用户名: 密码: 验证码:
禾谷镰孢菌(Fusarium graminearum)对多菌灵抗药性分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文克隆了禾谷镰孢菌野生型和多菌灵抗药性菌株的p2-微管蛋白基因(β2-tub)全序列,明确了β2-tub突变类型与该菌对多菌灵抗药性水平间的关系,并通过基因功能互补验证确定β2-tub为禾谷镰孢菌对多菌灵的抗药性基因;进一步通过人工点突变技术研究了β2-tub双点突变中各个突变与抗药性的关系,探讨了p1-微管蛋白基因的关键氨基酸的突变与抗药性的关系及其生物学功能。
     以禾谷镰孢菌(Fusarium graminearum)标准菌株PH-1的β2-微管蛋白基因(β2-tub)部分序列(genbank登录号:FG06611.1)为参考,扩增了野生型菌株2021的β2-微管蛋白基因全长cDNA序列和基因全长序列。测序结果表明,野生型菌株2021的β2-微管蛋白基因编码区共1713bp,含有6个内含子,与标准菌株PH-1的β2-微管蛋白基因编码区相比有13个核苷酸的差异;该基因可编码477个氨基酸,其编码的第7位氨基酸(Ile)与标准菌株PH-1(Val)有差异;该β2-微管蛋白与其它8种真菌的苯并咪唑抗药性相关p-微管蛋白的同源性为74-77%。通过比较禾谷镰孢菌野生型菌株和多菌灵抗药性菌株的β2-tub序列发现:多菌灵中抗(MBCMR)菌株2052和R9等,β2-Tub第167位氨基酸由苯丙氨酸突变为酪氨酸;MBCMB菌株NT-7等,β2-Tub第200位氨基酸由苯丙氨酸突变为酪氨酸;多菌灵高抗(MBCHR)菌株JT04的β2-Tub第73位和198位氨基酸分别由谷氨酰胺和谷氨酸突变为精氨酸和亮氨酸;多菌灵高抗诱导(MBCIHR)菌株ZF43-6、ZF43-17和MBCHR菌株J2的β2-Tub第198位氨基酸由谷氨酸突变为赖氨酸;MBCIHR菌株52-7的β2-Tub第17位和167位氨基酸分别由甘氨酸和苯丙氨酸突变为丝氨酸和突变为酪氨酸。半定量RT-PCR分析表明:禾谷镰孢菌β2-tub在芽管和菌丝中表达量最高,在分生孢子和子囊孢子中的表达量次之;β1-tub在以上各阶段的表达水平无明显差异。
     利用PEG介导的原生质体转化系统,将禾谷镰孢菌β2-微管蛋白基因(β2-tub)敲除DNA片段“1-up:PtrpC-pht:1.2-dow”分别导入禾谷镰孢菌野生型菌株2021、MBCMR菌株R9和MBCHR菌株JT04,利用潮霉素筛选获得转化子,使用PCR方法快速筛选获得了β2-tub敲除突变体。所有β2-tub敲除突变体对MBC均表现为超敏感,其菌丝生长速率、产分生孢子能力、产子囊壳能力及致病力均显著下降。分别将源自禾谷镰孢菌的野生型菌株2021、MBCMR菌株R9和MBCHR菌株JT04的β2-tub回复插入至禾谷镰孢菌β2-tub敲除体后,β2-tub回复插入突变体表现出与导入β2-tub相应的抗药性水平,其菌丝生长速率、产分生孢子能力、产子囊壳能力及致病力也基本恢复。结果表明,禾谷镰孢菌β2-微管蛋白(β2-Tub)关键氨基酸的突变可导致禾谷镰孢菌对MBC的抗药性;β2-微管蛋白在禾谷镰孢菌菌丝生长和繁殖过程中具有重要作用。
     利用体外人工点突变和两步同源置换法成功获得了禾谷镰孢菌β2-微管蛋白(β2-Tub)第17位氨基酸(Gly→Ser)点突变体、73位氨基酸(Gln→Arg)点突变体、167位氨基酸(Phe→Tyr),点、198位氨基酸(Glu→Leu)点突变体、第17位(Gly→Ser)和167位Phe→Tyr)氨基酸双位点突变体、73位(Gln→Arg)和198位(Glu→Leu)氨基酸双位点突变体和240位氨基酸(Phe→Leu)突变体。结果显示,禾谷镰孢菌β2-Tub第17位氨基酸突变(Gly→Ser)可导致该菌对多菌灵的低抗,第73位氨基酸突变(Gln→Arg)不影响该菌对多菌灵的敏感性,第167位氨基酸突变(Phe→Tyr)可导致该菌对多菌灵中抗,第198位氨基酸突变(Glu→Leu)可导致该菌对多菌灵高抗,在167位氨基酸突变(Phe→Tyr)的基础上,第17位氨基酸突变(Gly→Ser)可导致该菌对多菌灵高抗,240位氨基酸突变(Phe→Leu)可导致该菌对多菌灵超敏感;以上所有类型的突变均对禾谷镰孢菌的生活力无显著影响。
     禾谷镰孢菌p1-微管蛋白基因(β1-tub)并非禾谷镰孢菌的多菌灵抗性基因,但与β2-微管蛋白基因(β2-tub)相比,β1-tub与其它真菌中的苯并咪唑抗药性p-微管蛋白基因的同源性更高。为更好了解禾谷镰孢菌对苯并咪唑类杀菌剂的抗性机制和禾谷镰孢菌81-微管蛋白(β1-Tub)生物学功能。本文使用同源重组二步置换法将p1-微管蛋白第167位、第198位及第200位氨基酸进行人工点突变,突变方式分别为Phe167Tyr、 Glu198Lys和Phe200Tyr,并用二步同源置换法导入野生型β1-tub作为对照,用以评估基因操作对菌株的影响。结果显示,与对照菌株相比,禾谷镰孢菌β1-Tub第167位氨基酸突变体(Phe→Tyr).第198位氨基酸突变体(Glu→Lys)以及第200位氨基酸突变体(Phe→Tyr)对多菌灵、苯菌灵、噻菌灵和甲基托布津的敏感性均有所下降,但生物学特性无明显变化。禾谷镰孢菌β1-tub敲除突变体对多菌灵的敏感性略有下降,但其菌丝生长速度、产分生孢子能力、产子囊孢子能力和致病力均显著下降。
The β2-tubulin gene ((32-tub) of Fusaium graminearum (teleomorph:Gibberella zeae) was cloned by reverse transcriptase and polymerase chain reaction. The coding region of the P2-tub is1713bp length, including6introns, encoding477amino acids. Difference at thirteen nucleotides in coding region of P2-tubulin gene was detected by comparison wild-type isolates of Fusaium graminearum with standard isolate PH-1.But this causes only one difference in β2-tubulin at residue7[Val(PH-1)→Ile(2021)]. The homology of P2-tubulin in F. graminearum with benzimidalzole resistance β-tubulin in some other fungi is between74%and77%. The site mutation of β2-tubulin at codon167(Phe→Tyr) and codon200(Phe→Tyr) in F. graminearum may confer carbendazim (MBC) medium resistance; Site-mutation of β2-tubulin at its codon198(Glu→Lys\Leu) or at both codon17(Gly→Ser) and codonl65(Phe→Tyr) may confer MBC high resistance. Semi-quantative RT-PCR of β1-, P2-tubulin indicated that expression level of β2-tubulin in germ tubes and mycelia was higher than that in conidia and ascospores; expression of β1-tubulin in ascosores, conidia, germ tubes and mycelia was not significantly diferent.
     The P2-tub was confirmed as MBC-resistance gene in F. graminearum by gene deletion and complementation. The P2-tub was deleted by homologous recombination of "l-up:PtrpC-pht:1.2-down" DNA fragment with the β2-tubulin locus, and then complemented by inserting plasmid vector pAMDS-β2tub into the genome of P2-tub deletion mutant strains. The β2-tubulin deletion mutants of wild-type strain2021, MBCMR strain R9and MBCHR strain JT04were super-sensitive to MBC, and the fitness of these β2-tub deletion mutants were significantly decreased as well. The complementation mutants possessing β2-tub origin from wild-type and MBC-resistant strains exhibited a MBC-sensitivity corresponding to their parental strains, and had a comparative fitness to their original strains as well.
     Site-directed mutagenesis of β2-tub in F. graminearum wild-type strain2021at codon17,73,167,198and240were performed to clarify the relation between MBC-resistance level and mutation types. Mutation at codon17(Gly→Ser) in β2-tub conferred MBC low resistance; mutation at codon167(Phe→Tyr) in β2-tub conferred MBC medium resistance, double mutations at codon17(Gly→Ser) and codon167(Phe→Tyr)conferred MBC high resistance; mutation at codon73(Gln→Arg) in β2-tub did not confer MBC resistance, but muation at codon198conferred high resistance; mutation at codon240(Phe→Leu) in β2-tub made the mutant strains super-sensitive to MBC. All the mutants had a comparative fitness to the progenitor strain2021.
     Two β-tubulin genes, which were known as β1-tubulin gene (β1-tub) and β2-tub, had been found in Fusarium graminearum. Benzimidazole resistance in Fusarium graminearum in the field is conferred by mutation in p2-tub but than β1-tub.β1-tubulin in F. graminearum, however, was highly identical to β-tubulin genes conferring benzimidazole resistance in some other fungi. To determine whether β1-tub of F. graminearum has the potential to confer carbendazim resistance, site-directed mutagenesis followed by gene replacement was used to change β1tub of F. graminearum wild-type strain2021at codon167(Phe to Tyr), codon198(Glu to Lys), and codon200(Phe to Tyr). Compared to the wild-type β1-tub revertant strains, all the β1-tub mutant strains (Phe167Tyr, Glu198Lys, and Phe200Tyr) and β1-tub deletion mutant strains had an increased resistance to carbendazim, benomyl, thiabendazole, and thiophanate-methyl; the resistance ratio of the mutant to the benzimidazole fungicides, however, was low. There were no significant changes among wild-type strain2021and β1-tub mutant strains in other biological properties. The fitness of β1-tub deletion mutant strains was significantly decresed comparing to the progenitor strain2021. In general, β1tub in F. graminearum has a potential to confer resistance to benzimidazole fungicides; the β1tub site-mutant strains had a comparative fitness to F. graminearum wild-type strain2021; the β1tub deletion-mutant strains had an increased sensitivity to MBC and a decreased fitness, than parental strain2021.
引文
1.周明国,叶钟音.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性[J].植物保护,1987,13(2):31-33
    2. Vonk J W, Sijpesteijn A K. Methyl benzimidazole-2-ylcarbamate, the fungitoxic principle of thiophanate-methyl [J]. Pesticide Science,1971,2:160-164
    3. Hastie A C. Benlate-induced instability of Aspergillus diploids [J]. Nature,1970,226:771
    4. Clemons G P, Sisler H D. Localization of the site of action of a fungitoxic benomyl derivative [J]. Pestic. Biochem. Physiol.,1971,1:32-43
    5. Davidse L C. Antimitotic activity of methyl benzimidazole-2-yl carbamate (MBC) in Aspergillus nidulans[J]. Pestic. Biochem. Physiol.,1973,3:317-325
    6. Hammerschlag R S, Sisler H D. Benomyl and methyl-2-benzimidazole carbamate(MBC): Biochemical, cytological and chemical aspects of toxicity to Ustilago maydis and Saccharomyces cerevisia[J].Pesti.Biochem.Physiol.,1973,3:42-54
    7. Davidse L C. Benzimidazole fungicides:mechanism of action and biological impact[J]. Ann. Rev. Phytoathol.,1986,24:43-65
    8. Cleveland D W, Sullivan K F. Molecular biology and genetics of tubulin[J]. Ann. Rev. Biochem.,1985,54:331-365
    9. De Brabander M J, Van de Veire R M L, Aerts F E M, Borgers M, Janssen P A J. The effects of methyl [5-(2-thienyl-carbonyl)-1H-benzimidazol-2-yl]-carbamate(R17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules on mammalian cells cultured in vitro[J]. Cancer Res.,1976,36:1011-1018
    10. Hoebeke R J, Van Nyen G, De Brabander M. Interaction of oncodazole (R17934), a new antitumoral drug with rat brain tubulin[J]. Biochem. Biophys.Res.Commun.,1976,69:319-324
    11. Davidse L C, Flach W.Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans[J].J. Cell. Biol.,1977,72:174-193
    12. Howard R J, Aist J R. Effects of MBC on hyphal tip organization, growth, and mitosis of Fusarium acuminatum and their antagonism by D2O[J]. Protoplasm,1977,92:195-210
    13. Howard R J, Aist J R. Cytoplasmic microtubules and fungal morphogenesis:Ultrastructural effects of methyl benzimidazol-2-yl carbamate determined by freeze-substitution of hyphal tip cells[J]. J. Cell Biol.,1980,87:55-64
    14. Kunkel W Antimitotische Aktivitat von Methylbenzimidazol-2-yl carbamat (MBC) [M]. In: Licht-, elektronenmikroskopische und physiologische Untersuchungen an keimenden Konidien von Aspergillus nidulans. Z.Allg.Mikrobiol.,1980,20:113-120
    15. Davidse LC. Biochemical aspects of benzimidazole fungicides action and resistance[M]. In: Lyr H eds.Modern selective fungicides-properties, applications, mechanisms of action.London: Longman Group UK,1987.245-257
    16. Heath I B. The effect of nocodazole on the growth and ultrastructure of the fungus, Saprolegnia ferax:Evidence against a simple mode of action[M]. In:Cappuccinelli P, Morris N R, ed. Microtubules in Microorganisms.New York:Dekker,1982.275-311
    17. Campbell A G, Sinclair D P. Control of facial eczemain lambs by use of fungicides[J]. Proc. Ruakura Farmers'Conf. Week. N. Z,1968.3-12
    18. Schroeder W T, Provvidenti R. Resistance to benomyl in powdery mildew of cucurbits[J]. Plant Disease Reporter,1969,53:271-275
    19. Bollen G J, Scholten G. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen[J]. Netherlands Journal of Plant Pathology,1971,77: 83-90
    20. Wicks T. Tolerance of the apple scab fungus to benzimidazole fungicides[J]. Plant Disease Reporter,1974,58:886-889
    21. Locke T. Current incidence in the UK of fungicide resistance in pathogens of cereals[C]. Proceedings 1986 British Crop Protection Conference,1986.781-786
    22. Kendall S, Hollomon D W, Ishii H, Heaney S P. Characterisation of benzimidazole resistant strains of Rhynchosporium secalis[J]. Pesticide Science,1993,40:175-181
    23.周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41
    24. Takeuchi T. Studies of the epidemiology of fungicide resistant gray mold strains. Special Bulletion of the Chiba-Ken Agricultural Experiment Station,1987.14:1-75
    25.周明国,王建新.禾谷镰孢霉对多菌灵的敏感性基线及抗药性菌株生物学性质的研究[J]. 植物病理学报,2001,31(4):365-370
    26. Davidse L C, Flach W. Interaction of thiabendazole with fungal tubulin[J]. Biochim. Biophys. Acta.,1978,543:82-90
    27. Leroux P, Gredt M. Effects du barbane, chloryelAme, du chlorpropham et du prophame sur diverses souches de Botrytis cinerea Pers. Et de Penicillium expansum Link sensibles ou resistantes au carbendazime et au thiabendazole[J]. C.R.Acad.Sci.Paris.,1979,289:691-693
    28. Jones A L, Shabi E, Ehret G R. Genetics of negatively correlated cross-resistance to a N-phenylcarbamate in benomyl-resistant Venturia inaequalis[J]. Can. J. Plant Pathol.,1987,9: 195-199
    29. Kato T. Negative cross-resistance activity of MDPC and diethofencarb against benzimidazole-resistant fungi[M]. In:Fungicide resistance in north America, Delp C J ed. Minnesota:APS Press,1988.40
    30. Ishii H, van Raak M. Inheritance of increased sensitivity to N-phenylcarbamates in benzimidazole-resistant Veuturia nashicola[J]. Phytopathology,1988,78:695-698
    31. Nakata A, Snao S, Hashimoto S, Hayakawa K, Nishikawa H, Yasuda Y. Negatively correlated cross-resistant to N-phylformamidoximes in benzimidazole-resistant phytopathogenic fungi [J]. Annals of the Phytopathological Society of Japan,1987,53:659-662
    32. Josepovits G, Gasztonyi M, Mikite G. Negative cross-resistance to N-phenylanilines in benzimidazole-resistant strains of Botrytis cinerea, Venturia nashicola and Venturia inaequalis [J]. Pesticide Science,1992,35:237-242
    33. Ishii H, Davidse L C. Decreased binding of carbendazim to cellular protein from Venturia nashicola and its involvement in benzimidazole resistance[C]. Proceeding of the 1986 British Crop Protection Conference-Pests and Disease,1986.567-573
    34. Jung M K, Oakley B R. Identification of an amino acid substitution in the benA, β-tubulin, gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity[J]. Cell Motil. Cytoskeleton,1990,17:87-94
    35. Davidse L C. Metabolic conversion of methyl-benzimidazol-2-yl carbamate(MBC) in Aspergillus nidulans[J]. Pestic.Biochem.Physiol.,1976,6:538-546
    36. Koenraadt H, Somerville S C, Jones A L. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi [J]. Phytopathology,1992,82:1348-1354
    37. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 on beta-tubulin that correlate with benomyl resistance phenotypes of field strains of Botrytis cinerea[J]. Phytopathology,1993,83:1478-1483
    38. Butters J A, Hollomon D W. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms[J]. Pesticide Science,1999,55:501-503
    39. Kawchuk L M, Hutchison L J, Verhaeghe C A, Lynch D R, Bains P S, Holley J D. Isolation of theβ-tubulin gene and characterization of thiabendazole resistance in Gibberella pulicaris[J]. Can. J. Plant Pathol.,2002,24:233-238
    40.陆悦健,周明国,叶钟音,王建新.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34
    41. Fling M E, Kopf J, Tamarkin A, Gorman J A, Smith H A, Koltin Y. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate[J]. Mol.Gen.Genet.,1991,227:318-329
    42. Jung M K. Amino aid alterations in the benA gene of Aspergillus nidulans that confer benomyl resistance[J]. Cell Moti. Cytoskeleton,1992,22:170-174
    43. Jung M K, Oakly B R. Identification of an amino acid substitution in benA, β-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensity[J]. Cell Moti. Cytoskeleton.1990,17(2):87-94
    44. Fujimura M, Kanakura Tm and Yamaguchi, I. Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa[J]. J. Pesticide. Sci.,1992,17:237
    45. Fujimura M. Mode of action of diethofencarb to benzimidazole-resistance strains in Neuropora crassa[J]. J.Pesticide Sci.,1994,19:333-334
    46. Koeneaade H, Jones A L.Resistance to benomyl conferred by mutions in codon 198 or 200 in the beta-tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198[J]. Photopathology,1993,83:850-854
    47. Faretra F, Pollastro S. Genetic basis of resistance to benzimidazole and dicarboximide fungicides in Botryotinia fuckeliana (Botrytis cinerea) [J]. Mycol. Res.,1991,95(8):943-951
    48. Shabi E, Katan T, Marton K. Inheritance of resistance to benomyl in isolates of Venturia inaequalis from Israel[J]. Plant Pathology,1983,32:207-211
    49. Molnar A, Hornok L, Miklo's P. The high level of benomyl tolerance in Fusarium oxysporum is determined by the synergistic interaction of two genes[J]. Experimental Mycology,1985, 9(3):326-333
    50. Beraha L, Garber E D. A genetic study of resistance to thiabendazole and sodium o-phenylphenate in Penicillium italicum by the parasexual cycle[J]. Bot.Gaz.,1980,141: 204-209
    51. Stover,R H.Extranuclear inherited tolerance to benomyl in Mycosphaerella fijiensis var. difformis[J]. Trans. Br. Mycol. Soc.,1977,68(1):122
    52. Delp C J. Coping with resistance to plant disease control agents[J]. Plant Disease,1980,64: 651-657
    53. Kato T, Suzuki D, Takahashi J, Kamoshita K. Negatively correlated cross-resistance between benzimidazole fungicides and methyl N-(3,4-dichlorophenyl)-carbamate[J]. J. Pesticide Scienc.,1984,9:485-495
    54. Rosenberger D A, Meyer F W. Negatively correlated cross-resistance to diphenylamine in benomyl-esistant Penicillium expansum[J]. Phytopathol.,1985,75:74-79
    55. Faretra F, Pollastro K S, Ditonno A P. New natural variants of Botryotinia fuckeliana (Botrytis cinerea) couling benzimidazole-resistance to insensitivity toward the N-phenylcarbamate diethofencarb[J]. Phytopathol. Mediterr.,1989,28:98-104
    56. Eald Y, Yunis H, Katan T. Multiple fungicide resistance to benzimidazoles,dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel[J]. Plant Pathology,1992,41: 41-46
    1.叶钟音,周明国.江淮地区小麦赤霉病菌对多菌灵耐药性的测定[J].植物保护学报,1985,12(3):188-189
    2.顾宝根,刘经芬.小麦赤霉病对多菌灵耐药的研究[J].南京农业大学学报,1990,13(1):57-61
    3.周明国,叶钟音,刘经芬.杀菌剂抗性研究进展[J].南京农业大学学报,1994,17(3):33-41
    4.周明国,叶钟音,王建新.禾谷镰刀菌对多菌灵的抗药性研究[M].刘仪主编.植物病理学研究进展.北京:中国农业科技出版社,1998.158-163
    5.周明国.我国几种植物病害的抗药性监测情况[M].农药科学与管理.1999,20(3):39-40
    6.王建新,周明国.禾谷镰刀菌对多菌灵抗药性的快速监测技术研究[C].周明国主编.中国植物病害化学防治研究(第一卷).北京:中国农业科技出版社,1998.325-328
    7.王建新,周明国.小麦赤霉病对多菌灵抗药性监测技术研究[J].植物保护学报,2002,29(1):73-77
    8.周明国,王建新.禾谷镰孢霉对多菌灵的敏感基线及抗药菌株生物学性质研究[J].植物病理学报,200],31(4):365-370
    9.王建新,周明国,陆悦健,叶钟音.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47
    10.潘洪玉,杜红军,郭金鹏,刘友良,朱玉奎.东北春麦区小麦赤霉病菌对多菌灵敏感性的测定[J].吉林农业科学,2002,27(增刊):44-45
    11.顾宝根,刘经芬.小麦赤霉病菌对多菌灵抗药性的研究.Ⅱ.抗性检测和诱导[J].南京农业火学学报.1990,13(1):57-61
    12.周明国,王建新,陆悦健,鞠理红,叶钟音.小麦赤霉病菌对多菌灵抗药性变异研究[J].南京农业大学学报.1994,17(增刊):106-112
    13.袁善奎,周明国.禾谷镰孢菌(Gibberella zeae)对多菌灵的抗药性遗传[J].遗传学报,2003,30(5):474-478
    14.袁善奎.禾谷镰孢菌(Gibberella zeae)对多菌灵抗药性遗传研究[D].南京:南京农业火 学,2003
    15.袁善奎.禾谷镰孢菌(Gibberella zeae) nit突变体的诱导及其生物学特性研究[J].菌物系统,2002,21(1):71-76
    16.陆悦健.小麦赤霉病菌对多菌灵抗药性分子机制初探[C].周明国主编.中国植物病害化学防治研究(第一卷).北京:中国农业科技出版社,1998.150-153
    17.陆悦健,周明国,叶钟音,王建新.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报.2000,30(1):30-34
    18.李红霞,周明国,陆悦健.小麦赤霉病菌β-微管蛋白基因的克隆及其对多菌灵抗性的关系分析[J].微生物学报,2003
    19.陈长军.禾谷镰孢菌(Fusarium graminearum)对多菌灵抗药性基因克隆[D].南京:南京农业大学.2000.
    1.刘长江,刘玲,叶博.白腐真菌及其木质素酶的研究进展[J].饲料工业.2006,27(8):25-28.
    2. Battat E, Peleg Y, Bercovitz A, Rokem J S, Goldberg I. Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor[J]. Biotechnol Bioeng.1991,37(11):1108-1116.
    3.沈莉,田卓民.肺曲霉菌病的临床特点及诊治[J].临床肺科杂志.2009,14(7):941-943.
    4.柳溪林.人兽共患接合菌病进展[J].中国医学研究与临床.2008,6(1):48-58.
    5.朱宝泉,徐林,俞雄.酮内酯类抗生素的研究进展[J].中国医药工业杂志.2009,40(8):627-636.
    6.赵和平,张心团,马振声,樊美珍,李增智.抗肿瘤真菌药物的研究进展[J].安徽农业大学学报.2003,30(4):462-465.
    7.许志刚.普通植物病理学(第三版)[M].中国农业出版社,2002.
    8.王雪梅,屈海泳,刘连妹.木霉菌在生物防治上应用的研究进展[J].湖北农业科学.2009,48(3):743-746.
    9.曹雅忠,刘树森,李克斌,尹姣.蛴螬生物防治研究进展[J].中国生物防治.2008,24(2):168-173.
    10.李仕贵,马炳田,石军,龙美西,曲广林.稻瘟病菌无毒基因研究进展[J1.中国生物工程杂志.2006,26(12):112-116.
    11. Mishra N C, Tatum E L. Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora.[J]. Proc Natl Acad Sci USA.1973,70(12):3875-3879.
    12. Skatrud P L, Tietz A J. Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium[J].Biotechnology.1989,7(477-485).
    13. Fernandez-Canon J M, Penalva M A. Overexpression of two penicillin structural genes in Aspergillus nidulans.[J]. Mol. Gen. Genet.1995,246(1):110-118.
    14.黄卫,汪天虹,吴志红,吴静,李滢冰.丝状真菌遗传转化系统研究进展[J].微生物学杂志.2000,20(3):40-44.
    15.罗信昌,闫培生.丝状真菌基因工程研究进展[J].生物工程进展.1999,19(1):36-41.
    16. Vapnek D, Hautala J A, Jacobson J W, Giles N H, Kushner S R. Expression in Escherichia coli K-12 of the structural gene for catabolic dehydroquinase of Neurospora crassa[J]. Proceedings of the National Academy of Sciences of the United States of America.1977,74(8):3508-3512.
    17.刘朋娟.农杆菌介导的稻瘟病菌转化及致病突变体的筛选[D].杭州:浙江大学,2005.
    18.李育阳.基因表达技术[M].科学出版社,2002.
    19. Khang C H, Park S, Lee Y, Kang S. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum[J]. Fungal Genetics and Biology.2005,42(6): 483-492.
    20. Wu H, Liu X, Jaenisch R. Double replacement:Strategy for efficient introduction of subtle mutations into the murine Coila-i gene by homologous recombination in embryonic stem cells[J]. Proceedings of the National Academy of Sciences of the United States of America.1994,91: 2819-2823.
    21. Hinnen A, Hicks J B, Fink J R. Transformation of yeast[J]. Proc Natl Acad Sci USA.1978,75: 1929-1933.
    22.陈利锋,Thomas M H禾谷镰孢菌高产毒菌株的构建[J].菌物系统.,20(3):330-336.
    23. Yelton M M, Hamer J E, Timberlake W E. Transformation of Aspergillus nidulans by using a trpC plasmid[J]. Proc Natl Acad Sci USA.1984,81(5):1470-1474.
    24. Irie T, Honda Y, Watanabe T, Kuwahara M. Efficient transformation of filamentous fungus Pleurotus ostreatus using single-strand carrier DNA[J]. Applied Microbiology and Biotechnology. 2001,55(5):563-565.
    25. Sanchez O, Aguirre J. Effient transformation of Aspergillus nidulans by electroporation of germinated conidia[J]. Fungal Genetics Newsletter.1996,43:48-51.
    26. Margolin B, Freitag M, Selker E U. Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation:correction[J]. Fungal Genetics Newsletter.2000,47:112.
    27. Robinson M, Sharon A. Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. aeschynomene By electroporation of germinated conidia[J]. Current Genetics.1999,36:1-2.
    28. Schiestl R H, Petes T D. Integration of DNA fragments by illegitimate recombination in Saccharomyes creevsiaie[J]. Proc Natl Acad Sci USA.1991,88(170):7585-7589.
    29.李宏宇.稻瘟病T-DNA插入突变研究[D].福州:福建农林大学,2003.
    30. Sweigard J A, Carroll A M, Farrall L, Chumley F G, Valent B. Magnaporthe grisea Pathogenicity Genes Obtained Through Insertional Mutagenesis[J]. Mol Plant-Microbe Interact.1998,11(5): 404-412.
    31. Olmedo-Monfilv, Cortes-Penagos C, Herrera-Estrella A. Three decades of fungal transformation key concepts and applications[J]. Methods Mol Biol.2004,267:297-313.
    32. Daniell H, Singh N K. A comparative study on the transformation of Aspergillus nidulans by microprojectle bombardent of conidia and a more conventional procedure using protoplast treated with polyethyleneglycol[J]. Appl Microbiol Biot.1996,45:333-347.
    33. Penttila M, Nevalainen H, Ratto M. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei [J]. Genetics.1987,61(2):155-164.
    34.王关林,方宏筠.植物基因工程原理与技术(第一版)[M].北京:科学出版社,1998.
    35. Hoekema A, Hirsch P R, Hooykaas P J J, Schilperoort R A. A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens [J]. Nature.1983,303:179-180.
    36. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas P J J. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae[J]. EMBO J.1995,14:3206-3214.
    37. de Groot MJA, Bundock P, Hooykaas P J J, Beijersbergen AGM. Agrobacterium tumefaciens-mediated transformation of filamentous fungi[J]. Nature Biotechnology.1998,16: 839-842.
    38. Mullins E D, Chen X, Romaine P, Raina R, Geiser D M. Agrobacterium-Mediated Transformation of Fusarium oxysporum:An Efficient Tool for Insertional Mutagenesis and Gene Transfer[J]. Phytopathol.2001,91(2):173-180.
    39. Fitzgerald A M, Mudge A M, Gleave A P, Plummer K M. Agrobacterium and PEG-mediated transformation of the phytopathogen Venturia inaequalis[J]. Mycological Research.2003,107(7): 803-810.
    40. Weld R J, Eady C C, Ridgway H J. Agrobacterium-mediated transformation of Sclerotinia sclerotiorum[J]. Journal of Microbiological Methods.2006,65(1):202-207.
    41.李模孝.盾壳菌T-DNA标记插入突变体库的构建及其质量评价[D].武汉:华中农业大学,2004.
    42.宋金柱,高兴喜,杨谦,郭兆奎.影响根癌农杆菌介导的木霉菌遗传转化因素分析[J].微生物学通报.2005,32(1):74-78.
    43.高兴喜,杨谦.根癌农杆菌介导的Cry I A(b)基因在毛壳菌中的转化[J].农业环境科学学报.2005,24(1):22-25.
    44. Dhawale S S, Paietta J V, Marzluf G A. A new rapid and efficient transformation procedure for Neurospora[J]. Curr Genet.1984,8:77-79.
    45. Chen X, Stone M, Schlagnhaufer C, Romaine C P. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus[J]. Applied Environ Microbiol.2000, 66(10):4510-4513.
    46. Rho H S, Kang S, Lee Y H. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea[J]. Mol Cells.2001,12(3):407-411.
    47. Dos Reis M C, Fungaro MHP, Duarte R T D. Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beausveria bassina[J]. J Microbiol Method.2004, 58:197-202.
    48.高兴喜,杨谦,宋金柱.根癌农杆菌介导的木霉遗传转化方法[J].高技术通讯.2004,5(5):32-35.
    49. Rodriguez-Tovar A V, Ruiz-Medrano R, A H. Stable genetic transformation of the ectomycorrhizal fungus Pisolithus tinctorius[J]. Microbiol Method.2005,63:45-54.
    50. Michielse C B, Ram Arthur F J, Hooykaas Paul J J, van den Hondel Cees A M J J. Agrobacterium-mediated transformation of Aspergillus awamori in the absence of full-length VirD2, VirC2, or VirE2 leads to insertion of aberrant T-DNA structures.[J]. Journal of bacteriology. 2004,186(7):2038-2045.
    1.周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41
    2.王建新,周明国,陆悦健,叶钟音.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47
    3. Davidse L C. Benzimidazole fungicides:mechanism of action and biological impact [J]. Annual Review of Phytopathology,1986,24:43-65
    4. Fujimura M, Kanakura T, Yamaguchi I. Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa [J], Journal of Pesticide Science,1992, 17:237-242
    5. Yarden O, Katan T. Mutations leading to substitutions at amino acides 198 and 200 on beta-tubulin that correlates with benomyl resistance phenotypes of fied strains of Botrytis cinerea [J]. Phytopathology,1993,83:850-854
    6. Yan K, Dickman M. Isolation of a P-tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance [J]. Applied and Enviromental Microbiology; 1996,62(8): 3053-3056
    7. Fujimura M, Kamakura T, Inoue H, et al. Sensitivity of Neurospora crassa to benzimidazoles and N-phenylcarbamates:effect of amino acid substitutions at position 198 in β-tubulin [J]. Pesticide biochemistry physiology,1992,44(3):165-173
    8. Koeneaadt H, Jones A L. Resistance to benomyl conferred by mutations in codon 198 or 200 in the beta-tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198 [J]. Photopathology,1993,83:850-854
    9. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology,1993,83:1478-1483
    10.袁善奎.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[D].南京:南京农业大学,2003.
    11.李红霞,陆悦健,王建新,周明国.禾谷镰孢菌β2微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43(4):424-429
    12.陈长军.禾谷镰孢菌(Fusarium graminearum)对多菌灵抗药性基因的克隆[D].南京:南京农业大学,2004
    13. Kim J W, Hwang T G. Studies on resistance to organophoshorus insecticides in the brown planthopper, Nilaparvata lugens Stal (Ⅱ):Difference of the biochemical characteristic [J]. Korean Journal of Plant Protection,1987,26(3):165-170
    14. Kiritani K. Pest management in rice [J]. Annual Review of Entomology,1979,24:279-312
    15. Tanaka K. Planthoppers:Their Ecology and Managememt [M]. New York:Chapman&Hall,2000: 599-614
    16. Kumar S, Tamura K, and Nei M. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment [J]. Brief Bioinform:2004,5:150-163
    17.毕朝位,仇剑波,周明国,王建新,陈长军,李红霞.禾谷镰孢菌分生孢子萌发过程中的核相变化及有丝分裂过程观察[J].菌物学报,2008,27(6):901-907
    18. Ma Z, Yoshimura M, Michailides T J. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California [J]. Applied and Enviromental Microbiology,2003,69:7145-7152
    19. McKay G J, Egan D, Morris E, Brown A E. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR-based method [J]. Mycological Research,1998,102: 671-676
    20. Gafur A, Tanaka C, Shimizu K, Ouchi S, Tsuda M. Molecular analysis and characterization of the Cochliobolus heterostrophus beta-tubulin gene and its possible role in conferring resistance to benomyl [J]. The Journal of General and Applied Microbiology,1998,44:217-223
    21. Baraldi E, Mari M, Chierici E, Pondrelli M, Bertolini P, Pratella G C. Studies on thiabendazole resistance of Penicillium expanssum of pears, pathogenic fitness and genetic characterization [J]. Plant Pathology,2003,52:362-370
    22. Luck J E, Gillings M R. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction [J]. Mycologial Research,1995,99:1483-1488
    23. Albertini C, Gredt M, Leroux P. Mutations of the P-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acutormis [J]. Pesticide Biochemistry and Physiology,1999,64:17-23
    24. Koenraadt H, Somerville SC, Jones A L. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi [J]. Phytopathology,1992,82:1348-1354
    25. McKay G J, Cooke L R. A PCR-based method to characterize and identify benzimidazole resistance in Helminthosporium solani [J]. FEMS Microbiology Letters,1997,152:371-378.
    26. Ma Z, Yoshimura M, Holtz B A, Michailides T J. Characterization and PCR-based detection of benzimidazoleresistant isolates of Monilinia laxa in California [J]. Pest. Management. Science, 2005,61:449-457
    27.李红霞.四种植物病原真菌对多菌灵的抗药性分子遗传机制及其检测技术的研究[D].南京:南京农业大学,2003
    28. Ishii H, Takeda H. Differential binding of a N-phenylformamidoxime compound in cell-free extracts of benzimidazole-resistant and-sensitive isolates of Venturia nashicola [J]. Netherlands Journal of Plant Pathology,1978,95(suppl.1):99
    29. Oakley B R, Morris NR.A mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly [J]. Cell,1981,24:837-845
    30. Kilmartin J. Purification or yeast tubuin by self-assembly in vitro [J]. Biochemistry,1981,20: 3629-3633
    31. Gessler C, Sozzi D, Kern H. Benzimidazole fungicides:mode of action and problems (in Germany) [J]. Ber Schwerz Bot Ges,1980,90:50
    32. Gasztonyi M, Jisepovits G, Milnar A, et al. Biochemical background of resistance to benomyl in genetically different strains of Fusarium oxysporum [J]. Pesticide Biochemistry and Physiology, 1987,29:17-24
    33. Ryoji N, Masaaki N. Benomyl resistance of Colletotrichum aculatum is caused by enhanced expression of β-tubulin 1 gene regulated by putative leucine zipper protein CaBEN1[J]. Fungal Genetics and Biology,2007,44:1324-1335
    1.周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41
    2.王建新,周明国,陆悦健,叶钟音.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47
    3. Davidse L C. Benzimidazole fungicides:mechanism of action and biological impact [J]. Annual Review of Phytopathology,1986,24:43-65
    4. Fujimura M, Kanakura T, Yamaguchi I. Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa [J]. Journal of Pesticide Science,1992, 17:237-242
    5. Yarden O, Katan T. Mutations leading to substitutions at amino acides 198 and 200 on beta-tubulin that correlates with benomyl resistance phenotypes of fied strains of Botrytis cinerea [J]. Phytopathology,1993,83:850-854
    6. Yan K, Dickman M. Isolation of a (3-tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance [J]. Applied and Enviromental Microbiology,1996,62(8): 3053-3056.
    7. Fujimura M, Kamakura T, Inoue H, et al. Sensitivity of Neurospora crassa to benzimidazoles and N-phenylcarbamates:effect of amino acid substitutions at position 198 in β-tubulin [J]. Pesticide biochemistry physiology,1992,44(3):165-173.
    8. Koeneaadt H, Jones A L. Resistance to benomyl conferred by mutations in codon 198 or 200 in the beta-tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198 [J]. Photopathology,1993,83:850-854.
    9. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology,1993,83:1478-1483
    10.袁善奎.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[D].南京:南京农业大学,2003
    11.李红霞,陆悦健,王建新,周明国.禾谷镰孢菌p2微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43(4):424-429
    12. Maier FJ, Malz S, Losch A P, Lacour T, and Schafer W. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker [J]. FEMS Yeast Research,2005,5:653-662
    13. Correll J C, Klittich C J R., Leslie J F. Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests [J]. Phytopathology,1987,77:1640-1646
    14. Proctor R H, Hohn T M, McCormick S P. Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation [J]. Microbiology,1997, 143:2583-2591
    15. Yu J H, Hamari Z, Han K H, Seo J A, Reyes-Dominguez Y, and Scazzocchio C. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi [J]. Fungal Genetics and Biology,2004,41:973-981.
    16. Mullins E. D., Chen X., Romaine P., Raina R., Geiser D. M., and Kang S. Agrobacterium-Msdiated Transformation of Fusarium oxysporum:An Efficient Tool for Insertional Mutagenesis and Gene Transfer [J]. Phytopathology,2001,91(2):173-180
    17.徐雍皋.玉蜀黍赤霉致病力分化的研究[J].南京农业大学学报,1986,10(3):41-45
    18. Nogales E, Wolf S G, Downing K H. Structure of the a β tubulin dimmer by electron crystallography [J]. Nature,1998,391 (6663):199-203
    19. Michison T, Kirchner M. Dynamics instability of microtutule growth [J]. Nature,1984,312 (5991): 237-242
    20. Schoenfeld T A, Obar R A. Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system [J]. International Review of Cytology,1994,151:67-137
    21. Bassell G J, Singer R H, Kosik K. S. Association of poly (A) messenger-RNA with microtubules in cultured neurons [J]. Neuron,1994,12:571-582.
    22.陈长军.禾谷镰孢菌(Fusarium graminearum)对多菌灵抗药性基因的克隆[D].南京:南京农业大学,2004
    1.周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41
    2.王建新,周明国,陆悦健,叶钟音.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47
    3. Davidse, L. C. Benzimidazole fungicides:mechanism of action and biological impact [J]. Annual Review of Phytopathology,1986,24:43-65
    4. Fujimura M, Kanakura T, Yamaguchi I. Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa [J]. Journal of Pesticide Science,1992, 17:237-242
    5. Yarden O, Katan T. Mutations leading to substitutions at amino acides 198 and 200 on beta-tubulin that correlates with benomyl resistance phenotypes of fied strains of Botrytis cinerea [J]. Phytopathology,1993,83:850-854
    6. Yan K, Dickman M. Isolation of a β-tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance [J]. Applied and Enviromental Microbiology,1996,62 (8): 3053-3056
    7. Fujimura M, Kamakura T, Inoue H, et al. Sensitivity of Neurospora crassa to benzimidazoles and N-phenylcarbamates:effect of amino acid substitutions at position 198 in β-tubulin [J]. Pesticide Biochemistry Physiology,1992,44 (3):165-173
    8. Koeneaadt H, Jones A L. Resistance to benomyl conferred by mutations in codon 198 or 200 in the beta-tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198 [J]. Photopathology,1993,83:850-854
    9. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology,1993,83:1478-1483
    10. Baraldi, E., Mari, M., Chierici, E., Pondrelli, M., Bertolini, P.,Pratella, G.C. Studies on thiabendazole resistance of Penicillium expansum of pears, pathogenic fitness and genetic characterization [J]. Plant Pathology,2003,52:362-370
    11. Gafur A, Tanaka C, Shimizu K, Ouchi S, Tsuda M. Molecular analysis and characterization of the Cochliobolus heterostrophus beta-tubulin gene and its possible role in conferring resistance to benomyl [J]. The Journal of General and Applied Microbiology,1998,44:217-223
    12. Koenraadt H, Somerville S C, Jones A L. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi [J]. Phytopathology,1992,82:1348-1354
    13. Albertini C, Gredt M, Leroux P. Mutations of the b-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acutormis [J]. Pesticide Biochemistry and Physiology,1999,64:17-23
    14. Ma Z, Yoshimura M, Holtz B A, Michailides T J. Characterization and PCR-based detection of benzimidazoleresistant isolates of Monilinia laxa in California [J]. Pest Management Science,2005, 61:449-457
    15.李红霞.四种植物病原真菌对多菌灵的抗药性分子遗传机制及其检测技术的研究[D].南京:南京农业大学,2003
    16. Wu H, Liu X, Jaenisch R. Double replacement:Strategy for efficient introduction of subtle mutations into the murine Coila-i gene by homologous recombination in embryonic stem cells [J]. Proceedings of the National Academy of Sciences,1994,91:2819-2823
    17. Yu J H, Hamari Z, Han K H, Seo J A, Reyes-Dominguez Y, Scazzocchio C. Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi [J]. Fungal Genetics and Biology,2004,41:973-981
    18. Sambrook J, Russell D W. Molecular Cloning:A Laboratory Manual, third edition [M]. New York Cold Spring Harbor Laboratory Press:2001
    19. Nogales E, Wolf S G, Downing K H. Structure of the apβ tubulin dimmer by electron crystallography [J]. Nature,1998,391 (6663):199-203
    20. Davidse L C, and Flach W. Differential binding of methyl-benzimidazole-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans [J]. Journal of Cell Biology,1977,72:174-193
    21. Jung M K, Wilder I B, and Oakley B R. Amino-acid alterations in the BenA (beta-tubulin) gene of Aspergillus nidulans that confer benomyl resistance [J]. Cell Motility and the Cytoskeleton,1992, 22:170-174
    1. Davidse L C. Benzimidazole fungicides:mechanism of action and biological impact [J]. Annual Review of Phytopathology,1986,24:43-65
    2. Fujimura M, Kanakura T, Yamaguchi I. Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa [J]. Journal of Pesticide Science,1992, 17:237-242
    3. Yarden O, Katan T. Mutations leading to substitutions at amino acides 198 and 200 on beta-tubulin that correlates with benomyl resistance phenotypes of fied strains of Botrytis cinerea [J]. Phytopathology,1993,83:850-854
    4. Yan K, Dickman M. Isolation of a β-tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance [J]. Applied and Enviromental Microbiology,1996,62 (8): 3053-3056.
    5. Fujimura M, Kamakura T, Inoue H, et al. Sensitivity of Neurospora crassa to benzimidazoles and N-phenylcarbamates:effect of amino acid substitutions at position 198 in β-tubulin. Pesticide Biochemistry Physiology,1992,44 (3):165-173
    6. Koeneaadt H, Jones A L. Resistance to benomyl conferred by mutations in codon 198 or 200 in the beta-tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198. Photopathology,1993,83:850-854
    7. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology,1993,83:1478-1483
    8. Baraldi E, Mari M, Chierici E, Pondrelli M, Bertolini P, Pratella G C. Studies on thiabendazole resistance of Penicillium expansum of pears, pathogenic fitness and genetic characterization. Plant Pathology,2003,52:362-370
    9. Gafur A, Tanaka C, Shimizu K, Ouchi S, Tsuda M. Molecular analysis and characterization of the Cochliobolus heterostrophus beta-tubulin gene and its possible role in conferring resistance to benomyl [J]. The Journal of General and Applied Microbiology,1998,44:217-223.
    10. Wu H., Liu X. and Jaenisch R. Double replacement:Strategy for efficient introduction of subtle mutations into the murine Coila-i gene by homologous recombination in embryonic stem cells [J]. Proceedings of the National Academy of Sciences,1994,91:2819-2823
    11. Yu J H, Hamari Z, Han K H, Seo J A, Reyes-Dominguez Y, Scazzocchio C. Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi [J]. Fungal Genetics and Biology,2004,41:973-981
    12. Sambrook J, Russell D W. Molecular Cloning:A Laboratory Manual, third edition [M]. New York Cold Spring Harbor Laboratory Press:2001
    13. Ma Z, Yoshimura M, Michailides T J. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California [J]. Applied and Environmental Microbiology,2003,69:7145-7152
    14. Jung M K, Oakley B R. Identification of an amino acid substitution in the benA, β-tubulin, gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity [J]. Cell Motility and the Cytoskeleton,1990,17:87-94
    15.陆悦健.小麦赤霉病菌对多菌灵抗药性分子机制初探[c].周明国.中国植物病害化学防治研究(第一卷).北京:中国农业科技出版社,1998:150-153
    16.陆悦健,周明国,叶钟音,王建新.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34
    17. Koenraadt H, Somerville S C, Jones A L. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi [J]. Phytopathology,1992,82:1348-1354
    18. Yarden O, Katan T. Mutations leading to substitutions at amino acids 198 and 200 oh beta-tubulin that correlate with benomyl resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology,1993,83:1478-1483
    19. Butters J A, Hollomon D W. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms [J]. Pesticide Science,1999,55:501-503

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700