用户名: 密码: 验证码:
田间褐飞虱对吡虫啉的抗性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐飞虱Nilaparvata lugens Stal (Brown planthopper, BPH)是一种重要的迁飞性水稻害虫,生产上主要以化学防治为主。虽然褐飞虱对有机氯、有机磷、氨基甲酸酯和拟除虫菊酯类杀虫剂的抗性时有报道,但通常是局部的中等水平抗性,只有对吡虫啉的抗性发生面广,抗性水平高,而且在大范围内导致田间用药失败。为了寻找吡虫啉的替代药剂,实现对褐飞虱的有效治理,本文在前期研究褐飞虱对吡虫啉室内筛选抗性的基础上,就褐飞虱对吡虫啉的田间抗性进行了系统研究。
     一、褐飞虱对常规杀虫剂的敏感基线和田间抗性监测
     通过杀虫剂毒力测定方法建立了褐飞虱对四类九种常规杀虫剂的敏感基线,并以此为基准分别对2005年和2008年采自安庆,桂林,江浦和吴江的四个地理种群的褐飞虱进行了田间抗药性监测。结果发现,褐飞虱敏感品系对九种药剂中敏感性较高的依次是呋虫胺,吡虫啉,丁硫克百威,吡蚜酮,啶虫醚和氟虫腈。对田间褐飞虱的抗药性监测发现,不同地理种群间褐飞虱对同种药剂的抗性水平没有显著差异(除2005年对吡虫啉抗性外),但是褐飞虱对不同药剂的抗性发展水平是不同的。2005年监测到褐飞虱对吡虫啉的抗性已达到了中高抗和极高抗水平(抗性倍数26.6-147.8倍),对乙酰甲胺磷处于低抗阶段(<10倍),而对氟虫腈,丁硫克百威和噻嗪酮的抗性状态仍处于敏感水平。2008年监测结果显示田间褐飞虱已表现出多重抗性,对吡虫啉抗性仍为高抗水平(61.1-87.3),同时对吡蚜酮,啶虫醚和噻嗪酮(12.2-23.8)和丁硫克百威(24.9-64.5)也表现出中等水平抗性,对有机磷类两种药剂的抗性处于低抗阶段(4.9-14.3),而对呋虫胺和氟虫腈两种药剂仍为敏感性状态。
     二、褐飞虱对吡虫啉田间抗性的稳定性和发生趋势
     为进一步研究褐飞虱对吡虫啉田间抗性的稳定性和抗性发展趋势,对吴江种群(RR-147.8倍)分别进行了敏感性恢复和抗性再筛选实验。结果表明,田间褐飞虱抗性种群在停止药剂筛选的情况下,抗性水平显著下降,尤其是前几代更为明显,19代后从147.8倍降到21.9倍。室内用吡虫啉再筛选可以使抗性进一步上升,19代时后抗性水平从147.8倍上升到380.9倍。但当种群达到极高水平后,继续连代筛选,短期内抗性没有明显变化,进行隔代筛选则抗性有所下降,而停止用药则抗性下降迅速,6代后从380.9倍降到157.7倍。综合以上现象说明,褐飞虱对吡虫啉的抗性是不稳定的而且抗性越高越不稳定,但是在持续的药剂压力下抗性仍会上升,并维持在极高抗水平。
     三、田间吡虫啉抗性褐飞虱的交互抗性分析
     通过测定四大类八种常规杀虫剂对褐飞虱田间抗性品系、室内筛选的敏感和抗性品系的毒力水平,分析了褐飞虱抗吡虫啉品系对几种杀虫剂的交互抗性。结果表明,对吡虫啉高抗的褐飞虱品系并非对所有的新烟碱类杀虫剂均表现出明显的交互抗性,在测试的新烟碱类杀虫剂中,仅对吡蚜酮和啶虫醚有显著的交互抗性,而对呋虫胺没有交互抗性。测定结果还发现,吡虫啉抗性品系对其它类型的药剂如乙酰甲胺磷、氟虫腈、噻嗪酮和丁硫克百威等均没有显著的交互抗性。由此认为吡虫啉的交互抗性谱相对较窄,仅限于同类中的某些药剂,因而生产上可以通过没有交互抗性的药剂,实施交替使用或混用来延缓抗性的产生。
     四、褐飞虱对吡虫啉抗感品系间相对适合度研究
     本研究分别构建了褐飞虱对吡虫啉的敏感品系、敏感恢复品系和抗性品系的实验种群生命表,利用种群趋势指数对比分析了抗性品系的相对适合度。结果发现,褐飞虱对吡虫啉产生抗性后,抗性品系(380.96倍)的种群数量趋势指数仅有25.6,除了性比之外,各项观测指标均显著低于敏感品系,尤其是产卵量和孵化率,均不到敏感品系的一半,其相对适合度只有0.191。然而敏感恢复品系(21.92倍)的种群数量趋势指数则达到119.5,仅在高龄若虫存活率和成虫羽化率两个指标上显著低于敏感品系,其相对适合度为0.889。这表明在没有药剂的选择压力的情况下,敏感褐飞虱具有极显著的种群增长优势,杂合种群对吡虫啉的抗性具有不稳定性。因此生产上可以通过避免褐飞虱接触吡虫啉或与吡虫啉有交互抗性的杀虫剂,恢复其敏感性。
     五、田间褐飞虱对吡虫啉抗性的生化机理研究
     本研究首先分析了酯酶、谷光甘肽转移酶和P450细胞色素氧化酶的抑制剂磷酸三苯酯、顺丁烯二酸二乙酯和胡椒基丁醚在褐飞虱敏感品系、抗性品系和敏感性恢复品系中对吡虫啉的增效作用,结果分析表明,细胞色素P450升高是褐飞虱对吡虫啉田间抗性升高的重要生化机制,EST可能与吡虫啉的极高水平的抗性有关,而GST则与抗性没有明显的关系。为了更进一步了解其生化机理,本研究分别测定了P450和EST的活力随着抗性水平的上升和衰退所发生的变化,结果发现不同褐飞虱抗性水平与P450活力的相关系数高达0.95(P<0.01,DPS6.50),而与EST活力的变化相关性并不大。因此认为细胞色素P450的活力升高是褐飞虱对吡虫啉田间抗性产生的关键因素。另外通过对2005年田间四个地理种群P450活力的测定和2008年田间种群对代谢酶(P450,EST和GST)的活力测定,验证了P450活力的升高是田间褐飞虱对吡虫啉抗性升高的主要生化机制,同时表明这也是2008年田间褐飞虱多重抗性发展的重要因素。
     六、褐飞虱乙酰胆碱受体a亚基功能区片段克隆及氨基酸多态性分析
     利用简并引物通过半巢式PCR克隆了褐飞虱乙酰胆碱受体a亚基功能区的cDNA片段,测序分析并与其它已报道的乙酰胆碱受体a亚基对比,发现这些片段均具有nAChR基因家族的典型特征,并与昆虫烟碱型乙酰胆碱受体的相应亚基具有很高的相似性,高达75-92%。因此证实所克隆的为褐飞虱nAchR的四个a亚基功能区的cDNA片段,并分别命名为:N1α1-like (FJ628418), N1α2-like (FJ557108), N1α3-like (FJ557109)和N1α4-like (FJ557110)。为验证之前报道的抗性突变位点(室内筛选品系获得)和进一步研究田间褐飞虱对吡虫啉高抗品系的靶标抗性机制,根据已获得的序列设计特异引物分别对褐飞虱抗感品系的四个a亚基功能区的cDNA片段进行序列比较,发现与敏感品系相比高抗品系的序列具有频率较高的氨基酸多态性,但目前没有检测到抗性密切相关的氨基酸变异。
     七、褐飞虱细胞色素P450基因的表达量及其与抗药性的关系分析
     根据GenBank所公布的褐飞虱基因序列Actin、CYP6AX1和CYP6AY1以及本实验室所获得的相关基因序列(CYP3A4、CYP4C1、CYP6A2、CYP4G1和CYP6A20)设计引物进行实时定量PCR,然后以Actin为持家基因,并以敏感品系CYP3A4基因的表达量为对照,通过比较CT值法(即2-ΔΔCT)获得了相关CYP450基因mRNA在褐飞虱抗感品系中的相对表达量。结果发现除CYP4G1和CYP6AX1的表达量在敏感品系略高外,其余基因的表达量都以抗性品系较高,其中CYP6AY1最为显著,是敏感品系的21.70倍。结合生化机理分析认为,褐飞虱对吡虫啉的田间抗性与CYP6AY1的过量表达有关。
The brown planthopper (BPH), Nilaparvata lugens Stal, is one of the most important migratory rice pests, and its control is emphasized and largely relied on insecticids. Though resistance to organochlorines, organophosphates, carbamates and pyrethroids had been reported from time to time in this pest, no high resistance widely occurred and resulted in failture in field control. The only exception is the resistance to imidacloprid recently occured. In order to seek efficient substitute of imidacloprid and achieve a good control of BPH, the development and the mechanism of imidacloprid resistance in field population were purchased based on the previous studies with laboratory selected imidacloprid resistance.
     1. Establishment of the relative susceptible baseline data to common insecticides and resistance monitoring in field populations of BPH
     The susceptibility of BPH to 9 insecticides of five different categories was determined with laboratory susceptible strain and the base line data were obtained. Based on these data, four field populations (Anqing, Jiangpu, Wujiang and Guilin) collected from paddy field in 2005 and 2008 were monitored for resistance to various insecticides. The results revealed that dinotefuran, imidacloprid, carbosulfan, pymetrozine, acetamiprid and fipronil have high relative toxicity index to susceptible strain among the nine insecticides. Various field populations usually showed similar resistance to the same insecticide, except for resistance to imidacloprid in 2005. But it is sure that resistance of field populations varied with different insecticides and monitoring time. BPH of field populations in 2005 had developed moderate to high level of resistance to imidacloprid (RR 26.6-147.8) and low level to acephate(RR<10), but no resistance to fipronil, carbosulfan, and buprofezin. Whereas in 2008, multiple resistances had been developed. Beside the high level of resistance to imidacloprid was maintained (61.1-87.3), moderate level of resistance to pymetrozine, acetamiprid and buprofezin (12.2-23.8), moderate to high level of resistance to carbosulfan (24.9-64.5), and low level of resistance to acephate and Chlorpyrifos(4.9-14.3) were developed, leaving only dinotefuran and fipronil as sensitive ones among the insecticides tested.
     2. Susceptibility recovery of field resistant population and further selection
     To declare the stability and dynamics of imidacloprid resistance in BPH, the hoppers from WJ field resistant population (RR 147.8) were separated into two groups and subjected to parallel treatments, susceptibility recovery and further resistance selection with imidacloprid. The results showed that susceptibility recovery by breeding without contacting any insecticides had a dramatic decline in its imidacloprid resistance (RR from 147.8 to 21.9 in 19 generations), especially in the first several generations. On the other hand, the further selection made the resistance increased (from 147.8-fold to 381.0-fold in 19 generations) and a high resistant strain (R19) was developed. However, after nineteen generations selected, it seemed to be difficult to select a higher imidacloprid resistance. Selections in every two generations made a slow decline in resistance and stopping selection made a quick decline (RR from 380.9-fold to157.7-fold in 6 generations). So, all of these results indicated that imidacloprid resistance was not stable, especial the resistance at high level.
     3. Cross-resistance in field population of BPH resistant to imidacloprid
     The cross-resistance to various insecticides was analysized by testing of the toxicity of eight insecticides of four different categories on the susceptible and resistant strains and the field resistant population of BPH. The results indicated that the BPH with high resistance to imidacloprid did not show obvious cross-resistance to all the neonicotinoid insecticides. Only pymetrozine and acetamiprid amongthe insecticides tested were confirmed to be cross-resistant. To Dinotefuran and other non-neonicotinoid insecticides, such as acephate, fipronil, buprofezin and carbosulfan, no significant cross-resistance was found. In conclusion, imidacloprid might have a narrow of cross-resistance spectrum. Thus, it means that the alternate and mixed use of substitutes with little cross-resistance could be selected to delay the resistance development inthis pest.
     4. The relative fitness of BPH resistant and susceptible to imidacloprid
     The relative fitness of resistant BPH has been studied by comparing the population trend index, which was obtained through constructing life tables of susceptible, susceptibility-recovery and resistant strains. The results showed that the resistant strain (RR 380.96) had very lower population trend index (25.6) with dramaticly poor fecundity and hatchability, which were less than half that of susceptible strain. The relative fitness index calculated was only 0.191. However, the population trend and relative fitness index was 119.5 and 0.889, respectively in susceptibility recovery strain (RR 21.92). Among the tested indexes, only two (survival rate and emergence rate) were found decreased. These indicated that susceptible BPH had advantages over resistant ones under the circumstance without imidacloprid selection pressure, and further revealed that imidacloprid resistance in heterozagous populations was not stable. So, the susceptibility of BPH could recovery if they were kept from contacting with imidacloprid or other insecticides exhibiting cross-resistance.
     5. Biochemical mechanisms for imidacloprid resistance in field population of BPH
     The synergisms of TPP, PBO and DEM, the inhibitors of esterase (EST), P450 monooxydase and glutathione S-transferase (GST), on imidacloprid in the susceptible, susceptibility recovery and resistant strains were first tested. The results revealed that the enhanced P450-detoxification could be an important biochemical mechanism for imidacloprid resistance in field populations, EST could also play some roles for super high level resistance, but GST seemed not. For further demonstration of the biochemical mechanisms, the changes in the activity of P450 and EST among different strains were analyzed. Of which, the correlation index of the P450 activity and imidacloprid resistance among different strains is as high as 0.95 (P<0.01, DPS6.50), but the EST activity did not correlate with imidacloprid resistance level. It implied that the enhancement of P450 activity was the key factor for imidacloprid resistance in BPH field populations. Furthermore, the P450 activity in four field strains collected in 2005 and the activity of three detoxification enzymes (P450, EST and GST) in the strains collected in 2008 were also tested, respectively. These results also proved that higher activity of P450 was the main biochemical mechanism for imidacloprid resistance in BPH and also for multiple resistances in the populations tested in 2008.
     6. Cloning of the functional extracellular regions of nAChR a-subunit genes and amino acid polymorphisms analysis
     With degenerate primers designed for nAChR a-subunit genes, half nest PCR was carried out and four cDNA fragments of the nicotinic acetylcholine receptor (nAChR) genes were cloned from BPH. Further sequence analyzed and comparison with previously reported sequences of nAChR genes confirmed that these fragments had a typical characteristic of nAChR a-subunit and high similarity with other insect a-subunits (75-92%). So, the four cloned putative nAChR subunits were designated as Nlal-like (FJ628418), Nlα2-like (FJ557108), Nlα3-like (FJ557109) and Nlα4-like (FJ557110). For checking the resistance mutation previously reported in laboratory selected strains and studying the mechanism for target resistance in BPH field population, the functional regions of the four nAChR a-subunits were cloned and the cDNA sequences from resistant and susceptible individuals were compared. The results revealed that each gene contained some amino acid polymorphisms. However, most of them occurred in very low frequence and no mutation was found to be associated with imidacloprid resistance.
     7. Quantitative expression of cytochrome P450 genes and the relationship with imidacloprid resistance in Nilaparvata lugens
     According to the published sequences of Actin, CYP6AX1 and CYP6AY1 in GenBank, and other related gene sequences (CYP3A4, CYP4C1, CYP6A2, CYP4G1 and CYP6A20) obtained in our laboratory, primers were designed for real-time quantitative PCR. Then considered Actin as the housekeeping gene and sensitive CYP3A4 gene expression as control, the relative mRNA expression of various CYP450 genes in resistant and susceptible strains of BPH were estimated by CT comparison method. It was found that most CYP450 genes had higher level of relative mRNA expression in resistant strain. Especially, the gene of CYP6AY1 was 21.7 folds higher in resistant strain than that in susceptible strain. Combination of the previous results in biochemical mechanism analysis revealed that the over-expression of CYP6AY1 might associate with the high resistance to imidacloprid in field populations of BPH.
引文
1. 陈凤菊,高希武.昆虫谷胱甘肽S_转移酶的基因结构及其表达调控.昆虫学报,2005,48(4):600-608.
    2. 陈亮,吴兴富,邓建华等.抗吡虫啉桃蚜种群的选育及其交互抗性研究.农药学学报,2005,7(3):289-292.
    3. 程家安,祝增荣.2005年长江流域稻区褐飞虱暴发成灾原因分析.植物保护,2006,32(4):1-4.
    4. 程遐年,吴进才,马飞.褐飞虱研究与防治.北京:中国农业出版社,2003.
    5. 邓业成,王荫长,李洁荣等.啶虫脒的杀虫活性研究.西南农业学报,2002,15(1):50-53.
    6. 邓业成,王荫长,谭福杰.褐飞虱对马拉硫磷的抗性与酯酶的关系.西南农业学报,1995,8(4):74-78
    7. 方继朝,朴永范,孙建中等.吡虫啉防治稻飞虱等害虫的毒理和技术研究.西南农业大学学报,1998,20(5):478-488.
    8. 高辉华,王荫长,谭福杰等.稻褐飞虱对杀虫剂敏感水平的研究.南京农业大学学报,1987,4(增):65-71.
    9. 高希武,胡慢华,郑炳宗.应用酶标仪动力学方法监测棉蚜的抗药性.昆虫知识,1998,35(1):17-19.
    10. 高希武,彭丽年等.对2005年水稻褐飞虱大发生的思考.植物保护,2006,32(2):23-25.
    11. 顾正远,王冬兰,于向阳等.褐飞虱生物型监测及抗药性初析.江苏农业科学,2002, (1):41-43.
    12. 韩召军,王荫长,尤子平.棉蚜对拟除虫菊酯类杀虫剂的抗性机理.南京农业大学学报,1995,18(3):54-59.
    13. 何承苗.几种农药对稻飞虱主要天敌的影响.福建农业科技,2000,(4):13-14.
    14. 姜辉,林荣华,刘亮,瞿唯钢,陶传江.稻飞虱的危害及再猖獗机制.昆虫知识,2005,42(6):612-615.
    15. 冷欣夫,唐振华,王荫长主编.杀虫剂分子毒理学及昆虫抗药性.北京:农业出版社.1996.
    16. 李飞,韩召军,吴智锋,王荫长.我国棉蚜抗药性研究现状.棉花学报,2001,13(2):121-124.
    17. 李飞,黄水金,韩召军.害虫抗药性分子检测技术.生命的化学,2003,23(5)392-395.
    18. 李显春,王荫长,韩召军.昆虫细胞色素P450基因的克隆及其策略.华东昆虫学报,1999,8(2):103-111.
    19. 梁天锡,毛立新.水稻飞虱的抗药性监测研究,华东昆虫学报,1996,5(1):89-93.
    20. 廖世纯,韦桥现,黄所生,黄立飞,黎柳锋.16种杀虫剂对稻飞虱的田间防治效果.中国农学通报,2008,4(9):345-347.
    21. 刘慧君,赵媛.农药生态毒理学的研究和应用.植物保护,2009,35(1):22-26.
    22. 刘贤进,孙以文.褐飞虱对甲胺磷和噻嗪酮代谢抗性的生化分析.植物保护学报,1998,25(3):263-266.
    23. 刘泽文,韩召军,王荫长.褐飞虱抗有机磷品系的交互抗性及适合度研究.南京农业大学学报,2001,24(4):37-40.
    24. 刘泽文,刘成君,张洪伟等.褐飞虱抗吡虫啉品系生物适合度研究.昆虫知识,2003,40(5):419-422.
    25. 刘泽文.褐飞虱对吡虫啉的抗性及其机理研究.南京农业大学博士论文,2004.
    26. 龙丽萍.水稻飞虱对杀虫剂敏感性变化动态规律的研究.华中农业大学学报,2005,24(1):15-20.
    27. 吕冬红,王海青,刘素萍,袁昌,洪刘方.水稻褐飞虱发生程度气象预报方法的研究.安徽农业科学,2009,7(2):668-671.
    28. 孟繁霞,苗龙,张蜀秋等.Ca2+参与蚕豆保卫细胞中毒蕈碱型受体介导的乙酰胆碱信号转导.科学通报,2004,49(4):358-362.
    29. 欧晓明,黄明智,王晓光,樊德方.昆虫抗性靶标部位及其在杀虫剂创制中的作用.现代农药,2003,2(5):11-15.
    30. 欧晓明.昆虫分子神经生物学及其在杀虫剂创制中的作用.世界农药,2005,27(6):6-12.
    31. 邱星辉,何凤琴,李梅.细胞色素P450介导的昆虫抗药性.生命的化学,2003,23(4):279-281.
    32. 邱星辉,冷欣夫.昆虫细胞色素P450基因的表达与调控及P450介导抗性的分子机制.农药学学报,1999,1(1):7-14.
    33. 邱星辉,李薇,冷欣夫.棉铃虫不同发育阶段微粒体P450酶系组成和活性的比较.昆虫学报,2001,44(2):142-147.
    34. 曲明静,许新军,韩召军,姜晓静.昆虫乙酰胆碱酯酶基因变异抗药性机制研究.昆虫知识,2007,44(2):191-194.
    35. 沈晋良,吴益东.棉铃虫抗药性及其治理.北京:中国农业出版社,1997.
    36. 孙建中,方继朝,夏礼如等.灭虫精的杀虫活性及田间防治褐飞虱的应用研究.昆虫学报,1996,39(1):37-45.
    37. 孙晓琴,袁建忠,唐振华.家蝇和果蝇的靶标抗性研究进展.农药,2008,47(11):785-789.
    38. 唐建军,陈欣,张传进等.超高效杀虫剂吡虫啉的特性及其应用.中国农学通报,1999,15(1):38-40。
    39. 唐振华,胡刚.细胞色素P450基因的命名及其基因表达的调控.昆虫知识,1993,30(5):311-314.
    40. 唐振华,陶黎明,李忠.害虫对新烟碱类杀虫剂的抗药性及其治理策略.农药学学报,2006,8(3):195-202.
    41. 唐振华,陶黎明,李忠.烟碱乙酰胆碱受体及其与新烟碱类相互作用的研究进展.农药学学报,2007.9(4):309-316.
    42. 唐振华,袁建忠,庄佩君,陶黎明.昆虫击倒抗性基因突变对钠通道功能的影响.昆虫学报,2005,48(1):119-124.
    43. 唐振华,袁建忠,庄佩君,陶黎明.昆虫钠通道的结构和与击倒抗性有关的基因突变.昆虫学报,2004,47(6):830-836.
    44. 田学志,肖满开,董习华等.安庆市稻飞虱发生与防治对策的探讨.安徽农学通报,2008,14(7):166-167.
    45. 王恒彬,王学臣,张蜀秋等.乙酰胆碱酯酶在蚕豆保卫细胞中集中分布.植物学报,1999,41(4):364-368.
    46. 王建军,韩召军,王荫长.击倒抗性和钠离子通道.昆虫学报,2002,45(3):391-396.
    47. 王建军,韩召军,王荫长.新烟碱类杀虫剂毒理学研究进展.植物保护学报,2001,28(2):178-182.
    48. 王强,韩丽娟,黄祥麟等.吡虫啉对几种同翅目害虫的触杀毒力测定.江苏农业学报,1996,12(3):29-31.
    49. 王彦华,陈进,沈晋良,高聪芬等.防治褐飞虱的高毒农药替代药剂的室内筛选及交互抗性研究.中国水稻科学,2008,22(5):519-526.
    50. 王彦华,李永平,陈进,沈晋良,李文红.褐飞虱对吡虫啉敏感性的时空变化及现实遗传力.中国水稻科学,2008,22(4):421-426.
    51. 王彦华,王鸣华.褐飞虱抗药性及再猖獗研究进展.农药,2006,45(4):227-230.
    52. 王荫长,韩召军.我国农业害虫抗药性发生概况.昆虫知识,1991,28(2):120-121.
    53. 王荫长,王建军,韩召军,倪珏萍.氯化烟碱类杀虫剂的毒理学研究进展.浙江化工,2000,31:119-122.
    54. 吴峻,庄佩君,唐振华.中国棉铃虫P450家族的CYP6B2基因与抗药性关系.生物化学与生物物理学报,1999,31(1):101-103.
    55. 吴孔明,刘芹轩.棉蚜对杀虫剂抗性的稳定性.昆虫学报,1995,38(2):253-255.
    56. 吴青君,徐宝云,张友军.噻虫嗪不同处理方法对烟粉虱的毒力及药效评价.农药学学报,2003,5(4):70-74.
    57. 吴晓卫,李瑛等.2005-2007年水稻褐飞虱重发原因分析及控制对策.植物保护,2008,9: 92-93.
    58. 吴益东,沈晋良,谭福杰,尤子平.棉铃虫对拟除虫菊酯抗性稳定性研究.昆虫学报,1996,39(4):342-346.
    59. 吴益东,沈晋良,谭福杰,尤子平.棉铃虫对氰戊菊酯抗性品系和敏感品系的相对适合度.昆虫学报,1996,39(3):233-236.
    60. 吴益东,杨亦桦,陈进,李爱玫,沈晋良.增效醚PBO对棉铃虫细胞色素P450的抑制作用及对拟除虫菊酯的增效作用.昆虫学报,2000,43(2):138-142.
    61. 徐汉虹,李玉霞.新烟碱类杀虫剂选择性和多样性的电生理学分子生物学和受体模型.世界农药,2008,30(5):6-12.
    62. 杨吉春,李淼,柴宝山,刘长令.新烟碱类杀虫剂最新研究进展.农药,2007,46(7):433-438.
    63. 杨亦桦,陈松,吴益东,沈晋良.棉铃虫对辛硫磷抗性的选育交互抗性及增效剂增效作用研究.棉花学报,2002,14(1):13-16.
    64. 杨亦桦.棉铃虫对拟除虫菊酯氧化代谢抗性的生化与分子机理.南京农业大学博士论文,2005
    65. 姚洪渭,叶恭银,程家安.同翅目害虫抗药性研究进展.浙江农业学报,2002,14(2):63-70.
    66. 姚洪渭,叶恭银,程家安.亚洲地区稻飞虱抗药性研究进展.农药,1998,37(9):6-11.
    67. 翟保平,沈慧梅等.2008年境外稻飞虱第一波迁入峰:虫源分析.2008.
    68. 翟保平,程家安.2006年水稻两迁害虫研讨会纪要.昆虫知识,2006,43(4):585-588.
    69. 翟启慧.昆虫分子生物学的一些进展:杀虫剂抗性的分子基础.昆虫学报,1995,38(4):493.
    70. 张夕林,杨燕涛.治理水稻害虫药剂的选择与应用.农药科学与管理,2008,29(8):46-50.
    71. 张友军,姜辉.杀虫剂抗性监测技术研究进展.农药科学与管理,1998,65(1):20-23.
    72. 张宗炳.杀虫药剂的分子毒理学.北京:农业出版社.1987.
    73. 章玉苹,黄炳球.吡虫啉的研究现状与进展.世界农药,2000,22(6):23-28.
    74. 赵建周.害虫对吡虫啉抗性的研究进展.植物保护,1998,6:40-41.
    75. 赵宇,杨亦桦,武淑文,吴益东.小菜蛾烟碱型乙酰胆碱受体亚基cDNA的克隆_序列分析与不同发育阶段表达分析.昆虫学报,2009,52(1):17-26.
    76. 周斌芬,唐振华,高菊芳.昆虫代谢抗性的研究进展.农药,2008,47(5):313-315.
    77. 周亦红,韩召军.褐飞虱生物型研究进展_致害性变异的遗传机制.昆虫知识,2003,40(3):199-203.
    78. 庄永林,沈晋良.稻褐飞虱对噻嗪酮抗性的检测技术.南京农业大学学报,2000,23(3):114-117.
    79. Adams AD, Celniker SE, Holt RA. The genome sequence of Drosophila melanogaster. Science, 2000,287:2185-2197.
    80. Amichot M, Tares S, Brun-Barale A. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur.J.Biochem,2004,271: 1250-1257.
    81. Andrews MC, Callaghaghant A, Field LM, et al. Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover. Insect Molecular Biology,2004,13:555-561.
    82. Arias HR. Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Res. Rev,1997,25:133-191.
    83. Bai D, Lummis T, Leicht W, et al. Actions of imidacloprid and a related nitromethylene on cholinergic recptors of an identified insect motor neurone. Pestic. Sci,1991,33:197-204.
    84. Bass C, Lansdell SJ, Millar NS et al. Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera:Pulicidae). Insect Biochem. Mol. Biol,2006,36 (1):86-96.
    85. Bautista MM, Miyata T. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem. Mol. Biol,2009,39:38-46.
    86. Bellinger RG. Pest Resistance to Pesticides. Southern Region Pesticide Impact Assessment Program,1996.
    87. Berge JB, Feyereisen R, Amichot M, Cytochrome P450 monooxygenases and insecticide resistance in insects. Phil. Trans. R. Soc. Lond. B,1998,353:1701-1705.
    88. Bertrand D, Balliver M, Gomez M, et al. Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate β2 subunit and Drosophila alpha subunits. European Journal of neuroscience,1994,6:869-875.
    89. Bhaskara S, Dean ED, et al. Induction of two cytochrome P450 genesCyp6a2 and Cyp6a8 of Drosophila melanogaster by caffeine in adult flies and in cell culture. Gene,2006,377:56-64.
    90. Bossy B, Ballivet M, Spierer P. Conservation of neuronal nicotinic acerylcholine receptors from Drosophila to vertebrate central nervous system. Embo Journal,1988,7:611-618.
    91. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem,1976,72:248-254.
    92. Brattsten CB, Holyoke CW, Leeper JR, et al. Insecticide resistance:Challenge to pest management and basic rearch. Science,1986,231:1255-1260.
    93. Breer H, Sattelle D B. Molecular properties and functions of insect acetylcholine receptors. Journal of Insect Physiology,1987,33:771-790.
    94. Buckingham SD, Lapied B, Lecorronc H, et al. Imidacloprid actions on insect neuronal acetylcholine receptors. Journal of Experimental Biology,1997,200:2685-2692.
    95. Byrne FJ, Castle S, Prabhaker N, et al. Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest Manag. Sci,2003,59:347-352.
    96. Cahill M, Denholm I. Managing resistance in the chloronicotinyl insecticides-rhetoric or reality. Yamamoto I, Casdia JE. Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor, Tokyo: Springer.1999,253-270.
    97. Cahill M, Gorman K, Day S, et al. Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera:Aleyrodidae). Bull. Entomol. Research,1996,86(4): 343-349.
    98. Campbell PM, Newcomb RD, Russell R, et al. Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina. Insect Biochemistry and Molecular Biology,1998,28(3):139-150.
    99. Catterall WA. From ionic currents to molecular mechanisms:the structure and function of voltage-gated sodium channels. Neuron,2000,26:13-25.
    100. Charpentier A, Fournier D. Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pestic.Biochem.Physiol,2001,70:100-107.
    101. Choi BR, Lee SW, Yoo JK. Resistant mechanism of green peach aphid, Myzus persicae (Homoptera; Aphididea), to imidacloprid. Kor. J. Appl. Entomol,2001,40(3):265-271.
    102. Claudianos C, Russell RJ. The same amino acid substitution in orthologous esterase confers organophosphate resistance on the house fly and a blowfly. Insect Biochem. Mol.Biol,1999,29: 675-686.
    103. Corringer PJ, Le-Novere N, Changeux JP. Nicotinic receptors at the amino acid level. Annual Review of Pharmacology and Toxicology,2000,40:431-458.
    104. Daborn P, Boundy S, et al. DDT resistance in Drosophila correlates with Cyp6gl over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics,2001,266: 556-563.
    105. Daborn PJ, Lumb C, Ffrench-Constant RH, et al. Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochemistry and Molecular Biology,2007,37:512-519.
    106. Daborn PJ, Yen JL, et al. A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science,2002,297(27):2253-2256.
    107. David MS, Robert MH, et al. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata(Say) (Coleoptera: Chrysomelidae). Pest Manag. Sci,2006,62:30-37.
    108. Denholm I, Devine GJ, et al. Insecticide Resistance on the Move. Science,2002.297.
    109. Dutertre S, Lewis RJ. Toxin insights into nicotinic acetylcholine receptors.biochemical pharmacology,2006,72:(661-670).
    110. Elbert A, Beeker B, Hartwig J, et al. Imidacloprid, a new systemic insecticide. Pflanzenschutz-Nachrichten Bayer,1991,44:113-136.
    111. Elbert A, Nauen R. Resistance of Bemisia tabaci (Homoptera:Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Manag. Sci,2000,56(1):60-64.
    112. Endo S, Masuda T. Development and mechanism of insecticide resistance in rice brown planthoppers selected with malathion and MTMC. J Pestic Sci,1988,13(2):239-245.
    113. Feyereisen R, Koener JF,et al. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide resistant strain of the house fly, Musca domestica. Proc.Natl. Acad. Sci, USA.1989,86:1465-1469.
    114. Feyereisen R. Evolution of insect P450. Biochemical Society Transactions,2006,34:1252-1255.
    115. Ffrench-Constant R.H. Which came first insecticides or resistance. Trends in Genetics,2006.
    116. Ffrench-Constant RH, Daborn PJ, Goff GL. The genetics and genomics of insecticide resistance. Trends in Genetics,2004,20 (3):163-170.
    117. Field LM, Devonshire AL,,Forde BG. Molecular evidence that insecticide resistance in peach-potato aphids (Myxus persicae Sulz.) results from amplification of an esterase gene. Biochem.J,1988,251:309-312.
    118. Field, LM, Blackman RL, Tyler-Smith C, et al. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem. J,1999,339:737-742.
    119. Finney DJ. Probit Analysis, third ed. Cambridge University Press, Cambridge, UK,1971, p.333.
    120. Forrester NW, Cahill M, et al. Management of pyrethroid and endosulfan resistance in Helicoverpa armigera (Lepidoptera:Noctuidae) in Australia. Bull Entomol Res Sup,1993,1: 36-43.
    121. Foster S, Denholm I, Thompson R. Variation in response to neonicotinoid insecticides in peach-potato aphids Myzus persicae (Hemiptera:Aphididae). Pest Manag. Sci,2003,59:166-173.
    122. Fournier D, Bride JM, Hoffmann F. Acetylcholinesterase, two types of modifications confer resistance to insecticide. J. Biol. Chem,1992,267:14270-14274.
    123. Furtong MJ, Wright DJ. Examination of stability of resistance and cross-resistance patterns to acylurea insect growth regulators in field populations of the diamondback moth, plutella xylostella, from Malaysia. Pestic. Sci,1994,42:325-326.
    124. Galzi JL, Changeux J P. Neuronal nicotinic receptors:molecular organisation and regulations. Neuropharmacology,1995,34:563-582.
    125. Galzi JL, Devillers-Thiery A, Hussy N, et al. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature,1992,359: 500-505.
    126. Gao JR, Kozaki T, et al. The A302S mutation in Rdl that confers resistance to cyclodienes and limited cross-resistance to fipronil is undetectable in field populations of house flies from the USA. Pesticide Biochemistry and Physiology,2007,88:66-70.
    127. Georghiou GP. Management of resistance in Arthropods pest resistance to pesticides. Plenum press, New York and London,1983:769-792.
    128. Gorman K, Hewitt F, Denholm I, et al. New developments in insecticide resistance in the glasshouse whitefly (Trialeurodes vaporariorum) and the two-spotted spider mite (Tetranychus urtucae) in the UKs. Pest Manag. Sci,2001,58:123-130.
    129. Grafius EJ, Bishop BA. Resistance to imidacloprid in Colorado potato beetles from Michigan. Resistant Pest Manage Newsletter,1996,8(2):21-25.
    130. Grauso M, Reenan RA, Culetto E, et al. Novel Putative Nicotinic Acetylcholine Receptor Subunit Genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a New and Highly Conservative Target of Adenosine Deaminase Acting on RNA-Mediated A-to-I Pre-mRNA Editing. Genetics,2002,160(4):1519-1533.
    131. Gunning RV, Moores GD, Devonshire AL. sterase inhibitors synergise the toxicity of pyrethroids in Australian Helicoverpa armigea (Hubner) Lepidoptera:Noctuidae. Pestic. Biochem. Physiol, 1999(63):50-62.
    132. Han ZJ, Moores GD, Denholm I, et al. Association between biochemical markers and insecticides in the cotton aphid, Aphis gossypii Glover. Pestic. Biochem. Physiol,1998,62:164-171.
    133. Heinrichs EA. Impact of insecticides on the resistance and resurgence of rice planthopper, in Planthoppers:their Ecology and Management, ed. by Denno RF and Perfect TJ. Chapmanand Hall, New York, NY,1994,571-614.
    134. Hemingway J, Field L, Vontas J. An Overview of Insecticide Resistance. Science,2002.298: 96-97.
    135. Hernandez R, Guerrero FD, George JE, et al. Allele frequency and gene expression of a putative carboxylesterase-encoding gene in a pyrethroid resistant strain of the tick Boophilus microplus. Insect Biochem.Mol.Biol,2002,32:1009-1016.
    136. Hirai K. Development of insecticide resistance to organophorus and carbonates in the white-backed planthopper, Sogatella furcifera Horvath in Japan. J Pesti Sci,1994,19(3):229-232.
    137. Honda H, Tomizawa M, et al. Neonicotinoid metabolic activation and inactivation established with coupled nicotinic receptor-CYP3A4 and-aldehyde oxidase systems. Toxicology Letters, 2006,161:108-114.
    138. Hosoda A. Decrease in susceptibility to organophosphorus and carbamate insecticides in the brown planthopper, Nilaparvata lugens Stal (Homoptera:Delphacidae). Jap. J. Appl. Ent. Zool, 1983,27:56-62.
    139. Huang H S, Hu NT. Yao YE, et al. Molecular cloning and heterologous expression of a glutathion S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochem. Mol. Biol,1998,28(9):651-658.
    140. Huang Y, Williamson MS, Devonshire AL, et al., Molecular characterization and imidacloprid selectivity of nicotinic acetylcholine receptor subunits from the peach-potato aphid Myzus persicae. J. Neurochem,1999,73:380-389.
    141. Ishaaya I, Kontsedaloy S, Horowitz AR. Bio-rational insecticide:mechanism and cross-resistance [J]. Archives of Insect Biochemistry and Physiology,2005,58(4):192-199.
    142. Jemec A, Tisler T, et al. Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere,2007,68:p.1408-1418.
    143. Jonas P, Baumann A, Merz B, Gundelfinger E D. Structure and developmental expression of the Dα2 gene encoding a novel nicotinic acetylcholine receptor protein of Drosophila melanogaster. Febs Letters,1990,269:264-268.
    144. Jones AK, Grauso M, Sattelle DB.The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae.Genomics,2005,85:176-185.
    145. Jones AK, Raymond-Delpech V, Thany SH, et al. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Research,2006,16(11):1422-1430.
    146. Jurgen B, Nauen R. Rapid Report Biochemical evidence that an S431F mutation in acetylcholinesterase-1 of Aphis gossypi mediates resistamce to pirimicarb and omethoate. Pest. Manag. Sci,2004,60:1051-1055.
    147. Kakani EG, Ioannides IM, et al. A small deletion in the olive fly acetylcholinesterase gene associated with high levels of organophosphate resistance. Insect Biochemistry and Molecular Biology,2008,38:781-787.
    148. Karunker I, Benting J, et al. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology,2008,38:634-644.
    149. Kasai S, Weerashinghe IS, Shono T. P450 monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus Say larvae. Arch. Insect Biochem. Physiol,1998, 37:47-56.
    150. Kazuhisa T, Takashi G. Evolution of Nicotinic Acetylcholine Receptor Subunits. Mol.Biol.Evol, 1998,15(5):518-527.
    151. Knipple DC, Doyle KE, Marsella-Herrick PA, et al. Tight genetic linkage between the kdr insecticide resistance trait and a voltage-sensitive sodium channel gene in the house fly. PNAS, 1994,91:2483-2487.
    152. Kostaropoulos I, Papadopoulos AI, Metaxakis A, et al. Glutathione-S-transferase in the defence against pyrethroids in insects. Insect Biochem. Mol. Biol,2001,31:313-319.
    153. Kozaki T, Shono T, Tomita T. Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem Mol Biol,2001,31 (10):991-997.
    154. Ku CC, Chiang FM. Glutathion transferase isozymes involved in insecticide resistance of diamondback moth larvae. Pestic. Biochem. Phsiol,1994,50(3):91-197.
    155. Kulkarni AP, Hodgson E. Metabolism of insecticides by mixed function oxidase systems. Pharmac. Ther,1980,8:379-475.
    156. Laufer J, Pelhate M, Sattelle DB. Actions of pyrethroid insecticides on insect axonal sodium channels. Pest Sci,1985,16:651-661.
    157. Lee SH, Dunn JB, Clark JM, et al. Molecular analysis of kdr-like resistance in a permethrin resistant strain of Colorado potato beetle. Pestic. Biochem. Physiol,1999,63:63-75.
    158. Lee SH, Soderlund DM. The V410M mutation associated with pyrethroid resistance in Heliothis virescens reduces the pyrethroidsensitivity of house fly sodium channels expressed in Xenopus oocytes. Insect Biochem.Mol.Biol,2001,31:19-29.
    159. Li F, Han ZJ. Alternative splicing, multiple transcription initiation sites of nicotinic acetylcholine receptor subunits from the cotton aphid Aphis gossypii. Acta Zoologica Sinica,2005,51 (5):867-878.
    160. Li F, Han ZJ. Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochemistry and Molecular Biology,2004,34:397-405.
    161. Liu N, Scott JG. Genetic analysis of factors controlling elevated cytochrome P450, CYP6D1, cytochrome b5, P450 reductase and monooxygenase activities in LPR house flies, Musca domestica. Biochem. Genet,1996,34:133-148.
    162. Liu N, Scott JG. Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect Biochem.Mol. Biol,1998,28:531-535.
    163. Liu ZW, Han ZJ, Wang YC.Selection for imidacloprid resistance in Nilaparvata lugens: cross-resistance patterns and possible mechanisms. Pest Management Science,2003,59: 1355-1359.
    164. Liu ZW, Williamson MS, Lansdell SJ, et al. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). PNAS, 2005.102(24):8420-8425.
    165. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods,2001,25:402-408.
    166. Machold J, Weise C, Utkin Y, et al. The handedness of the subunit arrangement of the nicotinic acetylcholine receptor from Torpedo californica. Eur. J. Biochem,1995,234(22):427-430.
    167. Maitra S, Dombrowski SM, et al. Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melanogaster. Gene,1996,180:(165-171).
    168. Martin T, Chandre F, et al. Pyrethroid resistance mechanism in the cotton bollworm helicoverpa armigera (Lepidoptera:Noctuida) from West Africa. Pest Manag. Sci,2000,56:549-554.
    169. Martinez-Torres D, Foster SP, Field LM, et al. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera:Aphididae). Insect Mol.Biol,1999,8:339-346.
    170. Masaya MT, Hiroaki S, Masaru S, Sachiyo O, et al. Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers, Nilaparvata lugens and Sogatella furcifera, in East and Southeast Asia. Pest Manag. Sci,2008,64:1115-1121.
    171. Matsuda K, Buckingham SD, et al. Neonicotinoids:insecticides acting on insect nicotinic acetylcholine receptors. TRENDS in Pharmacological Sciences,2001,22 (11):573-580.
    172. Matsuda K, Neonicotinoids show selective and diverse actions on their nicotinic receptor modeling studies. Biosci.biotechnol.Biochem,2005,69 (8):1442-1452.
    173. Millar NS, Denholm I. Nicotinic acetylcholine receptorstargets for commercially important insecticides. Invert Neurosci,2007.7:53-66.
    174. Mittapalli O, Wise I L., Shukle R H. Characterization of a serine carboxypeptidase in the salivary glands and fat body of the orange wheat blossom midge, Sitodiplosis mosellana (Diptera:Cecidomyiidae). Insect Biochem. Mol. Biol,2006,36:154-160.
    175. Mizell RF, Sconyers MC. Toxicity of imidacloprid to selected arthropod predators in the laboratory. Florida Entomologist,1992,75(2):277-280.
    176. Mongan NP, Jones AK, Smith GR, et al. Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci,2002,11:1162-1171.
    177. Morin S, Williamson MS, Goodson SJ, et al. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochem. Mol. Biol,2002,32:1781-1791.
    178. Mutero A, Pralavorio M, Bride J M. Resistance-associated point mutation in insecticide-insensitive acetylcholinesterase. PNAS,1994,91:5922-5926.
    179. Nagata T, Masuda T, Moriya S. Development of insecticide resistance in the brown planthopper, Nilaparvata lugens Stal (Homoptera:Delphacidae). Appl Ent Zool,1979,14(3):264-269.
    180. Nagata T. Insecticide resistance and chemical control of the rice planthopper, Nilaparvata lugensStal. Bul. Kyushu Nat Agric. Exp. Station,1982,22:49-164.
    181. Nauen R, Denholm I. Resistance of insect pests to neonicotinoid insecticides:current status and future prospects. Arch. Insect Biochem. Physiol,2005,58:200-215.
    182. Nauen R, Elbert A. European monitoring of resistance to common classes of insecticides in Myzus persicae and Aphis gossypii(Homoptera:Aphididae) with special reference to imidacloprid. Bull. Entomol. Res,2003,93:47-52.
    183. Nauen R, Stumpf N, Elbert A. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera:Aleyrodidae). Pest. Manag. Sci,2002,58: 868-874.
    184. Nelson DR, Koymans L, Kamataki T, et al. P450 Superfamily:Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics,1996,6:1-41.
    185. Newcomb RD, Campbell PM. A single amino acid substitution converts a carboxylesterase to an organophosphate hydrolase and confers insecticide resistance on a blowfly. PNAS,1997,94: 7464-7468.
    186. Nikou D, Ranson H, Hemingway J. An adult-specific CYP6 p450 gene is over expressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene,2003,318:91-102.
    187. Novere NL, Corringer PJ, Changeux JP. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J. Neurobiol.2002,53: 447-456.
    188. Olsen ER, Dively GP, Nelson JO. Baseline susceptibility to imidacloprid and cross resistance patterns in Colorado potato beetle (Coleoptera:Chrysomelidae) populations. J. Econ. Entomol, 2000,93:447-458.
    189. Perry T, Mckenzie JA, et al. A Da6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochemistry and Molecular Biology,2007,37:184-188.
    190. Perrya T, Heckel DG, et al. Mutations in Dal or Db2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster. Insect Biochemistry and Molecular Biology,2008,38:520-528.
    191. Plapp F.W., Hoyer R.F. Insecticides resistance in housefly:Decreased rate of absorption as the mechanism of action of a gene that acts as an intensifier of resistance. J Econ Entomol,1968, 61:1298.
    192. Prabhaker N, Toscano NC, Castle SJ, et al. Selection for imidacloprid resistance in silverleaf whiteflies from the Imperial Valley and development of a hydroponic bioassay for resistance monitoring. Pesticide Sciences,1997,51 (4):419-428.
    193. Ranch N, Nauen R. Biochemical markers linked to neonicotinoid cross-resistance in Bemisia tabaci (Hemiptera:Aleyrodidae). Arch. Insect Biochem. Ohysiol,2003,54:126-133.
    194. Ranson H, Rossiter L, Ortelli F, et al. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles Gambiae. Biochem J,2001,359(2):295-304.
    195. Schulz R, Sawruk E, Mulhardt C, Bertrand S, Baumann A, Phannavong B, Betz H, Bertrand D, Gundelfinger E D, Schmitt B. Dα3, a new functional alpha subunit of nicotinic acetylcholine receptors from Drosophila. Journal of Neurochemistry,1998,71:853-862.
    196. Scott JG, Georghiou GP. Mechanisms responsible for high levels of permethrin resistance in the housefly. Pestic.Sci,1996,17:195-206.
    197. Scott JG. Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology,1999,29:757-777.
    198. Shao YM, Dong K, Zhang CX. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori. BMC Genomics,2007,8 (324).
    199. Shimomura M, Satoh H, et al. Insect-vertebrate chimeric nicotinic acetylcholine receptors identify a region, loop B to the N-terminus of the Drosophila Da2 subunit, which contributes to neonicotinoid sensitivity. Neuroscience Letters,2005,385:168-172.
    200. Shimomura M, Yokota M, et al. Combinatorial mutations in loops D and F strongly influence responses of the a7 nicotinic acetylcholine receptor to imidacloprid. Brain Research,2003,991: 71-77.
    201. Shimomura M, Yokota M, et al. Role in the Selectivity of Neonicotinoids of Insect-Specific Basic Residues in Loop D of the Nicotinic Acetylcholine Receptor Agonist Binding Site. Mol Pharmacol,2006,70:1255-1263.
    202. Small GJ, Hemingway J. Differential glycosylation produces heterogeneity in elevated esterases associated with insecticide resistance in the brown planthopper Nilaparvata lugens Stal. Insect Biochemistry and Molecular Biology,2000,30:443-453.
    203. Soderlund D, Knipple D. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem.Mol.Biol,2003,33:563-577.
    204. Sone S, Hattori Y, Tsuboi S, et al. Difference in susceptibility to imidacloprid of the populations of the small brown planthopper, Laodellphax striatellus Fallen from various locations in Japan. J. Pestic. Sci,1995,20(4):541-543.
    205. Sonoda S, Tsumuki H. Studies on glutathione S-transferase gene involved in chlorfluazuron resistance of the diamondback moth, Plutella xylostella L (Lepidoptera:Yponomeutidae). Pestic.Biochem.Physiol,2005,82:94-101.
    206. Syvanen M, Zhou Z, Wharton J, et al. Heterogeneity of the glutathione transferase genes encoding enzymes responsible for insecticide degradation in the housefly. J. Mol. Evol,199643:236-240.
    207. Tabashnik B E. Managing resistance with multiple pesticide tactics:Theory, evidence and recommendations. J Econ Entomol,1989,82(5):1263-1269.
    208. Tabashnik BE, Cushing NL, Finson N, et al. Field development of resistance to Basillus thruingiensis in diamondback moth(Lepidoptera:Pultellidea). J.Econ.Entomol,1990, 83:1671-1676.
    209. Takao I, Naoki M, et al. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection,2004,23:371-378.
    210. Tang F, YUE Y, Hua R. The relationships among MFO, Glutathion S-Transferases, and phoxim resistance in Helicoverpa armigera. Pestic. Biochem. Physiol,2000,68:96-101.
    211. Taylor MJ, Heckel DG, Brown TM, et al. Linkage of pyrethroid insecticide resistance to a sodium channel locus in the tobacco budworm. Insect Biochem.Mol. Biol,1993,23:763-775.
    212. Thany SH, Lenaers G, et al. Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences,2006,28 (1):p.14-22.
    213. Thompson JN. The Evolution of Species Interactions. Science,1999,284:2116-2118.
    214. Toby A. Jenkinsa, Dash HA, R.H. Ffrench-Constant, et al. Methoxy-resorufin ether as an electrochemically active biological probe for cytochrome P450 O-demethylation. Bioelectrochemistry,2006,68:p.67-71.
    215. Tomita T, Scott JG, cDNA and deduced protein sequence of CYP6D1:the putative gene for a cytochrome P450 responsible for pyrethroid resistance in housefly. Insect Biochem. Molec.Biol, 1995,25:275-283
    216. Tomizawa M, Casida JE. Minor structural changes in nicotinoid insecticides confer differential subtype selectivity for mammalian nicotinic acetylcholine receptors. British Journal of Pharmacology,1999,127:115-122.
    217. Tomizawa M, Casida JE. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Ann. Rev. Entomol,2003,48:339-364.
    218. Tomizawa M, Lee DL, Casida JE, et al. Neonicotinoids insecticides:molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J. Agric. Food Chem, 2000,48:6016-6024.
    219. Toshima K, Kanaoka S, et al. Combined roles of loops C and D in the interactions of a neonicotinoid insecticide imidacloprid with the a4b2 nicotinic acetylcholine receptor. Neuropharmacology,2009,56:264-272.
    220. Utkin Y N, Tsetlin V I, Hucho F. Structural organization of nicotinic acetylcholine receptors. Membr Cell Biol,2000,13(2):143-164.
    221. Walsh S B, Dolden T A, Moores G D, Kristensen M, Lewis T, Devonshire A L, Williamson M S. Identification and characterization of mutation in the housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J,2001,359:175-181
    222. Wang YH, Chen J, Zhu YC, et al. Susceptibility to neonicotinoids and risk of resistance development in the brown planthopper, Nilaparvata lugens (Stal) (Homoptera:Delphacidae). Pest Manag. Sci,2008,64:1278-1284.
    223. Wang YH, Gao CF, Zhu YC, Chen J, Li WH, Zhuang YL, Dai DJ, Zhou WJ, Yong C and Shen JL. Imidacloprid susceptibility survey and selection risk assessment in field populations of Nilaparvata lugens (Homoptera:Delphacidae). J Econ Entomol,2008,101:515-522.
    224. Wei SH, Clark AG, Syvanen M. Identification and cloning of a key insecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica. Insect Biochem Mol Biol,2001,31 (12):1145-1153.
    225. Weill M, Lutfalla G, Mogensen K, et al. Insecticide resistance in mosquito vectors. Nature,2003, 423:136-137.
    226. Wen YC, Liu ZW, Bao HB, Han ZJ. Imidacloprid resistance and its mechanisms in field populations of brown planthopper, Nilaparvata lugens (Stal) (Homoptera:Delphacidae) in China. Pesticide Biochemistry and Physiology,2009,94:36-42.
    227. Wen ZM, Scott JG. Cross-resistance to imidacloprid in strains of German cockroach(Blattella germanica) and house fly (Musca domestica). Pesticide Science,1997,49:367-371.
    228. What causes insecticide resistance. Insecticide Resistance Action Committee (IRAC):Kansas City.
    229. Williamson, MS, Denholm I, Bell CA, et al. Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly(Musca domestica). Mol. Gen. Genet,1993,240:17-22.
    230. Yamamoto I, Tamizawa M, Saito F, et al. Structural factors contributing to insecticidal and selective actions of neonicotinoids. Archives of Insect Biochemistry and Physiology,1998,37: 24-32.
    231. Zamoum T, Simon JC, et al. Does insecticide resistance alone account for the low genetic variability of asexually reproducing populations of the peach-potato aphid Myzus persicae. Heredity,2005,94:630-639.
    232. Zhao JY, Bishop BA, Grafius EJ. Inheritance and synergismof resistance to the imidacloprid in colorado potato beetle (Coleoptera:Chrysomelidae). J. Appl. Entomol,2000,93(5):1508-1514.
    233. Zhu KY, Brindly WA. Acetylcholinesterase and its reduced sensitivity to inhibition by paraoxon in organophosphate-resistance Lygus Hesperus Knight (Hemiptera:Miridae). Pestic.Biochem. Physiol,1990,36:22-28.
    234. Zhu KY, Lee SH, et al. A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pesticide Biochemistry and Physiology, 1996,55:100-108.
    235. Zhu YC, Snodgrass GL, Chen MS, Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris. Insect Biochem Molec Biol, 2004,34:1175-1186
    236. Zhu YC, Dowdy AK, Baker JE. Differential mRNA expression levels and gene sequences of a putative carboxylesterase-like enzyme from two strains of the para-sitoid Anisopteromalus calandrae (Hymenoptera:Pteromalidae). Insect Biochem Molec Biol,1999,29:417-425.
    237. Zhuang YL, Shen JL. A method for monitoring of resistance to buprofezin in brown planthopper. J. Nanjing Agric. Univ,2000,23:114-117.
    238. Zlotkin, E. The insect voltage-gated sodium channel as target of insecticides. Ann.Rev.Entomol, 1999,44:429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700