. Watermarking in the space/spatial-frequency domain using two-dimensional radon-wigner distribution[J]. IEEE Trans. on Image Processing, 2001,10(4):650-658.
    [101].邓成,李洁,高新波.基于仿射协变区域的抗几何攻击图像水印算法[J].自动化学报,2010,36(2):221-228.
    [102]. Cox I J, Kilian J, and Thomson F. Secure spread spectrum watermarking for multimedia [J]. IEEE Trans. on Image Processing,1997,6(12):1673-1687.
    [103]. Gao X B and Deng C. Geometric distortion insensitive image watermarking in affine covariant regions[J]. IEEE Trans. on Systems, Man, and Cybernetics,2010,40(3):278-286.
    [104].胡裕峰,朱善安.基于PCA和混沌置乱的零水印算法[J].浙江大学学报(工学版),2008,42(4):593-597
    [105]. Zhu H Q, Shu H Z, and Xia T. Translation and scale invariants of Tchebichef moments[J]. Pattern Recognition,2007,40(5):2530-2542.
    [106].佟晓筠,崔明根.基于扰动的复合混沌序列密码的图像反馈加密算法[J].中国科学F辑:信息科学,2009,39(6):588-597.
    [107]. Pincus S M. Approximate entropy (ApEn) as a complexity measure[J]. Chaos,1995,5(1): 110-117
    [108].李强,王太勇,冷永刚.基于近似熵测度的自适应随机共振研究[J].物理学报,200756(12):6803-6808.
    [109]. Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks,1999,10(5):988-999.
    [110].袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策,2006,21(1):111-113
    [111]. Do M N and Vetterli M. The contourlet transform:an efficient directional mutiresolution image representation [J]. IEEE Trans, on image processing,2005,14(12):2091-2106.
    [112]. Kohda T and Tsuneda A. Stalistics of chatotic binary sequence[J]. IEEE Trans. on Information Theory,1997,43(6):104-112.
    [113].张家树,肖先赐.混沌时间序列的Volterra自适应预测[J].物理学报,2000,49(3):0403-0408.
    [114].张森,肖先赐.混沌时间序列全局预测新方法--连分式法[J].物理学报,2005,54(11):5062-5068.
    [115]. Belkasim S O. Pattern recognition with moment invariants-a comparative study and new results[J]. Pattern Recogn.,1991,24(12):1117-1138.
    [116]. Yadav R B, Nishchal N K, Gupta A K, et al. Retrieval and classification of objects using generic Fourier, Legendre moment, and wavelet Zernike moment descriptors and recognition using joint transform correlator[J]. Optics & Laser Technology,2008,40(3): 517-527.
    [117]. Zhang H, Shu H Z, Han G N, et al. Blurred image recognition by Legendre moment invariants [J]. IEEE Trans. on Image Processing,2010,19(3):596-611.
    [118]. Choi M S and Kim W Y. A novel two stage template matching method for rotation and illumination invariance [J]. Pattern Recognition,2002,35(1):119-129.
    [119]. Qu Y D, Cui C S, Chen S B, et al. A fast subpixel edge detection method using Sobel-Zernike moments operator [J]. Image and Vision Computing,2005,23(1):11-17.
    [120]. Zhang L, Xiao w w, Qian G B, et al. Rotation, scaling and translation invariant local watermarking technique with Krawtchouk moments[J]. Chinese Optics Letters,2007,5(1): 21-24.
    [121]. Zhang H, Shu H Z, Coatrieux G, et al. Affine Legendre moment invariants for image watermarking robust to geometric distortions[J]. IEEE Trans. on Image Processing,2011, 20(8):2189-2199.
    [122]. Zhu H Q, Shu H Z, Liang J, et al. Image reconstruction and compression by discrete orthogonal Racah moments [J]. Signal Processing,2007,87(4):687-708.
    [123]. Xiao B, Ma J F, and Wang X. Image analysis by Bessel-Fourier moments[J]. Pattern Recognition,2010 43:2620-2629.
    [124]. Amos D E. A portable package for Bessel functions of a complex argument and nonnegative order[J]. ACM Trans. on Mathematical Software,1986,12(3):265-273.
    [125]. Dong P, Brankov J G, Galatsanos N P, et al. Digita watermarking robust to geometric distortions[J]. IEEE Trans. on Image Processing,2005,14(12):2140-2150.
    [126]. Sheng Y and Shen L. Orthogonal Fourier-ellin moments for invariant pattern recognition[J]. Journal of Optical Society of America,1994,11(6):1748-1757
    [127]. Li L D and Guo B L. Combining interest point and invariant moment for geometrically robust image watermarking[J]. Journal of Information science and engineering,2009,25: 499-515.
    [128]. He X C and Yung N H C. Corner detector based on global and local curvature properties [J]. Optical Engineering,2008,47(5):057008-1-057008-12.
    [129]. Kitchen L and Rosenfeld A. Gray level corner detection[J]. Pattern Recognition Letter,1982, 1:95-102.
    [130]. Smith S and Brady J. SUSAN-a new approach to low-level image processing [J]. International Journal of Computer Vision,1997,23(1):45-78.
    [131]. Mokhtarian F and Suomela R. Robust image corner detection through curvature scale space [J]. IEEE Trans, on Pattern Analysis and Machine Intelligence,1998,20(12):1376-1381
    [132]. Huang G B and Zhu Q Y. Extreme learning machine:theory and applications[J]. Neurocomputing,2006,70:489-501.
    [133]. Serre D. Matrices:Theory and Appkications[M]. New York:Springer,2002.145.
    [134]. Zhu Q Y, Qin A K, Suganthan P N, et al. Evolutionary extreme learning machine[J]. Pattern Recognition,2005,38:1759-1763.
    [135]. Miche Y, Sorjamaa A, and Bas P. OP-ELM:Optimally pruned extreme learning machine[J]. IEEE Trans, on Neural Networks,2010,21(1):158-162.
    [136]. Jiang G Y, Yu M, Shi S D, et al. New blind image watermarking in DCT domain[C]// Proceedings of the Sixth International Conference on Signal Processing.2002:1580-1583.
    [137]. Raval M S and Rege P P. Discrete wavelet transform based multiple watermarking scheme[C]//Proceedings of the Conference on Con-vergent Technologies for Asia-Pacific Region.2003:935-938.
    [138]. Rosa A, Barni M, Bartolini F, et al. Optimum decoding of non-additive full frame DFT watermarks[C]//Proceedings of the Third Workshop of Information Hiding.1999:159-171.
    [139]. Wong P W. A public Key watermark for image verification and authentication [C]// Proceedings of IEEE International Conference on Image Processing.1998:455-464.
    [140]. Walton S. Information authentication for a slippery new age[J]. Dr Dobbs Journal,1995, 20(4):18-26.
    [141]. Rawat S and Raman B. A chaotic system based fragile watermarking scheme for image tamper detection[J]. AEU - International Journal of Electronics and Communications,2011, 65(10):840-847.
    [142]. Tian L, Zheng N, Xue J, et al. An integrated visual saliency-based watermarking approach for synchronous image authentication and copyright protection[J]. Signal Processing:Image Communication,2011,26(8-9):427-437.
    [143]. Brown E and Vaughan T P. Cycles of directed graphs defned by matrix multiplication (mod n) [J]. Discrete Mathematics,2001,239:1179-1191.
    [144].黄外斌,张宜,董光昌.基于Arnold变换的图像逆置乱算法[J].高校应用数学学报,2008,23(1):99-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700