用户名: 密码: 验证码:
在役半刚性连接钢框架结构的抗震性能评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在役结构指正在使用中的结构,在役钢结构由于已经使用了一段的时间,在自然环境和使用环境的影响作用下,结构必然产生某种程度的损伤和材料的腐蚀老化等不利的现象,这些不利的现象将对在役钢结构的抗震性能产生较大的影响。在钢框架结构的分析与设计中,梁柱的连接通常被认作理想的刚性连接或完全的铰接连接,但采用这种理想的连接模型会造成理论与实际的较大差异,因为任何连接形式的刚度都是介于理想刚接和完全铰接之间的,相对于刚性连接来说,半刚性连接节点具有较强的转动性能和耗能能力,可以抵抗一定的地震荷载,具有很好的抗震性能。因此,研究在役半刚性钢结构的抗震性能及其评估方法对于减轻地震灾害更具实际意义。
     本文首先对处于不同年份的在役钢框架的节点性能进行了分析,用有限元分析软件ANSYS根据锈蚀的特性分别对锈蚀半刚性节点和刚性节点,采用Solid92实体单元建立不同年份的锈蚀节点模型,分别对刚性节点和半刚性节点进行单调加载以及循环加载分析,分析不同年代的节点性能以及不同的锈蚀程度对性能的影响。
     为了比较半刚性节点与刚性节点对钢框架性能的不同影响,分别建立了3层、6层、10层一榀两跨的半刚性连接钢框架和刚性连接钢框架,选用实际的地震记录,分别输入进行弹塑性时程分析,得出顶点位移时程曲线、基底剪力时程曲线以及层间位移的包络图,从不同的角度比较半刚性连接钢框架和刚接钢框架的不同反应,以及结构的高度对结构反应的影响。
     随着在役结构服役时间的增长,结构必然产生一定程度的损伤和材料老化,且在预期剩余使用年限内的地震动作用的超越概率也随之发生变化,在上述分析结果的基础上,对5层2跨的在役半刚性连接钢框架和刚性连接钢框架进行Pushover分析。在不同后续使用年限内的多遇地震和罕遇地震作用下,随着钢框架节点的初始转动刚度的降低,对比了刚性框架与具有不同节点初始转动刚度的半刚性框架的性能点以及易损性曲线,分析了半刚性连接对结构抗震性能的影响,以及同时考虑抗力和地震作用随着后续使用年限的变化,对结构抗震性能的影响。
Existing structure is the being used structure. As the existing structures had been used for quite some time, under the natural environment and the using environment, existing structures that will inevitably produce some degree of damage and corrosion of materials and other unfavorable phenomena, these unfavorable phenomena will be had a greater impact on the seismic performance of the existing structures. In the traditional analysis and design of the steel frame, in order to simplify the analysis and design process, beam-column connection is recognized as the ideal articulated connection or completely rigid connections, but, this ideal link model will result in huge difference between theory and practice. Because all connections are rigid and fully articulated in between, Relative to the rigid connection, the semi-rigid connected steel frame has the larger rotation capability and energy dissipation capacity which can resist dynamic loads. Therefore, the study of the existing semi-rigid steel structures and their seismic performance evaluation method is more practical significance for the earthquake disaster mitigation.
     In this paper, firstly, the node performance of existing steel frame structure in different years is been analysed, and use the Solid92 in finite element analysis software ANSYS to establish the rigid connections'and the semi-rigid connections'solid element node models of corrosion in different years, respectively according to the characteristics of corrosion, then, the rigid and semi-rigid joints are conducted on monotonic loading and cyclic loading for nonlinear finite element analysis, then analyse the nodes'performance in different years and the impact of different corrosion on the node properties.
     To compare the semi-rigid connection with rigid connection on the performance of the steel frame, the elasto-plastic time-history analysis is performed on the 3-layer,6-layer, 10-layer semi-rigid steel frames and rigid steel frames with 3 actual earthquake acceleration records, the vertex displacement-time curves, base shear force-time curves and the story drift envelope diagram are established, in order to compare the reaction of semi-rigid steel frame with rigid steel frame from different angles, and the height of the structure impact on the reaction of the structure.
     Based on the semi-rigid connections, as the existing semi-rigid structures are been used for some time, the structures inevitably produce some degree of damage and corrosion of materials and other unfavorable phenomena, and with the structure of the growth of useful life, expected remaining useful life of the ground motion exceeding probability is been changed. It is necessary to take into account the characteristics of semi-rigid connections and the impact of corrosion. Some 5-layer exiting steel frames with different semi-rigid connections are established, that the pushover analysis is performed on. Under the frequent earthquake and the rare earthquake in different re-service term, with the reducing of the nodes'initial rotational stiffness, compare the performance points and the vulnerability curve of the rigid frame and different semi-rigid frame, and analyse the semi-rigid connections impact on the seismic performance of the structure. The seismic performance of the steel frame is discussed, under the resistance and seismic action with the change of the re-service term.
引文
[1]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [2]黄义龙.既有损伤结构地震反应分析与抗震性能评估[D].上海:同济大学,2008.
    [3]刘曙,尹静,朱洪波.钢框架顶底角钢带腹板双角钢连接的试验研究[J].华中科技大学学报,2004,32(7):108-11.
    [4]Larrabee C P, Coburn S K. The atmospheric corrosion of steels as influenced by changes in chemical composition [A]. Proc. lstInt, Cong. Met. Corros[C]. Butterworth, London, UK,1962:276.
    [5]Kucera kNotkova D, Gullman J, Holler P. Corrosion of structural metals in atmospheres with different corrosively at 8 years'exposure in Sweden and Czechoslovakia [A]. Proc.10th Ant.Cong. Met. Corros [C]. Oxford and IDH, Madras, India,1987:167.
    [6]Shastry, Friel J J, Townsend H E. Sixteen-year corrosion performance of weathering steels in marine, rural and industrial environments[C]. Degradation of Metals in the Atmosphere. ASTMSTP 965, West Conshohocken, PA, ASTM.1988.5.
    [7]侯文泰,于敬敦,梁彩凤.碳钢及低合金钢的大气腐蚀[J].中国腐蚀与防护学报,1993,13(4):291-195.
    [8]梁彩凤,侯文泰.碳钢及低合金钢8年大气暴露腐蚀研究[J].腐蚀科学与防护技术,1995,7(3):183-186.
    [9]梁彩凤,侯文泰.碳钢、低合金钢16年大气暴露腐蚀研究[J].中国腐蚀与防护学报,2005,25(1):1-6.
    [10]马小焉.几种不同大气腐蚀预测模型的比较[J].北京科技大学学报,2004,22(2):145-148.
    [11]梁佶,林书明等.钢结构的大气腐蚀模型[J].空间结构,2004,10(4):60-63.
    [12]魏瑞演.钢结构在海洋气候腐蚀条件下的力学性能试验研究[J].福建建筑高等专科学校学报,2001.3(3):37-42.
    [13]徐兴平.渤海八号平台静强度评估[J].石油矿场机械,1999,28(4):19-21.
    [14]Tatsuro Nakai, Hisao Matsushita, Norio Yamamoto. Effect of pitting corrosion on strength of web plates subjected to patch loading [J]. Thin-Walled Structures,44 (2006):10-19.
    [15]Tatsuro Nakai, Hisao Matsushita, Norio Yamamoto. Effect of pitting corrosion on local strength of hold frames of bulk carriers (1st report) [J]. Marine Structures, 17(2004):403-432.
    [16]Tatsuro Nakai, Hisao Matsushita, Norio Yamamoto. Effect of pitting corrosion on local strength of hold frames of bulk carriers (2nd Report)-Lateral-distortional buckling and local face buckling [J]. Marine Structures,17(2004):612-641.
    [17]TSCF. Experimental and theoretical investigation of the strength of corroded hull elements[J]. Project 300, Report No.84-3438, Tanker Structure Co-operative Forum, 1984.
    [18]王立成,宋玉普等.海洋平台结构腐蚀损伤动态可靠性分析[J].中国海洋平台,2003,18(1):23-27.
    [19]陈惠发著,周绥平译.钢框架稳定设计[M].上海:世界图书出版公司,1999.
    [20]M. N. Nader, A. Astenah. Seismic behavior and design of semi-rigid steel frames [J]. Envir. Univ. of California, Berkeley, Engrg. Res, Council.1992.
    [21]A. S. Elnashai, A. Y. Elghazouli, F. A. Denesh-Ashtiani. Response of semi-rigid steel frame to cyclic and earthquake load[J]. Journal of Structural Engineering ASCE, 1994,124(8):857-877.
    [22]施刚.钢框架半刚性端板连接的静力和抗震性能研究[D].北京:清华大学,2004.
    [23]李国强,沈祖炎,钢框架弹塑性静动力反应的非线性分析模型[J].建筑工程学报,1990(11):51-59.
    [24]王新武.带双腹板顶底角钢连接初始刚度研究[J].世界地震工程,2005,21(4):123-125.
    [25]王新武,孙犁.钢框架半刚性连接性能研究[J].武汉理工大学学报,2002,24(11):33-35.
    [26]郭兵.钢框架梁柱端板连接在循环荷载作用下的破坏机理及抗震设计对策[D].西安:西安建筑科技大学,2002.
    [27]王燕,杨文惠.半刚接钢框架稳定分析中柱的计算长度取值研究[J].青岛建筑工程学院学报,2004,25(4):5-10.
    [28]王秀丽,殷占忠,梁亚雄,李庆福.钢框架不同型式梁柱半刚性节点滞回性能试验研究[J].兰州理工大学学报,2005,31(3):117-118.
    [29]尹之潜.结构易损性分类和未来地震灾害估计[J].中国地震,1996,12(1):49-55.
    [30]温增平,建筑物地震易损性分析研究[D].哈尔滨:中国地震局地球物理研究所,1999.
    [31]王飞,蒋建群.城市地震灾害综合易损性分析方法探讨[J].地震研究,2005,28(1):95-101.
    [32]于德湖,王焕定.配筋砌体结构地震易损性评价方法初探[J].地震工程与工程振动,2002,22(4):97-101.
    [33]成小平,帅向华等.房屋震害易损性估计神经网络方法[C].第五届全国地震工程学术会议论文,1998,249-255.
    [34]温增平,胡聿贤.基于震害资料的易损性分析方法[C].第五届全国地震工程学术会议论文,1998,243-248.
    [35]杨玉成,杨柳等.唐山地震多层砖房震害与强度的关系[J].地震工程与工程振动,1981,1(1):21-33.
    [36]李树桢等.用延性系数预测砖结构房屋的地震破坏[J].世界地震工程,1994,10(2):31-38.
    [37]尹之潜,杨淑文.地震损失分析与设防标准[M].北京:地震出版社,2004.
    [38]建筑抗震设计规范(GBS0011-2001)[S].北京:中国建筑工业出版社,2001.
    [39]成小平,胡聿贤.基于神经网络模型的房屋震害易损性估计方法[J].自然灾害学报,2005,9(2):68-73.
    [40]Earthquake loss Estimation Methodology Technical Manual, HAZUS99 (1999) Developed by the federal emergency management agency Washington, D. C. through agreements with the National Institute of Building Sciences Washington, D. C,1999.
    [41]孙彬.在役钢筋混凝土结构的性能退化与抗震性能评估[D].西安:西安建筑科技大学,2006
    [42]牛荻涛,王庆霖.服役结构荷载估计初探[J].西安冶金建筑学院学报,1994,26(4):331-335
    [43]王永维.民用建筑可靠性鉴定时荷载标准值取值研究[J].四川建筑科学研究,1995,21(1):11-14.
    [44]张俊芝,高兑现,李桂青.服役建筑结构可靠性评估的可变荷载取值研究[J],工业建筑,2000,30(12):58-61.
    [45]欧进萍,刘学东,王光远.现役结构安全度评估的环境荷载标准研究[J].工业建筑,1995,25(8):11-16.
    [46]张治勇,孙柏涛,宋天舒.新抗震规范地震动功率谱模型参数的研究[J].世界地震工程,2000,16(3):33-38.
    [47]李桂青,李秋胜.工程结构时变可靠度理论及其应用[M].北京:科学出版社,2001.
    [48]仲伟秋,贡金鑫.受腐蚀结构的抗震承载能力可靠度[J].湘潭矿业学院学报,2003,18(1):41-43.
    [49]孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2001.
    [50]吴荫顺,方智,曹备等.腐蚀试验方法与防腐蚀检测技术[M].北京:化学工业出版社,1996.
    [51]方震.涂膜保护寿命的预测理论初探[J].涂料涂装与电镀,2005,3(1):3-5.
    [52]潘典书.锈蚀H型钢构件受弯承载性能研究[D].西安:西安建筑科技大学,2009.
    [53]刘学庆.海洋环境工程钢材腐蚀行为与预测模型的研究[D].青岛:中国科学院海洋研究所,2004.
    [54]林杰.桥梁钢结构防腐蚀涂层保护、失效规律及其寿命预测研究[D].西安:长安大学,2006.
    [55]顾强等.钢结构滞回性能及抗震设计[D].北京:中国建筑工业出版社,2009.
    [56]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [57]王丹.钢框架结构的地震易损性及概率风险分析[D].哈尔滨:哈尔滨工业大学,2006.
    [58]杨志勇,何若全.高层钢结构弹塑性抗震分析静动力综合法[J].建筑结构学报,2003,24(3):25-32.
    [59]FEMA273, FEMA274. NEHRP Commentary on the guide lines for the rehabilitation of building[R]. Washington D C:Federal Emergency Management Agency,1996.
    [60]高小旺,鲍霭斌.地震作用的概率模型及其统计参数.地震工程与工程振动[J].1985,5(1):13-22.
    [61]李亚琦.中国地震危险性特征区划[D].哈尔滨:中国地震局工程力学研究所,1999.
    [62]王春光,石永久,王元清等.结构可靠度计算中的敏感性因素分析[J].清华大学学报(自然科学版),2000,40(6):108-111.
    [63]欧进萍,段宇博,刘会仪.结构随机地震作用及其统计参数[J].哈尔滨建筑工程学院学报,1994,27(4):1-10.
    [64]陈昌海.建筑钢结构抗力性能的时间影响因素分析及时变可靠性评价[D].重庆:重庆大学,2007.
    [65]李刚,程耿东.基于性能的结构抗震设计-理论、方法与应用[M].北京:科学出版社,2004.
    [66]欧进萍,侯钢领,吴斌.概率Pushover分析方法及结构体系抗震可靠度评估中的应用[J].2001,22(6):81-86.
    [67]孙彬,牛荻涛,董振平.在役结构抗震评估地震作用取值研究[J].西安建筑科技大学学报,2003,35(4):312-316.
    [68]丁伯阳,赵冬,李通坤,曹亮.在役结构后役期的设防烈度探讨[J].地震学报,2005,27(6):677-681.
    [69]Applied Technology Council. Seismic evaluation and retrofit of concrete buildings [R]. Report ATC-40,1996.
    [70]姚继涛,刘金华,吴增良.既有结构抗力的随机过程概率模型[J].西安建筑科技大学学报,2008,40(4):445-449.
    [71]张耀华,王铁成,杨建江.考虑抗力时间衰减既有结构可靠度分析[J].山东农业大学学报,2006,37(3):429-435.
    [72]牛荻涛,王庆霖,董振平.服役结构抗力概率模型及统计参数[J].西安建筑科技大学学报,1997,29(4):356-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700