用户名: 密码: 验证码:
禾谷镰孢菌Fusarium graminearum α、β_2-微管蛋白的原核表达、体外聚合及药物结合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禾谷镰孢菌(Fusarium graminearum)在生产中主要引起小麦赤霉病、玉米茎基腐病和穗腐病及水稻穗腐病,它不但造成作物产量损失,而且该菌产生的毒素对作物的品质造成严重的降低。主要由禾谷镰孢菌引起的小麦赤霉病是小麦生产中的一种毁灭性病害,苯并咪唑类杀菌剂如多菌灵是防治小麦赤霉有效的药剂。当前,禾谷镰孢菌已对多菌灵产生了严重的抗药性,小麦赤霉病发生有愈发严重的趋势,生产中急需防治小麦赤霉病的多菌灵替换药剂。通过遗传转化及基因定点突变技术,本实验室已证明了禾谷镰孢菌对多菌灵的抗药性是由其p2-微管蛋白基因突变引起,其突变位点包括F167Y、E198K或E198L、F200Y,50位点突变体也可产生对多菌灵的低抗。但尚未有从蛋白质水平上研究β2-微管蛋白氨基酸突变与多菌灵抗性关系的报道。
     微管由微管蛋白(tubulin)和微管相关蛋白(Microtubule associated proteins, MAPs)组成,其中α、p-微管蛋白聚合形成的异源二聚体,是微管的基本单位。α、p-微管蛋白处于一个聚合/解聚的动态过程,多种以微管蛋白为靶标的药物都是同微管蛋白结合后抑制了微管的动态过程而发挥药理作用的。目前已开发出基于微管蛋白体外聚合为靶标的抗肿瘤药物筛选模型,但丝状真菌的微管蛋白还没有在离体条件下用作杀菌剂创制及筛选的靶标。
     为了研究禾谷镰孢菌α、β-微管蛋白的体外聚合反应并以此开发出杀菌剂的离体筛选模型,以及在蛋白水平上理解禾谷镰孢菌对多菌灵的抗药性实质,本文在大肠杆菌中表达了禾谷镰孢菌α、β-微管蛋白,并进行了体外聚合及药剂结合研究,结果如下:
     以禾谷镰孢菌cDNA为模板,PCR扩增出α1、α2-微管蛋白基因,将其克隆到pET30a+表达载体上,转化到宿主菌Rossatta (DE3) pLysS,筛选阳性克隆,进行蛋白诱导表达。SDS-PAGE及Western-blot结果表明:融合蛋白主要以包涵体形式存在,分子量约为52.1kD和55.9kD;融合蛋白能与抗His-tag的单抗发生特异性反应。通过对包涵体洗涤及透析复性后采用HisTrapTMHP Columns对融合蛋白进行纯化,可以得到纯度较高的微管蛋白。
     以构建好的(pET32a-β2-tubulin)重组质粒为模板,PCR扩增出p2-微管蛋白基因,将其克隆到pET30a+表达载体上,并转化到宿主菌BL21(DE3)及Rossatta (DE3) pLysS,筛选阳性克隆,进行蛋白诱导表达,并筛选蛋白可溶性表达的诱导因子;对纯化后的蛋白进行SDS-PAGE和Western Blot验证。最终获得了在大肠杆菌中表达效率高的阳性克隆;通过对诱导温度、诱导物浓度、诱导时间、初始诱导时的菌液浓度、培养液、诱导物种类及宿主菌等七因子的综合分析,获得了β2-微管蛋白可溶性表达的诱导条件;利用HisTrapTM HP Columns对p2-微管蛋白进行纯化,可获得纯度很高的可溶性β2-微管蛋白。SDS-PAGE确认表达出的融合蛋白分子量约为51.6kD; Western-blot证实表达的融合蛋白能与His-tag及p-微管蛋白的单克隆抗体发生特异性反应。
     通过改变诱导条件获得禾谷镰孢菌可溶性的α-微管蛋白,包括降低诱导温度和诱导物浓度,延长诱导时间。诱导条件改变对a-微管蛋白总量无影响,但可使包涵体中的蛋白量下降而上清中可溶性的蛋白量增加,其中上清中a1-微管蛋白的增加量较α2-微管蛋白多,说明α1-微管蛋白在大肠杆菌里更容易可溶性表达。利用HisTrapTM HP Columns对融合蛋白进行纯化,可获得纯度很高的可溶性a-微管蛋白;Western-blot证实表达的融合蛋白能与His-tag及α-微管蛋白的单克隆抗体发生特异性反应,说明α-微管蛋白在提取及纯化过程中始终保持着结构上的完整性。
     研究了禾谷镰孢菌微管蛋白的体外聚合反应。微管蛋白纯化后经过透析、浓缩,可以在体外无微管相关蛋白下发生聚合反应。聚合的条件是:反应在Pipes buffer中进行,微管蛋白浓度1mg-mL"1, GTP浓度2mmol·L-1;反应温度37。C,反应时间60m,DMSO对聚合无影响;聚合在96孔酶标板上进行,在酶标仪350nm处测定反应60m之内的吸光度,每隔12s读数一次。结果表明:α2、β2-微管蛋白的聚合程度比αl、β2-微管蛋白聚合程度强;多菌灵加入可显著地抑制α1、p2或α2、β2-微管蛋白的聚合,但对已发生聚合的微管无作用;多菌灵对微管蛋白体外聚合的抑制同其活体条件下对出发菌株的抑菌效果相同。几类药物对α、β2-微管蛋白聚合的影响不同,同其活体抑菌活性也不完全一致,表明禾谷镰孢菌α1、β2-微管蛋白的体外聚合反应可用在药物的初步筛选中。
     在大肠杆菌中利用pET32a+成功表达了禾谷镰孢菌不同抗性菌株的p2-微管蛋白,改变诱导条件,使β2-微管蛋白得到了可溶性表达并进行了自然条件下的纯化。不同位点的氨基酸突变对融合蛋白表达总量及可溶性蛋白表达量无明显差异。纯化的β2-微管蛋白对His-tag及β-微管蛋白单克隆抗体均有反应,说明蛋白在提取及纯化过程中一直保持着结构完整性。尽管pET32a+表达出的融合蛋白N端有大约17.3kD的标签蛋白,但同al-微管蛋白体外聚合特性与pET30a+表达的融合蛋白无差异,多菌灵对聚合的影响也相同,说明N端的标签蛋白对β2-微管蛋白与α1-微管蛋白体外聚合无影响。不同抗性菌株β2-微管蛋白与α1-微管蛋白的体外聚合存在着显著差异,198位突变导致聚合程度加强;但多菌灵对抗性菌株p2-微管蛋白与αl-微管蛋白的体外聚合无影响,表明β2-微管蛋白发生点突变后与多菌灵的亲和力降低。
     采用荧光淬灭的方法研究了禾谷镰孢菌p-微管蛋白及不同抗性菌株p2-微管蛋白同多菌灵的体外亲和性。多菌灵对所有的融合蛋白都具有荧光淬灭效应,对敏感菌株β2-微管蛋白的荧光淬灭率最高,对双位点突变菌株(52-7)p2-微管蛋白荧光淬灭率最低,但对中抗菌株p2-微管蛋白的淬灭率低于高抗菌株JT04和点突变体E198K。药剂平衡试验表明,微管蛋白浓度2μmol·L-1,多菌灵浓度在20μmol·L-1,时对融合蛋白的荧光淬灭率达到最大值,故选取该浓度进行药剂动力学研究。结果表明:β2-微管蛋白与多菌灵的体外结合速率和出发菌株对多菌灵的抗性水平呈负相关,抗性水平高的菌株有较低的结合速率Kon;而解离速率Koff则同抗性水平呈正相关,抗性水平高解离速率大;亲和常数Ka同多菌灵抗性水平呈负相关,敏感菌株的p2-微管蛋白与多菌灵的亲和常数大于抗性菌株的。p1-微管蛋白与多菌灵的亲和常数Ka介于敏感菌株p2-微管蛋白和低抗点突变体Y50C p2-微管蛋白之间,表明其在禾谷镰孢菌对多菌灵抗性表型中也有一定作用。
Fusarium head blight caused by Fusarium graminearum is an important disease of wheat and barley because it reduces grain yield and quality and results in the contamination of grain with mycotoxins. Benzimidazole fungicides, including carbendazim (methyl benzimidazol-2-yl carbendazim, MBC) and thiophanate, have been relied to control the disease for thirty years. However, the appearance of resistance has hindered the continuous use of the fungicides, which causes severe prevalence of the disease. Because of the appearance of resistance, there is a current need to screen and develop new compound to control FHB. The mechanism of F. graminearum to MBC has been studied by genetic transformation and site-directed mutagenesis. The results have showed that site mutation on β2-tubulin could cause resistance of different levels, including F167Y, E198K, E198L and F200Y. There is no report of resistant mechanism on the protein level up yet now.
     Microtubules consist of repeating α/β tubulin heterodimers, and because of tubulin's GTPase activity, they are highly dynamic. Microtubule dynamics can be inhibited by many antimitotic agents, and such inhibition is an important mode of action of anti-tumor drugs, antiprotozoal compounds and fungicides. Because of the success of tubulin-binding agents in anti-tumor drug screening, there is continuing interest in discovering new substances that interfere with microtubule-mediated processes. Though tubulins have been used as the target to screen and develop anti-tumor agents and anti-leishmanial drugs, fungal tubulins have not been used to screen for fungicides.
     In research concerning the development of an screening model for detection of anti-fungus compounds based on α/β tubulin assembly in vitro, and studying the resistant mechanism on protein level, the α-and β-tubulins of F. graminearum have been cloned on the pET vectors and expressed in Escherichia coli, and the polymerization in vitro and binding kinetics with carbendazim were also studied. The results are as follows.
     a-tubulin genes were amplified from F. graminearum cDNA and cloned to the vector pET30a+, then transformed into the host Rossatta (DE3) pLysS. After the positive clones were screened by the colony PCR and double digestion, the induced fusion proteins were obtained and verified by SDS-PAGE and Western blot. The positive clones which could express more fusion protein were screened, however, the fusion proteins formed mainly inclusion bodies. The molecular weight of fusion proteins were confirmed to be52.1kD and55.9kD by SDS-PAGE, which also showed specific activity to anti-6xHis monoclonal antibody. After washing of inclusion bodies using buffer containing2and3mol/L urea, the purity of fusion protein would increase. The soluble fusion protein was obtained by dialysis to binding buffer and then a-tubulins were purified by HisTrapTM HP Columns. The purified tubulins can be used in the studies of new fungicide screening in vitro that target tubulin.
     β2-tubulin of F. graminearum was expressed in E. coli in soluble form and purified by HisTrapTM HP Columns. β2-tubulin gene contained in the plasmid,(pET32a+-β2-tubulin) was amplified, cloned to the vector pET30a+and, then transformed into the hosts:Rossatta (DE3) pLysS and BL21(DE3). After the positive clones were screened by the colony PCR and double enzymatic digestion, the induced fusion proteins were obtained and verified by the SDS-PAGE and Western blot. In order to express the fusion protein in soluble form, the inducing factors, including temperature, induction time, IPTG (Isopropyl P-D-Thiogalactoside) concentration, cell density, medium composition and hosts, were screened. The positive clones which could express more fusion protein after induced were screened, however, the fusion proteins formed inclusion bodies. The molecular weight of fusion proteins were confirmed to be52kD by SDS-PAGE, which also showed specific activity to anti-6×His monoclonal antibody. After the optimization of imidazole concentration in binding and wash buffer, the soluble fusion protein was purified and its structural integrity was preserved through the purification process by the verification of western blot. The methods described here can be used to express and purify other recombinant proteins in soluble form in E. coli. The purified fusion tubulin can be used in the studies of tubulin-target drug resistant mechanisms as well as high throughout screening of new fungicide.
     The expressed a-tubulins existed in both soluble and insoluble forms, and the expression of soluble form was affected by isopropyl-β-D-thiogalactoside (IPTG) concentration, incubation temperature, incubation time, and culture density. The soluble proteins, which were purified by Ni2+affinity chromatography, were recognized by His-tag and a-tubulin antibody. The structural integrity of a-tubulins had been preserved throughout the expression and purification processes and the a-tubulins were suitable for high-throughout screening of candidate fungicides.
     After purified, dialyzed and concentrated, F. graminearum tubulins were polymerized. It was the first report that tubulins of F. graminearum polymerized in the absence of microtubule-associated proteins (MAPs). Polymerization was assayed in the PIPES buffer, where the concentration of tubulin and GTP was1mg-mL-1and2mmo1·L-1respectively. GTP can initiate the polymerization at37℃. Tubulin polymerization was assayed turbidimetrically at350nm for60minutes with an12seconds interval on96-well plates, using a Molecular Devices VersaMax microplate reader equipped with temperature controllers. There was no effect of DMSO (Dimethyl sulfoxide) on polymerization. The results showed that the assembly of of a2/β2-tubulin was higher than that of α1/β2-tubulin and the absorbance did not increase at350nm in the presence of carbendazim, which was consistent with sensitivity of the starting strain2021to this fungicide. Carbendazim had no effect on polymerized tubulins mixture and the absorbance did not decrease, however. There were different inhibition types of pesticides on the polymerization, which were not entirely consistent with their antifungal activity in vitro. The screening model based on the polymerization assay of F. graminearum α/β2tubulin can be used on the primary screening of new compound which targets tubulin.
     β2-tubulins originated from the resistant strains and site-directed mutants (SDMs)were cloned into pET32a and expressed in soluble form in E. coli after optimization of induction factors. The soluble β2-tubulins were purified and there were no differences of total fusion protein and soluble forms of amino acid substitution on β2-tubulin. The purified β2-tubulins could recognize the anti-His-tag and anti-β-tubulin monoclonal antibody, indicating that the structural integrity of β2-tubulins had been preserved throughout the expression and purification processes. Polymerization degree between α1-tubulin and β2-tubulins expressed by pET32a was consistent with that with P2-tubulin expressed by pET30a, so the unwanted amino acids on N terminals of P2-tubulins, including Thioredoxin, His-tag, S-tag, had no effect on polymerization. Mutation on β2-tubulin could promote assembly, where mutation on site198had the most dramatic ability. Carbendazim had no effect on polymerization in vitro between β2-tubulins of SDMs and a1-tubulin, implying that the binding force between carbendazim and β2-tubulins of SDMs was weaker than β2-tubulin of wild type strain which was sensitive to carbendazim.
     The in vitro binding characteristics of carbendazim with β-tubulins of different mutation sites, including Y50C, F167Y, E198K, E198L, F200Y and two mutation sites,(G17S+F167Y), were studied by fluorescence quenching. Fluorescence of all these recombinant tubulins was quenched following the addition of carbendazim, in which the β2-tubulin of wild sensitive strain had the highest quenching rate and the β2-tubulin with two mutation sites has the lowest, but the quenching rate of moderately resistant strains were higher than that of highly resistant ones. In the equilibrium binding studies, carbendazim with20μmol·L-1concentration could achieve the highest quenching rate for all recombinant tubulins, so the concentration was used in the binding kinetics experiment. The apparent association constant Ka)of β2-tubulin of site-directed mutants was negatively correlated with the resistant level of starting strain to carbendazim. However, the dissociation rates (Koff) was positively correlated with the resistant level. So that was affinity constant (Ka), which mean that the strain with high resistant level had the large Ka value. The Ka value of β1-tubulin to carbendazim was intermediate between β2-tubulin of wild sensitive strain and low resistance, implying that β1-tubulin contributed to the carbendazim resistance of F. graminearum.
引文
[1]姚金保,陆维忠.中国小麦抗赤霉病育种研究进展[J].江苏农业学报,2000,16(4):242-248
    [2]陆家云.植物病原真菌学[M].北京:中国农业出版社,2001,436-440.
    [3]陈利锋,徐敬友.农业植物病理学[M].北京:中国农业出版社,2007,136-141.
    [4]陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:科学出版社,2001,2-39.
    [5]史文琦,杨立军,冯洁,等.小麦赤霉病流行区镰刀菌致病种及毒素化学型分析[J].植物病理学报,2011,41(5):484-494.
    [6]Parry D W, Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grain cereals-a review [J]. Plant Pathology,1995,44:207-238.
    [7]Champeil A, Dore T, Fourbet J F. Fusarium head blight:epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains [J]. Plant Science,2004,166:1389-1415.
    [8]Starkey D E, Ward T J. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity [J]. Fungal Genetics and Biology,2007,44:1191-1204.
    [9]全国小麦赤霉病研究协作组.我国小麦赤霉病穗部镰刀菌种类、分布和致病性[J].上海师范大学学报,1984,3:69-82.
    [10]徐书法,陈捷,高增贵,等.中国玉米茎基腐病和穗腐病研究进展[J].植物病理学报,2006,36(3):193-203.
    [11]陈捷.我国玉米穗、茎腐病病害研究现状与展望[J].沈阳农业大学学报,2000,31(5):393-401.
    [12]俞刚,陈利锋,姚红燕,等.脱氧雪腐镰刀菌烯醇在小麦赤霉病病程中的作用[J].植物病理学报,2003,33(1):40-43.
    [13]Zhang J B, L H P. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China [J]. Mycological research,2007,111:967-975.
    [14]Larsen JC, Hunt J, Perrin I, et al. Workshop on trichothecenes with a focus on DON:summary report [J].Toxicology Letters,2004,153:1-22.
    [15]Seitz LM, Yamazaki WT, Clements RL, et al. Distribution of deoxynivalenol in soft wheat mill streams [J], Cereal Chemistry,1985,62(6):467-469.
    [16]Rudd J C, Horsley R D, McKendry A L. Host plant resistance genes for Fusarium head blight: sources, mechanisms and utility in conventional breeding systems [J]. Crop Science,2001,41 (3):620-627.
    [17]Mesterhazy A. Types and components of resistance to Fusarium head blight of wheat [J], Plant Breeding,1995,114:377-386.
    [18]王雅平,王进先,刘伊强.小麦品种对赤霉病抗扩展性的遗传研究[J].作物学报,1992,18(5):373-379.
    [19]王裕中,杨新宁,肖庆璞,等.小麦赤霉病抗性鉴定技术的改进及其抗源的开拓[J].中国农业科学,1982,5:67-71.
    [20]李小勋,顾乃杰,张玉松,等.小麦抗赤霉病育种研究进展[J].作物研究,2011,25(3):264-268.
    [21]陆维忠.小麦赤霉病抗性分子标记的筛选及其利用[J].江苏农业学报,2011,27(2):243-249.
    [22]姜海平,阚李斌,陈迎春.30%戊唑·福美双可湿性粉剂防治小麦赤霉病效果初探[J].上海农业科技,2009,5:136.
    [23]韩青梅,康振生,段双科,等.戊唑醇与羟菌唑对小麦赤霉病的田间防效试验[J].西北农林科技大学学报:自然科学版,2005,33(10):11-15.
    [24]司乃国,刘君丽,陈亮.新型杀菌剂烯肟菌酯应用技术[J].农药,2010,7:42-43.
    [27]李恒奎,陈长军,王建新,等.禾谷镰孢菌对氰烯菌酯的敏感性基线及室内抗药性风险初步评估[J].植物病理学报,2006,36(3):273-278.
    [28]李恒奎,周明国.氰烯菌酯对禾谷镰孢菌的生物活性及其内吸输导性研究[J].农药学学报,2006,8(1):30-35.
    [1]Tilney L G, Gibbins J R. Microtubules in the formation and development of the primary mesenchyme in Araacia punctulata, II:an experimental analysis of their role in development and maintenance of cell shape [J]. The Journal of Cell Biology,1969,41:227-250.
    [2]Steinberg G, Fuchs U. The role of microtubules in cellular organization and endocytosis in the plant pathogen Ustilago maydis [J]. Journal of Microscopy,2004,214:114-123.
    [3]Downing K. H. Structural basis for the interaction of tubulin with proteins and drugs [J]. Annual Review of Cell and Developmental Biology,2000,16:89-111.
    [4]Ruiz F, Dupuis-Williams P, Klotz C, et al.2004. Genetic Evidence for Interaction between η-and β-Tubulins. Eukaryotic Cell,3:212-220.
    [5]Luduena R F, Banerjee A. The tubulin superfamily [C]. Fojo T ed. Cancer drug discovery and development:the role of microtubules in cell Biology, neurobiology, and oncology. Totowa, NJ, Humana Press,2008:177-191.
    [6]Luduena R F, Banerjee A. The Isotypes of Tubulin:Distribution and Functional Significance [C]. Fojo T ed. Cancer drug discovery and development:the role of microtubules in cell Biology, neurobiology, and oncology. Totowa, NJ, Humana Press,2008:123-175.
    [7]Nogales E, Wolf S G, Downing K H. Structure of the alpha beta tubulin dimer by electron crystallography [J]. Nature,1998,391:199-203.
    [8]Nogales E, Whittaker M, Milligan R A, et al. High-Resolution Model of the Microtubule [J]. Cell, 1999,96:79-88.
    [9]Lowe J, Li H, Downing K H, et al. Refined structure of αβ-tubulin at 3.5 A resolution [J]. Journal of Molecular Biology,2001,313:1045-1057.
    [10]Li H L, Derosier D J, Nicholson W V, et al. Microtubule structure at 8 A resolution [J]. Structure, 2002,10:1317-1328.
    [11]Zheng YX, Wong ML, Alberts B, et al. Nucleation of microtubule assembly by a y-tubulin-containing ring complexl. Nature,1995,378 (6557):578-583.
    [12]Hamada T. Microtubule-associated proteins in higher plants [J]. Journal of Plant Research,2007, 120:79-98.
    [13]Olmsted J B. Microtubule-associated proteins [J]. Annual Review of Cell Biology,1986,2: 421-457.
    [14]Rice L M, Montabana E A, Agard D A. The lattice as allosteric effector:structural studies of αβ-and y-tubulin clarify the role of GTP in microtubule assembly [J]. PNAS,2008,105 (14) 5378-5383.
    [15]Nogales E. A structural view of microtubule dynamics [J].CMLS Cellular and Molecular Life Sciences,1999,56:133-142.
    [16]Nogales E, Wang H W. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives [J]. Current Opinion in Structural Biology,2006,16:221-229.
    [17]Nogales E, Wang H W. Structural intermediates in microtubule assembly and disassembly:how and why? [J]. Current Opinion in Cell Biology,2006,18:179-184.
    [18]Doshi P, Bossie C A, Doonan J H, et al. Two a-tubulin genes of Aspergillus nidulans encode divergent proteins [J]. Molecular Gene and Genetics,1991,225:129-141.
    [19]Oakley B R, Oakley C E, Rinehart J E. Conditionally lethal tubA alpha-tubulin mutations in Aspergillus nidulans [J]. Molecular Gene and Genetics,1987,208:135-144.
    [20]Kirk K E, Morris N R. The tubB a-tubulin gene is essential for sexual development in Aspergllus nidulans. Genes and Development,1991,5:2014-2023.
    [21]Kirk K E, Morris N R. Either a-tubulin isogene product is sufficient for microtubule function during all stages of growth and differentiation in Aspergillus nidulans [J]. Molecular and Cellular Biology, 13 (8):4465-4476
    [22]Weatherbee J A, Morris N R. Aspergillus contains multiple tubulin gene [J]. The Journal of Biological Chemistry,1984,259 (24):15452-15459.
    [23]Oakley B R. Tubulins in Aspergillus nidulans [J]. Fungal Genetics and Biology,2004,41:420-427.
    [24]Oakley B R. An abundance of tubulins [J]. Trends in Cell Biology,2000,10:537-542.
    [25]May G S, Gambino J G, Weatherbee J A, et al. Identification and functional analysis of beta-tubulin genes by site specific integrative transformation in Aspergillus nidulans [J]. The Journal of Cell Biology,1985,101:712-719.
    [26]Weatherbee J A, May G S, Gambino J G, et al. Involvement of a particular species of beta-tubulin (Beta3) in cnidial dvelopment in Aspergillus nidulans[J]. The Journal of Cell Biology,1985,101: 706-711.
    [27]May G S. The highly divergent β-tubulins of Aspergillus nidulans are functionally interchangeable [J]. The Journal of Cell Biology,1989,109:2267-2274.
    [28]Dunne P W, Oakley B R. Mitotic gene conversion, reciprocal recombination and gene replacement at the benA, beta-tubulin, locus of Aspergillus nidulans [J]. Molecular Gene and Genetics,1988, 213:339-345.
    [29]Schatz P J, Pillus L, Grisafi P, et al. Two functional a-tubulin genes of the yeast Saccharomyces cerevisiae encode divergent proteins [J]. Molecular and Cellular Biology,1986,6(11):3711-3721.
    [30]Burke D, Gasdaska P, Hartwell L. Dominant effects of tubulin overexpression in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology,1989,9(3):1049-1059.
    [31]Gold S E, Castle W L, Keen N T. Characterization of two β-tubulin genes from Geotrichum candidum [J]. Molecular Gene and Genetics,1991,230:104-112.
    [32]Juuti J T, Jokela S, Tarkka M T, et al. Two phylogenetically highly distinct β-tubulin genes of the basidiomycete Suillus bovines [J]. Current Genetics,2005,47:253-263.
    [33]Sullivan K F, Cleveland D W. Sequence of a highly divergentβtubulin gene reveals regional heterogeneity in the β tubulin polypeptide [J]. The Journal of Cell Biology,1984,99:1754-1760.
    [34]Rohel E A, Payne A C, Hall L, et al. Isolation and characterization of a-Tubulin genes from Septoria tritici and Rhynchosporium secalis, and comparative analysis of fungala-tubulin sequences [J]. Cell Motility and the Cytoskeleton,1998,41:247-253.
    [35]Huang C H, Lee F L, Tai C J. The β-tubulin gene as a molecular phylogenetic marker for classification and discrimination of the Saccharomyces sensu stricto complex [J]. Antonie van Leeuwenhoek,2009,95 (2):135-142.
    [36]Lopata M A, Cleveland D W. In vivo microrubules are copolymers of available β-tubulin isotypes: localization of each of six vertebrate β-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens [J]. The Journal of Cell Biology,1987,105:1707-1720.
    [37]毕朝位,陈长军,王建新,等.微管的生物学特性与微管靶点药物[c]//周明国.中国植物病害化学防治研究(第五卷).北京:中国农业科学技术出版社,2006:110-122.
    [38]李建农,蒋建东.微管的生物学特性与药物研究[J].药学学报,2003,38(4):311-315.
    [39]李越中,胡玮,周璐.具有促微管聚合活性的抗肿瘤天然化合物[J].药学学报,2001,36(2):155-160.
    [40]Biswas B B, Sen K, Choudhury G G, et al. Molecular biology of tubulin:its interaction with drugs and genomic organization [J]. Journal of Bioscience,1984,6(4):431-457.
    [41]Bane S L. Molecular features of the interaction of colchicine and related structures with tubulin [C]. Fojo T ed. Cancer drug discovery and development:the role of microtubules in cell Biology, neurobiology, and oncology. Totowa, NJ, Humana Press,2008:259-279.
    [42]Rai S S, Wolff J. Localization of the vinblastine-binding site on β-tubulin [J]. The journal of Biological Chemistry,1996,271 (25):14707-14711.
    [43]Amos L A, Lowe J. How taxol stabilises microtubule structure [J]. Chemistry and Biology,1999,6 (3):65-69.
    [44]Nettles J H, Li H L, Cornett B, et al. The binding mode of Epothilone A on ap-tubulin by electron crystallography [J]. Science,305:866-869.
    [45]净晓龙,陈建明.紫杉醇给药系统的研究进展[J].中国新药与临床杂志,2011,30(9)650-657.
    [46]程益华,陈秀华.埃博霉素类抗肿瘤药物的研究进展[J].世界临床药物,2011,32(10)619-623.
    [47]Panda D, Miller HP, Islam K, et al. Stabilization of mierotubule dynamics by estramustlne by binding to a novel site in tubulin:a possible mechanistic basis for its antitum or action. PNAS,1997, 94:10560-10564.
    [48]沈阳化工研究院农药第一室杀菌剂组.内吸性杀菌剂多菌灵(苯并咪唑44“)研究(第一报)[J].农药,1973,01:11-25.
    [49]Davidse L C, Flach W. Differential binding of methyl benzimidazole-2-ylcarbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans [J]. The Journal of Cell Biology,1977,72:174-193.
    [50]周明国,叶钟音.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性[J].植物保护,1987,13(2):31-33.
    [51]Vonk J W, Sijpesteijn A K. Methyl benzimidazole-2-ylcarbamate, the fungitoxic principle of thiophanate-methyl [J]. Pesticide Science,1971,2:160-164.
    [52]Morejohn L C, Bureau T E, Mole-Bajer J, et al. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits mierotubule polymerization in vitro [J]. Planta,1987,172:252-264.
    [53]Delye C, Menchari Y, Michel S, et al. Molecular bases for sensitivity to tubulin-binding herbicides in green foxtail [J]. Plant Physiology,2004,136:3920-3932.
    [54]Upadhyaya M K, Nooden L. Mode of dinitroaniline herbicide action Ⅱ. characterization of [141oryzalin uptake and binding [J]. Plant Physiology,1980,66:1048-1052.
    [55]Martin R J. Modes of action of anthelmintic drugs [J]. The Veterinary Journal,1997,154:11-34.
    [56]MacDonald LM, Armson A, Andrew Thompson RC, et al. Characterisation of benzimidazole binding with recombinant tubulin from Giardia duodenalis, Encephalitozoon intestinalis, and Cryptosporidium parvum [J]. Molecular and Biochemical Parasitology,2004,138,89-96.
    [57]Armson A, Kamau S W, Grimm F, et al. A comparison of the effects of a benzimidazole and the dinitroanilines against Leishmania infantum [J]. Acta Tropica,1999,73:303-311.
    [58]Traub-Cseko Y M, Ramalho-Ortigao J M, Dantas A P, et al. Dinitroaniline herbicides against protozoan parasites:the case of Trypanosoma cruzi [J]. Trends in parasitology,2001,17 (3): 136-141.
    [59]Fennell B J, Naughton J A, Dempsey E, et al. Cellular and molecular actions of dinitroaniline and phosphorothioamidate herbicides on Plasmodium falciparum:tubulin as a specific antimalarial target [J]. Molecular and Biochemical Parasitology,2006,145:226-238.
    [60]Morrissette N S, Mitra A, Sept D, et al. Dinitroanilines bind a-tubulin to disrupt microtubules [J]. Molecular Biology of the Cell,2004,15:1960-1968.
    [61]Lubega G W, Byarugaba D K, Prichard R K. Immunization with a tubulin-rich preparation from Trypanosoma brucei confers broad protection against African trypanosomosis [J]. Experimental Parasitology,2002,102:9-22.
    [62]Lubega G W, Ochola D O K, Prichard R K. Trypanosoma brucei:anti-tubulin antibodies specifically inhibit trypanosome growth in culture [J]. Experimental Parasitology,2002,102: 134-142.
    [63]Katzenback B A, Plouffe D A, Haddad G, et al. Administration of recombinant parasite b-tubulin to goldfish (Carassius auratus L.) confers partial protection against challenge infection with Trypanosoma danilewskyi Laveran and Mesnil,1904 [J]. Veterinary Parasitology,2008,151:36-45
    [1]Mozzetti S, Ferlini C, Concolino P, et al. Class Ⅲ β-Tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients [J]. Clinical Cancer Research,2005, 11:298-305.
    [2]Hari M, Loganzo F, Annable T, et al. Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of β-tubulin (Asp26Glu) and less stable microtubules [J]. Molecular Cancer Therapy,2006,5(2):270-278.
    [3]Luduena R F, Banerjee A. The isotypes of tubulin:distribution and functional significance [C]. Fojo T ed. Cancer drug discovery and development:the role of microtubules in cell Biology, neurobiology, and oncology. Totowa, NJ, Humana Press,2008:123-175.
    [4]Haber M, Burkhart C A, Lee Regl D, et al. Altered expression of Mβ2, the class Ⅱ β-tubulin isotype, in a murine J774.2 cell line with a high level of taxol resistance [J]. The Journal of Biological Chemistry,1995,270 (52):31269-31275.
    [5]Kavallaris M, Kuo D YS, Catherine A, et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of Specific P-Tubulin isotypes [J]. The journal of Clinical Investigation, 1997,100 (5):1282-1293.
    [6]Ranganathan S, Dexter D W, Benetatos C A, et al. Increase of and βⅢand βⅣ-tubulin isotypes in human prostate carcinoma cells as a result of Estramustine resistance [J]. Cancer Research,1996, 56:2584-2589.
    [7]Ranganathan 1S, Benetatos C A, Colarusso PJ, et al. Altered β-tubulin isotype expression in paclitaxel resistant human prostate carcinoma cells [J].British Joumal of Cancer,1998,77 (4) 562-566.
    [8]Banerjee A. Increased levels of tyrosinated α-,βⅢ-and βⅣtubulin isotypes in paclitaxel-resistant MCF-7 breast cancer cells [J]. Biochemical and Biophysical Research Communications,2002,293: 598-601.
    [9]Sirotnak F M, Danenberg K D, Chen J, et al. Markedly decreased binding of vincristine to tubulin in vinca alkaloid-resistant Chinese hamster cells is associated with selective overexpression of a and β tubulin isoforms [J]. Biochemical and Biophysical Research Communications,2000,269:21-24.
    [10]Wang Y Q, Cabral F. Paclitaxel resistance in cells with reduced β-tubulin [J]. Biochimica et Biophysica Acta,2005,1744:245-255.
    [11]Verrills N M, Flemming C L, Liu M, et al. Microtubule alterations and mutations induced by desoxyepothilone B:implications for drug-target interactions [J]. Chemistry and Biology,2003,10: 597-607.
    [12]Anthony R G, Waldin T R, Ray J A, et al. Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin [J]. Nature,1998,393:260-263.
    [13]Anthony R G, Hussey P J. Dinitroaniline herbicide resistance and the microtubule cytoskeleton [J]. Trends in plant science,1999,4 (3):112-116.
    [14]Yamamoto E, Zeng L G, and Vance Baird W. a-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica [J]. The Plant Cell,1998,10:297-308.
    [15]Kwa M S, Okoli M N, Schulz-Key H, et al. Use of P-glycoprotein gene probes to investigate anthelmintic resistance in Haemonchus contortus and comparison with Onchocerca volvulus [J]. International Journal for Parasitology,1998,28:1235-1240.
    [16]Prichard R K. Genetic variability following selection of Haemonchus contortus with anthelmintics [J]. Trends in parasitology,2001,17 (9):445-453.
    [17]Schwab A E, Boakye D A, Kyelem D, et al. Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment [J]. The American Journal of Tropical Medicine and Hygiene, 2005,73 (2):234-238.
    [18]Franzen C, Salzberger B. Analysis of the β-Tubulin gene from Vittaforma corneae suggests benzimidazole resistance [J]. Antimicrobial Agents and Chemotherapy,2008,52 (2):790-793.
    [19]Hodgkinson J E, Clark H J, Kaplan R M, et al. The role of polymorphisms at β tubulin isotype I codons 167 and 200 in benzimidazole resistance in cyathostomins [J]. International Journal for Parasitology,2008,38:1149-1160.
    [20]MorrissettN S, Mitra A, Sept D, et al. Dinitroanilines bind a-tubulin to disrupt microtubules [J]. Molecular Biology of the Cell,2004,15 (4):1960-1968.
    [21]Ma C, Li C, Ganesan L, et al. Mutations in a-tubulin confer dinitroaniline resistance at a cost to microtubule function [J]. Molecular Biology of the Cell,2007,18:4711-4720.
    [22]Ma Z, Michailides TJ. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi [J]. Crop Protection,2005,24:853-863.
    [23]Schroeder WT, Provvidenti R. Resistance to benomyl in powdery mildew of cucurbits [J]. Plant Disease Report,1969,53:271-275.
    [24]Bollen G J, Scholten G. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen [J]. Netherland Journal of Plant Pathology,1971, 77:83-90.
    [25]Wicks T. Tolerance of the apple scab fungus to benzimidazole fungicides [J]. Plant Disease Report,1974,58:886-889.
    [26]Locke T. Current incidence in the UK of fungicide resistance in pathogens of cereals [C]. Proceedings 1986 British Crop Protection Conference,1986:781-786.
    [27]Kendall S, Hollomon D W, Ishii H, et al. Characterisation of benzimidazole resistant strains of Rhynchosporium secalis [J]. Pesticide Science,1993,40:175-181.
    [28]周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3)33-41.
    [29]Davidse L C, Flach W. Differential binding of methyl benzimidazole-2-ylcarbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans [J]. The Journal of Cell Biology,1977,72:174-193.
    [30]Kendall S, Hollomon D W, Ishii H, et al. Characterisation of benzimidazole resistant strains of Rhynchosporium secalis [J]. Pesticide Science,1993,40:175-181.
    [31]Nakata A, Snao S, Hashimoto S, et al. Negatively correlated cross-resistant to N-phylformamidoximes in benzimidazole-resistant phytopathogenic fungi [J]. Ann Phytopa Soc Japan,1987,53:659-662.
    [32]Josepovits G, Gasztonyi M, Mikite G. Negative cross-resistance to N-phenylanilines in benzimidazole-resistant strains of Botrytis cinerea, Venturia nashicola and Venturia inaequalis [J]. Pesticide Science,1992,35:237-242.
    [33]Hollomon D W, Butters J A, Barker H, et al. Fungal β-tubulin, expressed as a fusion protein, binds benzimidazole and phenylcarbamate fungicides [J]. Antimicrobial Agents and Chemotherapy,1998, 42 (9):2171-2173.
    [34]Ma Z, Yoshimura M, Michailides TJ. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California [J]. Applied and Environmental Microbiology,2003,69:7145-7152.
    [35]Yan K, Dickman M B. Isolation of a beta-tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance [J]. Applied and Environmental Microbiology,1996,62 (8) 3053-3056.
    [36]樊平声.小麦赤霉病及脱氧雪腐镰刀菌烯醇的控制技术研究[D].南京:南京农业大学,2008.
    [37]Luck JE, Gillings MR. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction [J]. Mycological Research,1995,99:1483-1488.
    [38]Shinpei B, Fumiyasu F, Akihiko I. et al. Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays [J]. Phytopathology,2008,98:397-404.
    [39]Koenraadt H, Jones AL. Resistance to benomyl conferred by mutions in codon 198 or 200 in the beta-tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198 [J]. Photopathology,1993,83:850-854.
    [40]Koenraadt H, Somerville SC, Jones AL. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi [J]. Phytopathology,1992,82:1348-1354.
    [41]Fujimura M. Model action of deethofencarb to benzimidazole-resistance strains in Neuropora crassa [J]. Journal of Pesticide Science,1994,19:333-334.
    [42]Kawchuk LM, Hutcgison LJ, Vergaegh CA, et al. Isolation of the β-tubulin gene and characterization of thiabendazole resistance in Gibberella pulicaris [J]. Canadian Journal of Plant Pathology,2002,24:233-238.
    [43]Nakaune R, Nakano M. Benomyl resistance of Colletotrichum acutatum is caused by enhanced expression of β-tubulin 1 gene regulated by putative leucine zipper protein CaBENl [J]. Fungal Genetics and Biology,2007,44:1324-1335.
    [44]叶钟音,周明国.江淮地区小麦赤霉病菌对多菌灵耐药性的测定[J].植物保护学报,1985 12(3):188-189.
    [45]顾宝根,刘经芬.小麦赤霉病对多菌灵耐药的研究[J].南京农业大学学报,1990,13(1):57-61.
    [46]王建新,周明国,陆悦健,等.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47.
    [47]周明国,叶钟音,刘经芬.杀菌剂抗性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [48]周明国.我国几种植物病害的抗药性监测情况[J].农药科学与管理,1999,20(3):39-40.
    [49]王建新,周明国.小麦赤霉病对多菌灵抗药性监测技术研究[J].植物保护学报,2002,29(1):73-77.
    [50]张雁南,樊坪升,陈长军,等.禾谷镰刀菌对多菌灵抗性的监测及其演变规律[J].农药,2009,48(8):603-613.
    [51]周明国,王建新.禾谷镰孢菌对多菌灵的敏感基线及抗药菌株生物学性质研究[J].植物病理学报,2001,31(4):365-370.
    [52]王建新.禾谷镰孢霉对多菌灵抗药性研究[D].南京:南京农业大学,2000.
    [53]邵振润,周明国,仇剑波,等.2010年小麦赤霉病发生与抗性调查研究及防控对策[J].农药,2011,55(5):385-389.
    [54]潘洪玉,杜红军,郭金鹏,等.东北春麦区小麦赤霉病菌对多菌灵敏感性的测定[J].吉林农业科学,2002,27(增刊):44-45.
    [55]王建新,周明国.禾谷镰刀菌对多菌灵抗药性的快速监测技术研究[C].周明国主编.中植物病害化学防治研究(第一卷),北京:中国农业科技出版社,1998:325-328
    [56]顾宝根,刘经芬.小麦赤霉病菌对多菌灵抗药性的研究,Ⅱ抗性检测和诱导[J].南京农业大学学报,1990,13(1):57-61.
    [57]袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[J].遗传学报,2003,30(5):474-478.
    [58]袁善奎,周明国.禾谷镰孢菌(Gibberella zeae)nit突变体的诱导及其生物学特性研究[J].菌物系统,2002,21(1):71-76.
    [59]陆悦健,周明国,叶钟音,等.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    [60]李红霞,陆悦健,王建新,等.禾谷镰孢菌p-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43:424-429.
    [61]李红霞,陆悦健,王建新,等.四种不同植物病原真菌与多菌灵抗药性相关基因突变的比较[J].南京农业大学学报,2002,25(3):41-44.
    [62]陈长军,王建新,周明国.禾谷镰孢菌γ-微管蛋白基因克隆及其与多菌灵抗药性关系分析[J].植物病理学报,2005,35:161-167.
    [63]陈长军,李俊,祁之秋,等.禾谷镰孢菌a-微管蛋白基因克隆及其与多菌灵抗药性关系分析[J].微生物学报,2005,45:288-291.
    [64]陈长军,李俊,于俊杰,等.禾谷镰孢菌微管相关蛋白基因(map)克隆及其与多菌灵抗药性关系分析[J].南京农业大学学报,2009,32(1):160-163.
    [65]陈长军,周立邦,毕朝位,等.禾谷镰孢菌对多菌灵的抗药性与α2-微管蛋白序列无关析[J].微生物学报,2008,48(10):1356-1361.
    [66]Broad Institute of MIT and Harvard, [2008-3-28], http://www.broadinstitute.org/annotation/ genome/fusarium_group/MultiHome.html.
    [67]Chen C J, Yu J J, Bi C W, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    [68]Qiu J B, Xu J Q, Yu Y J, et al. Localisation of the benzimidazole fungicide binding site of Gibberella zeae (32-tubulin studied by site-directed mutagenesis [J]. Pest management science,2010, 67:191-198.
    [69]Leroux P, Gredt M, Negative cross-resistance of benzimidazole-resistant strains of Botrytis cinerea, Fusarium nivale and Pseudocercosporella herpotrichoides to various pesticides [J]. Netherland Journal of Plant Pathology,1989,95 (Supplement 1):121-127.
    [70]Shabi E, Koenraadt H, Dekker J, Negatively correlated cross-resistance to phenylcarbamate fungicides in benomyl-resistant Venturia inaequalis and V. pirina [J]. Netherland Journal of Plant Pathology,1987,93:33-41.
    [71]Rosenberger D, Meyer FW, Negatively correlated cross-resistance to diphenylamine in Benomyl-Resistant Penicillium expansum [J]. Phytopathology,1985,75:74-79.
    [72]Faretra F, Pollastro KS, Ditonno AP. New natural variants of Botryotinia fuckeliana (.Botrytis cinerea) couling benzimidazole-resistance to insensitivity toward the N-phenylcarbamate diethofencarb [J]. Phytopathologia Mediterranea,1989,28:98-104.
    [73]Eald Y, Yunis H, Katan T. Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel [J]. Plant Pathology,1992, 41:41-46.
    [74]李敏.哈茨木霉多菌灵抗性菌株的构建及其对水稻立枯病的防治[D].哈尔滨:哈尔滨工业大学,2008.
    [75]邹根.球孢白僵菌对苯并咪唑类杀菌剂抗性的分子机理及遗传改良[D].杭州:浙江大学,2008.
    [76]杨谦,赵小岩.多菌灵抗性基因在木霉菌中的转化方法[J].科学通报.1998,43(22):2423~2426.
    [77]Goettel MS, Leger R J, Bhairi S, et al. Pathogenicity and growth of Metarhizium anisopliae stably transformed to benomyl resistance [J]. Current Genetics,1990,17:129-132.
    [78]Marcia C F, Fernanda G P, Fabiana G S, et al. Transformation of the entomopathogenic fungus Metarhizium flavoviride to high resistance to benomyl [J]. Canadian Journal of Microbiology,1999,45 (10):875-878.
    [79]Nina O, Sue M. Genetic transformation of the biocontrol fungus Gliocladium virens to benomyl resistance [J]. Applied and Environmental Microbiology,1990,56:3052-3056.
    [80]Sandhu S S, Unkles S E, Rajak R C, et al. Generation of benomyl resistant Beauveria bassiana strains and their infectivity against Helicoverpa armigera [J]. Biocontrol Science and Technology, 2001,11 (2):245-250.
    [81]Zou G, Ying S H, Shen Z C, et al. Multi-sited mutations of beta-tubulin are involved in benzimidazole resistance and thermotolerance of fungal biocontrol agent Beauveria bassiana [J]. Environmental Microbiology,2006,8 (12):2096-2105.
    [82]Orbach M J, Porro E B, Yanofsky C. Cloning and characterization of the gene for β-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker [J]. Molecular and Cellular Biology,1986,6 (7):2452-2461.
    [83]Goldman G H, Temmerman W, Jacobs D, et al. A nucleotide substitution in one of the β-tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-yl-carbamate [J]. Molecular Gene and Genetics,1993,240:73-80.
    [84]Seip E R, Woloshuk C P, Payne G A, et al. Isolation and sequence analysis of a β-tubulin gene from Aspergillus flavus and its use as a selectable marker [J]. Applied and Environmental Microbiology, 1990,56 (12):3686-3692.
    [85]Nowak C, Kuck U. Development of a homologous transformation system for Acremonium chrysogenum based on the beta-tubulin gene [J]. Current Genetics.1994,25 (1):34-40.
    [86]Wirsel S G R, Voegele R T, Banninger R, et al. Cloning of β-tubulin and succinate dehydrogenase genes from Uromyces fabae and establishing selection conditions for their use in transformation [J]. European Journal of Plant Pathology,2004,110:767-777.
    [87]Inglis P W, Tigano M S, Valadares-Inglis M C. Transformation of the entomopathogenic fungi, Paecilomyces fumosoroseus and Paecilomyces lilacinus to benomyl resistance [J]. Genetics and Molecular Biology,1999,22 (1):119-123.
    [88]Dias E S, Queiroz M V, Cardoso P G, et al. Transformation of Penicillium expansum with a heterologous gene which confers resistance to benomyl [J]. World Journal of Microbiology and Biotechnology,1999,15 (4):513-514.
    [89]Kachroo P, Potnis A, Chattoo B B. Transformation of the rice blast fungus Magnaporthe grisea to benomyl resistance [J]. World Journal of Microbiology and Biotechnology,1997,13: 185-187.
    [90]Ulhoa C J, Vainstein M H, Peberdy J E. Transformation of Trichoderma species with dominant selectable markers [J]. Current Genetics,1992,21:23-26.
    [91]Yemets A, Radchuk V, Bayer O, et al. Development of transformation vectors based upon a modified plant a-tubulin gene as the selectable marker [J]. Cell Biology International,2008,32: 566-570.
    [92]Delye C, Menchari Y, Michel S, et al. Molecular bases for sensitivity to tubulin-binding herbicides in green foxtail [J]. Plant Physiology,2004,136:3920-3932.
    [1]Downing K H. Structural basis for the interaction of tubulin with proteins and drugs [J]. Annual Review of Cell and Developmental Biology,2000,16:89-111.
    [2]Dong H, Li Y Z, Hu W. Analysis of purified tubulin in high concentration of glutamate for application in high throughput screening for microtubule-stabilizing agents [J]. Assay and Drug Development Technologies,2004,2 (6),621-628.
    [3]孙婉,李敏,魏少萌,等.以微管蛋白为靶的高通量药物筛选方法的建立与应用[J].中国新药杂志,2006,15(21):1828-1831.
    [4]Barron D M, Chatterjee S K, Ravindra R, et al. A fluorescence-based high-throughput assay for antimicrotubule drugs [J]. Analytical Biochemistry,2003,315:49-56.
    [5]王霞.一个新的拟南芥微管结合蛋白.——AtMAP18的功能分析[D].北京:中国农业大学,2005.
    [6]毛同林.两种拟南芥65kDa微管结合蛋白的功能分析[D].北京:中国农业大学,2005.
    [7]Castoldia M, Popova A. Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer [J]. Protein Expression and Purification, 2003,32:83-88.
    [8]Werbovetz K A, Brendle J J, Sackett D L. Purification, characterization, and drug susceptibility of tubulin from Leishmania [J]. Molecular and Biochemical Parasitology,1999,98:53-65.
    [9]Yakovich A J, Ragone F L, Alfonzo J D, et al. Leishmania tarentolae:Purification and characterization of tubulin and its suitability for antileishmanial drug screening [J]. Experimental Parasitology,2006,114:289-296
    [10]Bellocq C, Andrey-Tornare I, Paunier Doret A M, et al. Purification of assembly-competent tubulin from Saccharomyces cerevisiae [J]. European Journal of Biochemistry,1992,210:343-349.
    [11]Yoon Y, Oakley B R. Purification and characterization of assembly-competent tubulin from Aspergillus Nidulans [J]. Biochemistry,1995,34:6373-6381.
    [12]Hollomon D W, Butters J A, Barker H, et al. Fungal P-tubulin, expressed as a fusion protein, binds benzimidazole and phenylcarbamate fungicides [J]. Antimicrobial Agents and Chemotherapy,1998, 42 (9):2171-2173.
    [13]Koo B S, Park H, Kalme S, et al. a-and β-tubulin from Phytophthora capsici KACC 40483: molecular cloning, biochemical characterization, and antimicrotubule screening [J]. Applied Microbiology and Biotechnology,2009,82:513-524.
    [14]Huang S J, Ren H Y, Yuan M. In vitro assembly of plant tubulin in the absence of microtubule-stabilizing reagents [J]. Chinese Science Bulletin,2000,45 (24):2258-2263.
    [15]Xu C H, Huang S J, Yuan M. Dimethyl sulfoxide is feasible for plant tubulin assembly In vitro:a comprehensive analysis [J]. Journal of Integrative Plant Biology,2005,47 (4):457-466.
    [16]MacDonald LM, Armson A, Andrew Thompson RC, et al. Characterisation of benzimidazole binding with recombinant tubulin from Giardia duodenalis, Encephalitozoon intestinalis, and Cryptosporidium parvum [J]. Molecular and Biochemical Parasitology,2004,138,89-96.
    [17]MacDonald L M, Armson A, Andrew Thompson R C, et al. Expression of Giardia duodenalis β-Tubulin as a soluble protein in Escherichia coli [J]. Protein Expression and Purification,2001,22: 25-30.
    [18]MacDonald L M, Armson A, Andrew Thompson R C, et al. Characterization of factors favoring the expression of soluble protozoan tubulin proteins in Escherichia coli [J]. Protein Expression and Purification,2003,29:117-122.
    [19]Linder S, Schliwa M, Kube-Granderath E. Expression of Reticulomyxa filosa α- and β-tubulins in Escherichia coli yields soluble and partially correctly folded material [J]. Gene,1998,212:87-94.
    [20]Blackhall W J, Drogemuller M, Schnieder T, et al. Expression of recombinant P-tubulin alleles from Cylicocyclus nassatus (Cyathostominae) [J]. Parasitology Research,2006,99:687-693.
    [21]Giles N L, Armson A, Reid S A. Characterization of trifluralin binding with recombinant tubulin from Trypanosoma brucei [J]. Parasitology Research,2009,104:893-903.
    [22]Oxberry M E, Geary T G, Winterrowd C A, et al. Individual expression of recombinant a-and p-Tubulin from Haemonchus contortus:polymerization and drug effects [J]. Protein Expression and Purification,2001,21:30-39.
    [23]Katzenback B A, Plouffe D A, Haddad G, et al. Administration of recombinant parasite β-tubulin to goldfish (Carassius auratus L.) confers partial protection against challenge infection with Trypanosoma danilewskyi Laveran and Mesnil,1904 [J]. Veterinary Parasitology,2008,151: 36-45.
    [24]Lubega G W, Geary T G, Klein R D, et al. Expression of cloned β-tubulin genes of Haemonchus contortus in Escherichia coli:interaction of recombinant β-tubulin with native tubulin and mebendazole [J]. Molecular and Biochemical Parasitolology,1993,62 (2):281-92.
    [25]Jang M H, Kim J, Kalme S, et al. Cloning, purification, and polymerization of Capsicum annuum recombinant α and β Tubulin [J]. Bioscience, Biotechnology, and Biochemistry,2008,72 (4) 1048-1055.
    [26]Koo B S, Kalme S, Yeo S H, et al. Molecular cloning and biochemical characterization of a-and P-tubulin from potato plants (Solanum tuberosum L.) [J]. Plant Physiology and Biochemistry,2009, 47:761-768.
    [27]Yoshida M, Narusaka Y, Minami E, et al. Expression of Neurospora crassa β-tubulin, target protein of benzimidazole fungicides, in Escherichia coli [J]. Pesticide Science,1999,55:362-364.
    [28]张聪,徐建强,于俊杰,等.禾谷镰孢菌β-微管蛋白基因的克隆及在原核细胞中的表达[J].南京农业大学学报,2011,34(1):51-56.
    [29]Bell A, Wernli B, Franklin RM. Expression and secretion of malarial parasite β-tubulin in Bacillus brevis [J]. Biochimie,1995,77:256-261.
    [30]Vats-Mehta S, Yarbrough L R. Expression of chick and yeast P-tubulin-encoding genes in insect cells [J]. Gene,1993,128 (2):263-267.
    [31]Linder S, Schliwa M, Kube-Granderath E. Expression of Reticulomyxa filosa tubulins in Pichia pastoris:regulation of tubulin pools [J]. FEBS Letters,1997,417:33-37.
    [32]Nogales E, Wolf S G, Downing K H. Structure of the alpha beta tubulin dimer by electron crystallography [J]. Nature,1998,391:199-203.
    [33]Oakley B R. Tubulins in Aspergillus nidulans [J]. Fungal Genetics and Biology,2004,41:420-427.
    [34]Li M, Yang Q. Isolation and characterization of aβ-tubulin Gene from Trichoderma Harzianum [J]. Biochemical Genetics,2007,45:529-534.
    [35]Qiu J B, Xu J Q, Yu Y J, et al. Localisation of the benzimidazole fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis [J]. Pest Management Science, 2010,67:191-198.
    [36]Zou G, Ying S H, Shen Z C, et al. Multi-sited mutations of beta-tubulin are involved in benzimidazole resistance and thermotolerance of fungal biocontrol agent Beauveria bassiana [JJ. Environmental Microbiology,2006,8 (12):2096-2105.
    [37]BlumeY B, Nyporkoa AY, Yemetsa A I, et al. Structural modeling of the interaction of plant a-tubulin with dinitroaniline and phosphoroamidate herbicides [J]. Cell Biology International,2003, 27:171-174.
    [38]Delye C, Menchari Y, Michel S, et al. Molecular bases for sensitivity to tubulin-binding herbicides in green foxtail [J]. Plant Physiology,2004,136:3920-3932.
    [39]Morrissette N, Sept D. Dinitroaniline interactions with tubulin:genetics and computational approaches to define the mechanisms of action and resistance [C]. Blume Y B et al. eds. The Plant Cytoskeleton:a Key Tool for Agro-Biotechnology. Springer Science and Business Media B.V., 2008:327-349.
    [40]Morrissette N S, Mitra A, Sept D, et al. Dinitroanilines bind α-tubulin to disrupt microtubules [J]. Molecular Biology of the Cell,2004,15:1960-1968.
    [41]Prichard R K. Genetic variability following selection of Haemonchus contortus with anthelmintics [J]. Trends in Parasitology,2001,17 (9):445-453.
    [42]Robinson M W, Trudgett A, Fairweather I. Benzimidazole binding to Haemonchus contortus tubulin:a question of structure [J]. Trends in Parasitology,2002,18 (4):153.
    [43]Robinson M W, McFerran N, Trudgett A, et al. A possible model of benzimidazole binding to P-tubulin disclosed by invoking an inter-domain movement [J]. Journal of Molecular Graphics and Modelling,2004,23:275-284.
    [44]Koo BS, Jang MH, Park H, et al. Characterization of Capsicum annuum recombinant a-and P-Tubulin [J]. Applied Biochemistry and Biotechnology,2010,160 (1):122-128.
    [45]Hu W, Dong H, Li Y Z, et al. A high-throughput model for screening anti-tumor agents capable of promoting polymerization of tubulin in vitro [J]. Acta Pharmaceutica Sinica,2004,25(6):775-782.
    [46]Bane S L, Ravindra R, Zaydman A A. High-throughput screening of microtubule-interacting drugs [C]. Zhou J ed. Microtubule Protocols. Totowa NJ, Humana Press Inc:281-288
    [1]陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:科学出版社,2001,2-39.
    [2]周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [3]邵振润,周明国,仇剑波,等.2010年小麦赤霉病发生与抗性调查研究及防控对策[J].农药,2011.50(5):385-389.
    [4]Field D J, Collins R A, Lee J C. Heterogeneity of vertebrate brain tubulins [J]. Proceedings of the National Academy of Sciences,1984,81:4041-4045.
    [5]Downing K H. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics [J]. Annual Review of Cell and Developmental Biology,2000,16:89-111.
    [6]Hu W, Dong H, Li Y Z, et al. A high-throughput model for screening anti-tumor agents capable of promoting polymerization of tubulin in vitro [J]. Acta Pharmaceutica Sinica,2004,25(6):775-782.
    [7]Hollomon D W, Butters J A, Barker H, et al. Fungal β-tubulin, expressed as a fusion protein, binds benzimidazole and phenylcarbamate fungicides [J]. Antimicrobial Agents and Chemotherapy,1998, 42 (9):2171-2173.
    [8]Yoon Y S, Oakley B R. Purification and characterisation of assembly-competent tubulin from Aspergillus nidulans [J]. Biochemistry,1995,34:6373-6381.
    [9]Yoshida M, Narusaka Y, Minami E, et al. Expression of Neurospora crassa (3-tubulin, target protein of benzimidazole fungicides, in Escherichia coli [J]. Pesticide Science,1999,55:362-364.
    [10]Koo B S, Park H, Kalme S et al. α-and β-tubulin from Phytophthora capsici KACC 40483: molecular cloning, biochemical characterization, and antimicrotubule screening [J]. Applied Microbiology and Biotechnology,2009,82:513-524.
    [11]张聪,徐建强,于俊杰,等.禾谷镰孢菌p-微管蛋白基因的克隆及在原核细胞中的表达[J].南京农业大学学报,2011,34(1):51-56.
    [12]Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy Server [C]. John M. W. The Proteomics Protocols Handbook. Totowa:Humana Press,2005. 571-608.
    [13]Wakagi T, Oshima T, Imamura H, et al. Cloning of the gene for inorganic pyrophosphatase from a thermoacidophilic archaeon, Sulfolobus sp. strain 7, and overproduction of the enzyme by coexpression of tRNA for arginine rare codon [J]. Bioscience, Biotechnology, and Biochemistry, 1998,62 (12):2408-2414.
    [14]Chow M K, Amin A A, Fulton K F, et al. The REFOLD database:a tool for the optimization of protein expression and refolding [J]. Nucleic Acids Research,2006,34 (1):207-12.
    [15]Bell P A. E. coli Expression Systems [C]; Gerstein A S. Molecular Biology Problem Solver:A Laboratory Guide. New York:Wiley-Liss, Inc,2001.461-490.
    [16]Singh S M, Panda A K. Solubilization and Refolding of Bacterial Inclusion Body Proteins [J]. Journal of bioscience and bioengineering,2005,99 (4):303-310.
    [17]张聪.禾谷镰孢菌p-微管蛋白的原核表达、复性纯化和单克隆抗体的制备[D].南京:南京农业大学:2009.
    [18]Jang M H, Kim J, Kalme S, et al. Cloning, purification, and polymerization of Capsicum annuum recombinant α and β Tubulin [J]. Bioscience, Biotechnology, and Biochemistry,2008,72 (4): 1048-1055.
    [1]Ruiz F, Dupuis-Williams P, Klotz C, et al. Genetic Evidence for Interaction between r|-and (3-Tubulins [J]. Eukaryotic Cell,2004,3:212-220.
    [2]Field D J, Collins R A, Lee J C. Heterogeneity of vertebrate brain tubulins [J]. Proceedings of the National Academy of Sciences,1984,81:4041-4045.
    [3]Downing K H. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics [J]. Annual Review of Cell and Developmental Biology,2000,16:89-111.
    [4]李建农,蒋建东.微管的生物学特性与药物研究[J].药学学报,2003,38(4):311-315.
    [5]Morrissette N S, Mitra A, Sept D, et al. Dinitroanilines bind a-tubulin to disrupt microtubules [J]. Molecular Biology of the Cell,2004,15:1960-1968.
    [6]Davidse L C, Flach W. Differential binding of methyl benzimidazole-2-ylcarbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans [J]. The Journal of Cell Biology,1977,72:174-193.
    [7]MacDonald LM, Armson A, Andrew Thompson RC, et al. Characterisation of benzimidazole binding with recombinant tubulin from Giardia duodenalis, Encephalitozoon intestinalis, and Cryptosporidium parvum [J]. Molecular & Biochemical Parasitology,2004,138,89-96.
    [8]Zhang Y J, Fan P S, Zhang X, et al. Quantification of Fusarium graminearum in harvested grain by Real-Time polymerase chain reaction to assess efficacies of fungicides on Fusarium Head Blight, deoxynivalenol contamination, and yield of winter wheat [J]. Phytopathology,2009,99:95-100.
    [9]周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [10]邵振润,周明国,仇剑波,等.2010年小麦赤霉病发生与抗性调查研究及防控对策[J].农药,2011,55(5):385-389.
    [11]Dong H, Li Y Z, Hu W. Analysis of purified tubulin in high concentration of glutamate for application in high throughput screening for microtubule-stabilizing agents [J]. Assay and drug development technologies,2004,2 (6),621-628.
    [12]Hu W, Dong H, Li Y Z, et al. A high-throughput model for screening anti-tumor agents capable of promoting polymerization of tubulin in vitro [J]. Acta Pharmaceutica Sinica,2004,25 (6) 775-782.
    [13]Barron D M, Chatterjee S K, Ravindra R, et al. A fluorescence-based high-throughput assay for antimicrotubule drugs [J]. Analytical Biochemistry,2003,315:49-56.
    [14]Castoldi M, Popova A V. Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer [J]. Protein Expression and Purification, 2003,32:83-88.
    [15]Hollomon D W, Butters J A, Barker H, et al. Fungal β-tubulin, expressed as a fusion protein, binds benzimidazole and phenylcarbamate fungicides [J]. Antimicrobial Agents and Chemotherapy,1998, 42 (9):2171-2173.
    [16]Yoon Y S, Oakley B R. Purification and characterisation of assembly-competent tubulin from Aspergillus nidulans [J]. Biochemistry,1995,34:6373-6381.
    [17]Yoshida M, Narusaka Y, Minami E, et al. Expression of Neurospora crassa β-tubulin, target protein of benzimidazole fungicides, in Escherichia coli [J]. Pesticide Science,1999,55:362-364.
    [18]Linder S, Schliwa M, Kube-Granderath E. Expression of Reticulomyxa filosa tubulins in Pichia pastoris:regulation of tubulin pools [J]. FEBS Letters,1997,417:33-37.
    [19]Bell A, Wernli B, Franklin RM. Expression and secretion of malarial parasite β-tubulin in Bacillus brevis [J]. Biochimie,1995,77:256-261.
    [20]Linder S, Schliwa M, Kube-Granderath E. Expression of Reticulomyxa filosa a-and P-tubulins in Escherichia coli yields soluble and partially correctly folded material [J]. Gene,1998,212:87-94.
    [21]Oxberry M E, Geary T G, Winterrowd C A, et al. Individual expression of recombinant a-and β-Tubulin from Haemonchus contortus:polymerization and drug effects [J]. Protein Expression and Purification,2001,21:30-39.
    [22]MacDonald L M, Armson A, Andrew Thompson R C, et al. Expression of Giardia duodenalis β-Tubulin as a soluble protein in Escherichia coli [J]. Protein Expression and Purification,2001,22: 25-30.
    [23]Blackhall W J, Drogemuller M, Schnieder T, et al. Expression of recombinant β-tubulin alleles from Cylicocyclus nassatus (Cyathostominae) [J]. Parasitology Research,2006,99:687-693.
    [24]Giles N L, Armson A, Reid S A. Characterization of trifluralin binding with recombinant tubulin from Trypanosoma brucei [J]. Parasitology Research,2009,104:893-903.
    [25]Jang M H, Kim J, Kalme S, et al. Cloning, purification, and polymerization of Capsicum annuum recombinant α and β Tubulin [J]. Bioscience, Biotechnology, and Biochemistry,2008,72 (4): 1048-1055.
    [26]Koo B S, Kalme S, Yeo S H, et al. Molecular cloning and biochemical characterization of a-and β-tubulin from potato plants (Solamum tuberosum L.)[J]. Plant Physiology and Biochemistry,2009, 47:761-768.
    [27]Koo B S, Park H, Kalme S, et al. α-and β-tubulin from Phytophthora capsici KACC 40483: molecular cloning, biochemical characterization, and antimicrotubule screening [J]. Applied Microbiology and Biotechnology,2009,82:513-524.
    [28]张聪,徐建强,于俊杰,等.禾谷镰孢菌β-微管蛋白基因的克隆及在原核细胞中的表达[J].南京农业大学学报,2011,34(1):51-56.
    [29]陆悦健,周明国,叶钟音.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    [30]李红霞,陆悦健,王建新,等.禾谷镰孢菌β-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43(4):424-429.
    [31]陈长军,李俊,祁之秋,等.禾谷镰孢茵α微管蛋白基因克隆及其与多菌灵抗药性关系分析[J].微生物学报,2005,45(2):288-291.
    [32]陈长军,周立邦,毕朝位,等.小麦赤霉病菌对多菌灵的抗药性与α2微管蛋白序列无关析[J].微生物学报,2008,48(10):1356-1361.
    [33]Chen C J, Yu J J, Bi C W, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    [34]Qiu J B, Xu J Q, Yu Y J, et al. Localisation of the benzimidazole fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis [J]. Pest management science, 2010,67:191-198.
    [35]Novagen pET System manual, http://lifeserv.bgu.ac.il/wb/zarivach/media/protocols/Novagen%20pET%20system%20manual.pdf
    [36]Baneyx F. Recombinant protein expression in Escherichia coli [J]. Current Opinion in Biotechnology,1999,10:411-421.
    [37]Sorensen H P, Mortensen K K. Advanced genetic strategies for recombinant protein expression in Escherichia coli [J]. Journal of Biotechnology,2005,115:113-128.
    [38]Doyle S.A. Screening for the expression of soluble recombinant protein in Escherichia coli [C]. from Chemical Genomics:Reviews and Protocols, edited by Zanders E D, Humana Press Inc, Totowa,NJ,2005, pp 115-121.
    [39]Sahdev S, Khattar S K, Saini K S. Production of active eukaryotic proteins through bacterial expression systems:a review of the existing biotechnology strategies [J]. Molecular and Cellular Biochemistry,2008,307:249-264.
    [40]Georgiou G, Valaxt P. Expression of correctly folded proteins in Escherichia coli [J]. Current Opinion in Biotechnology,1996,7:190-197.
    [1]张聪.禾谷镰孢菌p-微管蛋白的原核表达、复性纯化和单克隆抗体的制备[D].南京:南京农业大学:2009.
    [2]张聪,徐建强,于俊杰,等.禾谷镰孢菌p-微管蛋白基因的克隆及在原核细胞中的表达[J].南京农业大学学报,2011,34(1):51-56.
    [3]刘卫东.来源于Pseudomonas putida DLL-E4中的1,2,4-苯三酚1,2双加氧酶的结构学初步分析及两种农药降解相关酶的蛋白质晶体学研究[D].南京:南京农业大学:2009.
    [4]沈文静.Pseudomonas putida DLL-E4对硝基苯酚代谢基因簇的克隆、功能分析和表达调控的研究[D].南京:南京农业大学:2011.
    [5]George Georgiou, Pascal Valax. Expression of correctly folded proteins in Escherichia coli [J]. Current Opinion in Biotechnology,1996,7 (2):190-197.
    [6]Ernest V. Groman, Meir Wilchek. Recent developments in affinity chromatography supports [J]. Trends in Biotechnology,1987,5 (8):220-224.
    [7]J. Evangelista Dyr, J. Suttnar. Separation used for purification of recombinant proteins [J]. Journal of Chromatography B:Biomedical Sciences and Applications,1997,699 (1-2):383-401.
    [8]Sunanda R. Narayanan, Laura J Crane. Affinity chromatography supports:a look at performance requirements [J]. Trends in Biotechnology,1990,8:12-16.
    [9]Singh S M, Panda A K. Solubilization and refolding of bacterial inclusion body Proteins [J]. Journal of bioscience and bioengineering,2005,99 (4):303-310.
    [10]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000,189-211.
    [11]北京博奥森生物技术有限公司,Rabbit anti-a-Tubulin说明书[EB/OL]. [2012-3-20]. http//www.bioss.com.cn.
    [12]Rohel EA, Payne AC, Hall L, et al. Isolation and characterization of a-tubulin genes from Septoria tritici and Rhynchosporium secalis, and comparative analysis of fungal a-tubulin sequences [J]. Cell Motility and the Cytoskeleton,1998,41:247-253.
    [13]Burns RG and Surridge CD. Tubulin:conservation and structure. In Hyams J and Lloyd C (eds.) Microtubules. New York:Wiley-Liss,1994, pp.3-31.
    [14]徐汉虹.植物化学保护学[M],北京:中国农用出版社,2007,117-167.
    [15]邵振润,周明国,仇剑波,等.2010年小麦赤霉病发生与抗性调查研究及防控对策[J].农药,2011,55(5):385-389.
    [16]Koo B S, Park H, Kalme S, et al. α-and β-tubulin from Phytophthora capsici KACC 40483: molecular cloning, biochemical characterization, and antimicrotubule screening [J]. Applied Microbiology and Biotechnology,2009,82:513-524.
    [17]Jang M H, Kim J, Kalme S, et al. Cloning, purification, and polymerization of Capsicum annuum recombinant α and β Tubulin [J]. Bioscience, Biotechnology, and Biochemistry,2008,72 (4): 1048-1055.
    [1]李建农,蒋建东.微管的生物学特性与药物研究[J].药学学报,2003,38(4):311-315.
    [2]Xu C H, Huang S J, Yuan M. Dimethyl sulfoxide is feasible for plant tubulin assembly In vitro:a comprehensive analysis [J]. Journal of Integrative Plant Biology,2005,47 (4):457-466.
    [3]Huang S J, Ren H Y, Yuan M. In vitro assembly of plant tubulin in the absence of microtubule-stabilizing reagents [J]. Chinese Science Bulletin,2000,45 (24):2258-2263.
    [4]Dong H, Li Y Z, Hu W. Analysis of purified tubulin in high concentration of glutamate for application in high throughput screening for microtubule-stabilizing agents [J]. Assay and Drug Development Technologies,2004,2 (6),621-628.
    [5]Hu W, Dong H, Li Y Z, et al. A high-throughput model for screening anti-tumor agents capable of promoting polymerization of tubulin in vitro [J]. Acta pharmaceutica sinica,2004,25 (6):775-782.
    [6]李春雷.基于微管蛋白抗肿瘤活性物质靶向筛选模型的建立及应用[D].昆明:昆明医学院,2007.
    [7]孙婉,李敏,魏少荫,等.以微管蛋白为靶的高通量药物筛选方法的建立与应用[J].中国新药杂志,2006,15(21):1828-1831.
    [8]Morgan R E, Ahn S, Nzimiro S, et al. Inhibitors of Tubulin Assembly Identified through Screening a Compound Library [J]. Chemical and Biological Drug Development,2008:72:513-524.
    [9]Barron D M, Chatterjee S K, Ravindra R, et al. A fluorescence-based high-throughput assay for antimicrotubule drugs [J]. Analytical Biochemistry,2003,315:49-56.
    [10]Oxberry M E, Geary T G, Winterrowd C A, et al. Individual expression of recombinant α-and β-Tubulin from Haemonchus contortus:polymerization and drug effects [J]. Protein Expression and Purification,2001,21:30-39.
    [11]Jang M H, Kim J, Kalme S, et al. Cloning, purification, and polymerization of Capsicum annuum recombinant α and β Tubulin [J]. Bioscience, Biotechnology, and Biochemistry,2008,72 (4) 1048-1055.
    [12]Koo B S, Kalme S, Yeo S H, et al. Molecular cloning and biochemical characterization of α-and β-tubulin from potato plants (Solanum tuberosum L.) [J]. Plant Physiology and Biochemistry,2009, 47:761-768.
    [13]Koo B S, Park H, Kalme S, et al. α-and β-tubulin from Phytophthora capsici KACC 40483: molecular cloning, biochemical characterization, and antimicrotubule screening [J]. Applied Microbiology and Biotechnology,2009,82:513-524.
    [14]Koo BS, Jang MH, Park H, et al. Characterization of Capsicum annuum Recombinant α-and β-Tubulin [J]. Applied Biochemistry and Biotechnology,2010,160 (1):122-128.
    [15]G. Waxman P G, Campo A A, Low M C,et al. Induction of polymerization of purified tubulin by sulfonate buffers marked differences between 4-Morpholineethanesulfonate (Mes) and 1,4-Piperazineethanesulfonate (Pipes) [J]. European Journal of Biochemistry,1981,120:129-136.
    [16]MacDonald LM. Characterisation of the benzimidazole-binding site on the cytoskeletal protein tubulin [D]. Perth:Murdoch University,2003.
    [17]MacDonald LM, Armson A, Andrew Thompson RC, et al. Characterisation of benzimidazole binding with recombinant tubulin from Giardia duodenalis, Encephalitozoon intestinalis, and Cryptosporidium parvum [J]. Molecular & Biochemical Parasitology,2004,138,89-96.
    [18]李恒奎.氰烯菌醋新型杀菌剂对禾谷镰袍菌(Fusariumgraminearum)的生物活性及其抗药性风险评估[D].南京:南京农业大学,2003.
    [19]俞文渊.新型杀菌剂苯并咪唑喹啉铜抑菌活性的初步研究[D].南京:南京农业大学,2011.
    [20]陆悦健,周明国,叶钟音.抗苯并咪唑的小麦赤霉病菌P-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    [21]李红霞,陆悦健,王建新,等.禾谷镰孢菌p-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43(4):424-429.
    [22]陈长军,李俊,祁之秋,等.禾谷镰孢菌α微管蛋白基因克隆及其与多菌灵抗药性关系分析[J].微生物学报,2005,45(2):288-291.
    [23]陈长军,周立邦,毕朝位,等.小麦赤霉病菌对多菌灵的抗药性与a2微管蛋白序列无关析[J].微生物学报,2008,48(10):1356-1361.
    [24]陈长军.禾谷镰孢菌(Fusarium graminearum)对多菌灵抗药性基因的克隆[D].南京:南京农业大学,2004.
    [25]Chen C J, Yu J J, Bi C W, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    [26]Qiu J B, Xu J Q, Yu Y J, et al. Localisation of the benzimidazole fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis [J]. Pest management science,2010, 67:191-198.
    [27]Qiu JB, Huang TT, Xu JQ, et al. β-tubulins in Gibberella zeae:their characterization and contribution to carbendazim resistance [J], published on line, http://onlinelibrary.wiley. com/doi/10.1002/ps.3283/pdf.
    [28]Heusele C, Bonne D, Carlier M F, et al. Is microtubule assembly a biphasic process? a fluorimetric study using 4',6-diamidino-2-phenylindoIe as a probe [J]. European Journal of Biochemistry,165: 613-620 (1987).
    [29]Bane S L, Ravindra R, Zaydman A. A high-throughput screening of microtubule-interacting drugs [C]. from: Methods in Molecular Medicine, Vol.137:Microtubule Protocols, edited by: Jun Zhou, Humana Press Inc., Totowa, NJ.
    [30]邵振润,周明国,仇剑波,等.2010年小麦赤霉病发生与抗性调查研究及防控对策[J].农药,2011,55(5):385-389.
    [1]祁高富,杨斌,叶建仁.植物病原真菌毒素研究进展[J].南京林业大学学报,2000,24(2):66-70.
    [2]宿刚爱,刘颖,徐恒安,等.小麦赤霉病的发生特点及综合防治技术[J].现代农业科技,2007,19:89-90.
    [3]周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [4]邵振润,周明国,仇剑波,等.2010年小麦赤霉病发生与抗性调查研究及防控对策[J].农药,2011,55(5):385-389.
    [5]陆悦健,周明国,叶钟音.抗苯并咪唑的小麦赤霉病菌P-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    [6]李红霞,陆悦健,王建新,等.禾谷镰孢菌β-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43(4):424-429.
    [7]陈长军,李俊,祁之秋,等.禾谷镰孢茵α微管蛋白基因克隆及其与多菌灵抗药性关系分析[J].微生物学报,2005,45(2):288-291.
    [8]陈长军,周立邦,毕朝位,等.小麦赤霉病菌对多菌灵的抗药性与a2微管蛋白序列无关析[J].微生物学报,2008,48(10):1356-1361.
    [9]陈长军.禾谷镰孢菌(Fusarium graminearum)对多菌灵抗药性基因的克隆[D].南京:南京农业大学,2004.
    [10]Broad Institute of MIT and Harvard, [2008-3-28], http://www.broadinstitute.org/annotation /genome/fusarium_group/MultiHome.html.
    [11]Chen C J, Yu J J, Bi C W, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    [12]Qiu J B, Xu J Q, Yu Y J, et al. Localisation of the benzimidazole fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis [J]. Pest Management Science, 2010,67:191-198.
    [13]张聪,徐建强,于俊杰,等.禾谷镰孢菌p-微管蛋白基因的克隆及在原核细胞中的表达[J].南京农业大学学报,2011,34(1):51-56.
    [14]张聪.禾谷镰孢菌p-微管蛋白的原核表达、复性纯化和单克隆抗体的制备[D].南京:南京农业大学:2009.
    [15]Maccioni RB, Serrano L, Avila J, et al. Characterization and structural aspects of the enhanced assembly of tubulin after removal of its carboxyl-terminal domain [J]. European Journal of Biochemistry,1986,156:375-381.
    [16]Smyth D R, Mrozkiewicz M K, Mcgrath W J, et al. Crystal structures of fusion proteins with large-affinity tags [J]. Protein Science,2003,12:1313-1322.
    [17]Giles N L, Armson A, Reid S A. Characterization of trifluralin binding with recombinant tubulin from Trypanosoma brucei [J]. Parasitology Research,2009,104:893-903.
    [18]Koo B S, Kalme S, Yeo S H, et al. Molecular cloning and biochemical characterization of α-and β-tubulin from potato plants (Solanum tuberosum L.) [J]. Plant Physiology and Biochemistry,2009, 47:761-768.
    [19]Koo B S, Park H, Kalme S, et al. α-and β-tubulin from Phytophthora capsici KACC 40483: molecular cloning, biochemical characterization, and antimicrotubule screening [J]. Applied Microbiology and Biotechnology,2009,82:513-524.
    [20]Koo BS, Jang MH, Park H, et al. Characterization of Capsicum annuum Recombinant α-and β-Tubulin [J]. Applied Biochemistry and Biotechnology,2010,160 (1):122-128.
    [1]叶钟音,周明国.江淮地区小麦赤霉病菌对多菌灵耐药性的测定[J].植物保护学报,1985 12(3):188-189.
    [2]顾宝根,刘经芬.小麦赤霉病对多菌灵耐药的研究[J].南京农业大学学报,1990,13(1):57-61.
    [3]王建新,周明国,陆悦健,等.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47.
    [4]周明国,叶钟音,刘经芬.杀菌剂抗性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [5]周明国.我国几种植物病害的抗药性监测情况[J].农药科学与管理,1999,20(3):39-40.
    [6]王建新,周明国.小麦赤霉病对多菌灵抗药性监测技术研究[J].植物保护学报,2002,29(1):73-77.
    [7]张雁南,樊坪升,陈长军,等.禾谷镰刀菌对多菌灵抗性的监测及其演变规律[J].农药,2009,48(8):603-613.
    [8]周明国,王建新.禾谷镰孢菌对多菌灵的敏感基线及抗药菌株生物学性质研究[J].植物病理学报,2001,31(4):365-370.
    [9]王建新.禾谷镰孢霉对多菌灵抗药性研究[D].南京:南京农业大学,2000.
    [10]顾宝根,刘经芬.小麦赤霉病菌对多菌灵抗药性的研究.Ⅱ.抗性检测和诱导[J].南京农业大学学报,1990,13(1):57-61.
    [11]周明国,王建新,陆悦健,等.小麦赤霉病菌对多菌灵抗药性变异研究[J].南京农业大学学报,1994,17:106-112.
    [12]袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[J].遗传学报,2003,30(5):474-478.
    [13]袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的室内抗药性突变体的诱导及其抗药性遗传分析[J].遗传学报,2004,31(4):363-368.
    [14]陆悦健,周明国,叶钟音,等.抗苯并咪唑的小麦赤霉病菌P-tubulin基因序列分析与特性研究[J].植物病理学报,2000,30(1):30-34.
    [15]李红霞,陆悦健,王建新,等.禾谷镰孢菌p-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43:424-429.
    [16]李红霞,陆悦健,王建新,等.四种不同植物病原真菌与多菌灵抗药性相关基因突变的比较[J].南京农业大学学报,2002,25(3):41-44.
    [17]陈长军.禾谷镰孢菌(Fusarium graminearum)多菌灵抗性抗性基因的克隆[D].南京:南京农业大学,2004.
    [18]陈长军,王建新,周明国.禾谷镰孢菌γ-微管蛋白基因克隆及其与多菌灵抗药性关系分析[J].植物病理学报,2005,35:161-167.
    [19]陈长军,李俊,祁之秋,等.禾谷镰孢菌α-微管蛋白基因克隆及其与多菌灵抗药性关系分析[J].微生物学报,2005,45:288-291.
    [20]陈长军,李俊,于俊杰,等.禾谷镰孢菌微管相关蛋白基因(map)克隆及其与多菌灵抗药性关系分析[J].南京农业大学学报,2009,32(1):160-163.
    [21]陈长军,周立邦,毕朝位,等.禾谷镰孢菌对多菌灵的抗药性与α2-微管蛋白序列无关析[J].微生物学报,2008,48(10):1356-1361.
    [22]Chen CJ, Wang JX, Luo QQ, et al. Characterization and fitness of carbendazim resistant strains of Fusariumgraminearum (wheat scab) [J]. Pest Manag Sci,2007,62:1201-1207.
    [23]Changjun C, Junjie Y, Chaowei B, et al. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides [J]. Phytopathology,2009,99:1403-1411.
    [24]Qiu J B, Xu J Q, Yu Y J, et al. Localisation of the benzimidazole fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis [J]. Pest management science,2010, 67:191-198.
    [25]陈晓波,李崧,康栋国,等.利复星药物与牛血清白蛋白作用的荧光光谱研究[J].量子电子学报,2006,23(2):150-154.
    [26]王志强,胡卢丰,吴继禹,等.荧光光谱法研究Ca2+存在下左氧氟沙星与人血清白蛋白的结合作用[J].中国药师,2011,14(7):922-925.
    [27]MacDonald LM, Armson A, Andrew Thompson RC, et al. Characterisation of benzimidazole binding with recombinant tubulin from Giardia duodenalis, Encephalitozoon intestinalis, and Cryptosporidium parvum [J]. Molecular & Biochemical Parasitology,2004,138,89-96.
    [28]Giles N L, Armson A, Reid S A. Characterization of trifluralin binding with recombinant tubulin from Trypanosoma brucei [J]. Parasitology Research,2009,104:893-903.
    [29]Ma Z H, Yoshimura M, Michailides TJ. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California [J]. Applied and Environmental Microbiology,2003,69:7145-7152.
    [30]Shinpei B, Fumiyasu F, Akihiko I. et al. Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays [J]. Phytopathology,2008,98:397-404.
    [31]Ma Z, Michailides TJ. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi [J]. Crop Protection,2005,24:853-863.
    [32]Zhang R L, Huang J S. Cloning of a carbendazim-resistant gene from Colletotrichum gloeosporioides of mango in South China [J]. African Journal of Biotechnology,2007,6 (2) 143-147.
    [33]Hollomon D W, Butters J A, Barker H, et al. Fungal β-tubulin, expressed as a fusion protein, binds benzimidazole and phenylcarbamate fungicides [J]. Antimicrobial Agents and Chemotherapy,1998, 42 (9):2171-2173.
    [34]Koo B S, Park H, Kalme S, et al. α-and β-tubulin from Phytophthora capsici KACC 40483: molecular cloning, biochemical characterization, and antimicrotubule screening [J]. Applied Microbiology and Biotechnology,2009,82:513-524.
    [35]Bi C W, Qiu J B, Zhou M G, et al. Effects of carbendazim on conidial germination and mitosis in germlings of Fusarium graminearum and Botrytis cinerea [J]. International Journal of Pest Management,2009,55 (2):157-163.
    [36]毕朝位.禾谷镰孢菌Fusarium graminearum Schwabe两个β-微管蛋白基因生理功能及对多菌灵的抗药性分子机理[D].南京:南京农业大学,2009.
    [37]Qiu JB, Huang TT, Xu JQ, et al. β-tubulins in Gibberella zeae:their characterization and contribution to carbendazim resistance [J], published on line, http://onlinelibrary. wiley.com/doi/ 10.1002/ps.3283/pdf.
    [38]Luo Q Q, Xu J Q, Hou Y P, et al. PIRA-PCR for detection of Fusarium graminearum genotypes with moderate resistance to carbendazim [J]. Plant Pathology,2009,58:882-887.
    [39]陈长军,蔡倩,王建新,等.利用错配碱基引物的ASO—FCR检测小麦赤霉病菌对多茵灵中抗菌株Codon200 TTC→TAC基因型[J].植物病理学报,2011,41(3):278-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700