用户名: 密码: 验证码:
敏捷卫星姿态快速机动与稳定控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术的发展,对特定目标长时间凝视、单线阵相机立体成像为代表的航天任务都要求卫星具有敏捷性。姿态敏捷性包括姿态快速机动、姿态快速稳定以及机动过程中保持稳定三种能力,不同的任务对卫星敏捷性有不同的要求。根据上述特殊性,本学位论文着重围绕时间最优姿态机动轨迹规划、推力器-飞轮和控制力矩陀螺-飞轮的联合控制算法和柔性敏捷卫星的控制问题展开深入研究,主要内容包括以下几个部分:
     敏捷卫星时间最优姿态机动轨迹设计。基于配点法求解出时间最优姿态机动轨迹,并得到时间最优姿态机动控制力矩相继控制切换的性质。在忽略陀螺力矩项的前提下,推导了终端角速度为零所需要满足的条件,并结合运动学方程的近似解,提出了一种计算效率很高的准时间最优的轨迹规划方法,并对计算不准确所带来的机动残差提出了快速末端校正方法。最后,在不增加计算量的情况下,提出使用自动学习机优选粒子群算法并求解得到准确的控制切换时间。
     推力器与飞轮的联合执行机构控制策略。针对对地观测敏捷卫星大角度快速机动、高控制精度的任务需求,提出了联合推力器与飞轮作为执行机构的控制策略,为补偿初始状态偏差和推力器输出力矩不准确所带来的控制误差,基于变结构控制和自适应控制设计了两种姿态跟踪控制器。在不损失姿态机动控制精度的前提下,对机动过程中飞轮力矩及转速可能出现的饱和问题提出了相应的修正方法。
     控制力矩陀螺与飞轮的联合执行机构控制策略。针对控制力矩陀螺与飞轮联合执行机构控制过驱动问题,在建立通用动力学模型基础上,设计了包括控制力矩陀螺奇异性指数和与转速有关能量的优化目标函数,基于受约束的优化方法提出了控制分配方法。通过合理的调整权重参数,有效地解决了控制过程中飞轮转速饱和以及控制力矩陀螺奇异性等问题。针对控制力矩陀螺和飞轮的安装偏差对控制精度的影响,基于多输入输出自适应控制理论设计了跟踪控制器,并采用平滑映射原理保证参数更新不会使跟踪控制律出现奇异现象。
     柔性敏捷卫星快速机动稳定控制算法研究。针对单轴敏捷柔性卫星的快速机动稳定控制问题,将输入成形和反馈控制联合应用于柔性附件的振动抑制,形成主动振动抑制策略。同时为了降低柔性附件模态变量以及外界干扰的影响,所设计的反馈控制器只涉及姿态信息,并在此基础上根据整个闭环系统的振动频率和阻尼比信息完成前馈鲁棒多模态输入成形器设计。针对三轴敏捷柔性卫星姿态快速机动的控制问题,设计了一种仅利用卫星本体姿态角度和姿态角速度观测信息的变结构跟踪控制器,并对控制器的稳定性进行了严格的数学证明。该控制器使得姿态状态跟踪误差以及挠性附件的模态变量从任意的初始状态出发都会到达包含原点的一个闭集内。
With the development of aerospace technology, satellites are required to possessagility in numbers of aerospace missions, such as long-time staring-imaging of aspecific ground target and stereo-imaging with single-line-array CCD camera. Theagility of satellites means that satellites are provided with the ability to accomplish theattitude maneuver rapidly, stabilize the attitude quickly and keep high stability duringfast attitude maneuver. The flying missions differ in the demand to agility of satellites.According to the aforementioned features, this dissertation deeply studies time-optimaltrajectory planning problem, hybrid control strategy with mixed thruster-flywheel andmixed CMG-flywheel, and control method for a flexible agile satellite. The researchcontents of this dissertation are presented as follows:
     Design of time-optimal attitude maneuver trajectory for agile satellites. Thetime-optimal trajectory is calculated based on collocation method, and properties ofsequential control switching for time-optimal attitude trajectory are obtained. Byignoring gyro torques, conditions which terminal angular velocity being zero requiresare derived, followed by proposing of the quasi-time-optimal attitude maneuvertrajectoy with high computing efficiency. And then a fast end correction method forterminal maneuver errors as a result of calculation inaccuracy is proposed. Finally,Learning Automata is utilized to tune the parameters of particle swarm algorithmwithout increasing computational cost and the accurate switching time is calculaterd bythe proposed method.
     Hybrid thrusters and reaction wheels control strategy. In order to solve the fastlarge-angle attitude maneuver and high-accuracy control problem for earth observationagile satellite flying mission, a control strategy by combining thrusters and flywheels isproposed. So as to compensate initial states errors and control torques inaccuracy ofthrusters, two kinds of attitude tracking control laws by utilizing variable structurecontrol and adaptive control theory are designed. Without reducing accuracy of attitudemaneuver control, a revising approach dealing with the saturate problem of flywheel’srotation and torques in attitude maneuver is proposed.
     Hybrid CMGs and reaction wheels control strategy. In view of the overactuatedproblem of combing CMGs and reaction wheels control strategy, based on generaldynamic model of variable speed CMGs, an optimization objective function related toCMG singularity index and energy-like rotation rate is designed, and then a controltorques distribution method based on constrained optimization method is proposed. Byadjusting weight parameters properly, the flywheel rotation rate saturation and CMGsingularity problems during the control process are solved. Since the installation error of CMG and flywheel could affect the control accuracy, a tracking control law based onMIMO adaptive control theory is proposed, and the updating of parameters will notcause the singularity of the tracking control law by using smooth projector principle.
     Research on fast maneuver and stabilization control method for agile flexiblesatellite. For the problem of fast maneuver and stability control of uniaxial agile flexiblesatellite, the combination control strategy based on input shaping and feedback controlis proposed. Considering that the modal variables of flexible appendages are hard to bemeasured and there always exists external disturbance torques, the controller which onlyuses the attitude information is designed. Moreover, according to the vibrationfrequency and the damping ratio of the closed-loop system, a feed-forward robustmulti-mode input shaping control approach is designed. For the problem of the fastmaneuver control of triaxial agile flexible satellite, a variable control method whichonly uses the attitude angle and attitude angular velocity is proposed, and the stability ofthe controller is proved by strict mathematical proof. The proposed variable controllercan drive the attitude state tracking error (including attitude tracking error and attitudeangular velocity tracking error) and the modal variables of flexible appendages from anarbitrary initial state to a neighborhood including the origin.
引文
[1]李紫涵.小卫星姿态快速机动与稳定控制方法研究[D].哈尔滨:哈尔滨工业大学,2011:1-8.
    [2] Steckling M, Renner U, Roser H P. DLR-TUBSAT, Qualification of HighPrecision Attitude Control in Orbit[J]. Acta Astronautica,1996,39(9-12):951-960.
    [3] Girouart B, Sebbag I, Lachiver J M. Pleiades-HR CMGs-Based Attitude ControlSystem Design, Development Status and Performances[C]//Proceedings of17thIFAC Symposium on Automatic Control in Aerospace. Toulouse, France:2007:834-839.
    [4] Longbotham N, Bleiler C, Chaapel C, et al. Spectral Classification of Worldview-2Multi-Angle Sequence[C]//IEEE GRSS and ISPRS Joint Urban Remote SensingEvent. Munich, Germany: IEEE Computer Society,2011:109-112.
    [5] Wie B, Bailey D, Heiberg C. Rapid Multitarget Acquisition and Pointing Controlof Agile Spacecraft[J]. Journal of Guidance Control and Dynamics,2002,25(1):96-104.
    [6] Wie B. Singularity Escape/Avoidance Steering Logic for Control Moment GyroSystems[J]. Journal of Guidance Control and Dynamics,2005,28(5):948-956.
    [7] Lappas V J. A Control Moment Gyro (CMG) Based Attitude Control System (ACS)for Agile Small Satellites[D]. University of Surrey,2002:1-9.
    [8] Lee H, Bang H. Singularity Avoidance of Variable Speed Control Moment Gyrosby Optimization Approach[J]. Journal of the Astronautical Sciences,2007,55(1):67-84.
    [9] Ford K A, Hall C D. Singular Direction Avoidance Steering for Control-MomentGyros[J]. Journal of Guidance Control and Dynamics,2000,23(4):648-656.
    [10]汤亮,徐世杰.采用变速控制力矩陀螺的航天器自适应姿态跟踪和稳定控制研究[J].航空学报,2006,(04):663-669.
    [11]刘军,韩潮.使用变速控制力矩陀螺的航天器鲁棒自适应姿态跟踪控制[J].航空学报,2008,(01):159-164.
    [12] Yoon H. Spacecraft Attitude and Power Control Using Variable Speed ControlMoment Gyros[D]. Georgia, US: Georgia Institute of Technology,2004:138-148.
    [13] Yoon H, Tsiotras P. Singularity Analysis of Variable-Speed Control MomentGyros[J]. Journal of Guidance Control and Dynamics,2004,27(3):374-386.
    [14] Hu Q L, Shi P, Gao H J. Adaptive Variable Structure and Commanding ShapedVibration Control of Flexible Spacecraft[J]. Journal of Guidance Control andDynamics,2007,30(3):804-815.
    [15] Young K W, Muehlhaeusser R, Piggin R S H, et al. Agile Control Systems[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering,2001,215(2):189-195.
    [16] Lemaitre M, Verfaillie G, Jouhaud F, et al. Selecting and Scheduling Observationsof Agile Satellites[J]. Aerospace Science and Technology,2002,6(5):367-381.
    [17] Li Y, Xu M, Wang R. Scheduling Observations of Agile Satellites with CombinedGenetic Algorithm[C]//3rd International Conference on Natural Computation,ICNC2007. Haikou, Hainan, China: Inst. of Elec. and Elec. Eng. ComputerSociety,2007:29-33.
    [18]郝会成,姜维,李一军.基于Multi-Agent敏捷卫星动态任务规划问题[J].国防科技大学学报,2013, v.35(01):53-59.
    [19] Bradford A, Gomes L M, Sweeting S M, et al. Bilsat-1: A Low-Cost, Agile, EarthObservation Microsatellite for Turkey[J]. Acta Astronautica,2003,53(4-10):761-769.
    [20]张景瑞.灵敏航天器快速倾斜机动的MCMG参数和力矩估算[J].清华大学学报(自然科学版),2007,(11):2040-2043.
    [21]邢林峰,孙承启,汤亮.高姿态稳定度敏捷卫星的VSCMGs操纵律研究[J].空间控制技术与应用,2008,(06):24-28.
    [22] Arthur E. Bryson J, Ho Y C. Applied Optimal Control: Optimization, Estimation,and Control[M]. Hemisphere Publishing Company,1975.
    [23] Boyarko G A, Romano M, Yakimenko O A. Time-Optimal Reorientation of aSpacecraft Using an Inverse Dynamics Optimization Method[J]. Journal ofGuidance Control and Dynamics,2011,34(4):1197-1208.
    [24] Attili B S, Syam M I. Efficient Shooting Method for Solving Two Point BoundaryValue Problems[J]. Chaos, Solitons and Fractals,2008,35:895-903.
    [25] Li F, Bainum P M. Use of the Quasilinearization Algorithm for the Simulation ofLSS (Large Space Structures) Slewing[R]. United States,1989:1-25.
    [26] Li F, Bainum P M. Numerical Approach for Solving Rigid Spacecraft MinimumTime Attitude Maneuvers[J]. Journal of Guidance Control and Dynamics,1990,13(1):38-45.
    [27] Li F Y, Bainum P M, Creamer N G, et al.3-Axis Near-Minimum-Time Maneuversof Reshape-Numerical and Experimental Results[J]. Journal of the AstronauticalSciences,1995,43(2):161-178.
    [28] Bilimoria K D, Wie B. Time-Optimal Three-Axis Reorientation of a RigidSpacecraft[J]. Journal of Guidance Control and Dynamics,1993,16(3):446-452.
    [29] Bai X, Junkins J L. New Results for Time-Optimal Three-Axis Reorientation of aRigid Spacecraft[J]. Journal of Guidance Control and Dynamics,2009,32(4):1071-1076.
    [30] Scrivener S L, Thompson R C. Survey of Time-Optimal Attitude Maneuvers[J].Journal of Guidance Control and Dynamics,1994,17(2):225-233.
    [31] Gill P E, Jay L O, Leonard M W, et al. An SQP Method for the Optimal Control ofLarge-Scale Dynamical Systems[J]. Journal of Computational and AppliedMathematics,2000,120(1-2):197-213.
    [32] Enright P J, Conway B A. Optimal Finite-Thrust Spacecraft Trajectories UsingCollocation and Nonlinear-Programming[J]. Journal of Guidance Control andDynamics,1991,14(5):981-985.
    [33] Herman A L, Conway B A. Direct Optimization Using Collocation Based onHigh-Order Gauss-Lobatto Quadrature Rules[J]. Journal of Guidance Control andDynamics,1996,19(3):592-599.
    [34] Hargraves C R, Paris S W. Direct Trajectory Optimization UsingNonlinear-Programming and Collocation[J]. Journal of Guidance Control andDynamics,1987,10(4):338-342.
    [35] Scrivener S L. Time-Optimal Multi-Axis Attitude Maneuvers of Rigid SpacecraftUsing Collocation and Nonlinear Programming[D]. Pennsylvania, United States:Pennsylvania State University,1993:1-175.
    [36] Benson D. A Gauss Pseudospectral Transcription for Optimal Control[D].Massachusetts, United States: Massachusetts Institute of Technology,2005:1-25.
    [37] Huntington G T. Advancement and Analysis of a Gauss PseudospectralTranscription for Optimal Control Problems[D]. Massachusetts, United States:Massachusetts Institute of Technology,2007:13-16.
    [38] Basset G, Xu Y, Yakimenko O A. Computing Short-Time Aircraft ManeuversUsing Direct Methods[J]. Journal of Computer and Systems Sciences International,2010,49(3):481-513.
    [39] Boyarko G, Yakimenko O, Romano M. Formulation and Analysis of MatchingPoints of Interest in Two-Spacecraft for Optimal Rendezvous[C]//AIAA Guidance,Navigation, and Control Conference and Exhibit. Chicago, IL, United states:American Institute of Aeronautics and Astronautics Inc.,2009:1-22.
    [40] Cowling I D, Yakimenko O A, Whidborne J F, et al. A Prototype of anAutonomous Controller for a Quadrotor UAV[C]//European Control Conference.2007:1-8.
    [41] Yakimenko O A. Direct Method for Rapid Prototyping of near-Optimal AircraftTrajectories[J]. Journal of Guidance Control and Dynamics,2000,23(5):865-875.
    [42] Kim M-J, Kim M-S, Shin S Y. A General Construction Scheme for UnitQuaternion Curves with Simple High Order Derivatives[C]//Proceedings of the22nd Annual Conference on Computer Graphics and Interactive Techniques. ACM,1995:369-376.
    [43] Meier E B. An Efficient Algorithm for Bang-Bang Control Systems Applied to aTwo-Link Manipulator[D]. California, United States: Stanford University,1987:1-13.
    [44] Meier E B, Bryson A E. Efficient Algorithm for Time-Optimal Control of a2-LinkManipulator[J]. Journal of Guidance Control and Dynamics,1990,13(5):859-866.
    [45] Liu S-W, Singh T. Fuel/Time Optimal Control of Spacecraft Maneuvers[J]. Journalof Guidance Control and Dynamics,1997,20(2):394-397.
    [46] Byers R M. Minimum Time Reorientation of an Arbitrary RigidBody[C]//Proceedings of the AAS/AIAA Astrodynamics Conference. Victoria, BC,Can: Univelt Inc,1993:1889-1903.
    [47] Byers R M, Vadali S R. Quasi-Closed-Form Solution to the Time-Optimal RigidSpacecraft Reorientation Problem[J]. Journal of Guidance Control and Dynamics,1993,16(3):453-461.
    [48] Joseph B A, Burns J A, Cliff E M. Time-Optimal Slewing of Flexible Spacecraft[J].Journal of Guidance Control and Dynamics,1992,15(2):360-367.
    [49] Singh G, Kabamba P T, McClamroch N H. Time Optimal Slewing of a Rigid Bodywith Flexible Appendages[C]//Proceedings of the26th IEEE Conference onDecision and Control. Los Angeles, CA, USA: IEEE,1987:1441-1442.
    [50] Cutforth C F. Analysis and Design of Fast Input Shapers for the Control ofFlexible Structures[D]. University of Colorado at Boulder,2001:1-16.
    [51] Ebrahimi A, Moosavian S A A, Mirshams M. Control of Space Platforms withFlexible Links Using Command Shaping Method[J]. Iranian Journal of Scienceand Technology Transaction B-Engineering,2008,32(B1):13-24.
    [52] Liu Q, WIE B. Robust Time-Optimal Control of Uncertain Flexible Spacecraft[J].Journal of Guidance Control and Dynamics,1992,15(3):597-604.
    [53] Wie B, Lu J B. Feedback Control Logic for Spacecraft Eigenaxis Rotations underSlew Rate and Control Constraints[J]. Journal of Guidance Control and Dynamics,1995,18(6):1372-1379.
    [54]王峰,曹喜滨,张世杰.基于欧拉旋转的在轨服务航天器姿态跟踪算法[J].宇航学报,2008,39(2):570-575.
    [55]董朝阳,华莹,陈宇.空间飞行器大角度机动递阶饱和控制律设计[J].宇航学报,2006,(05):974-978.
    [56]曹喜滨,王峰,张世杰.转速和控制力矩受限下模型独立的航天器拟欧拉姿态机动[J].哈尔滨工业大学学报,2006,(09):1413-1418.
    [57] Newman W S. Robust near Time-Optimal Control[J]. Ieee Transactions onAutomatic Control,1990,35(7):841-844.
    [58] Dodds S J, Vittek J. Spacecraft Attitude Control Using an Induction MotorActuated Reaction Wheel with Sensorless Forced Dynamic Drive[C]//Proceedingsof1998IEE Colloquium on All Electric Aircraft. London, UK: IEE,1998:1-14.
    [59] Crassidis J, Vadali S, Markley F. Optimal Variable-Structure Control Tracking ofSpacecraft Maneuvers[J]. Journal of Guidance Control and Dynamics,2000,23(3):564-565.
    [60] Crassidis J L, Markley F L. Sliding Mode Control Using Modified RodriguesParameters[J]. Journal of Guidance Control and Dynamics,1996,19(6):1381-1383.
    [61] Jongrae K, John C. A Comparative Study of Sliding Mode Control andTime-Optimal Control[M]AIAA/AAS Astrodynamics Specialist Conference andExhibit. American Institute of Aeronautics and Astronautics,1998:316-323.
    [62] Lawton J, Beard R W. Attitude Regulation About a Fixed Rotation Axis[J]. Journalof Guidance Control and Dynamics,2003,26(2):253-258.
    [63]韩爱意,许惠丽,罗绪涛.基于时标分离的飞行器姿态双环控制器设计方法[J].测控技术,2010,(02):52-54.
    [64] Verbin D, Lappas V J, Ben-Asher J Z. Time-Efficient Angular Steering Laws forRigid Satellites[J]. Journal of Guidance Control and Dynamics,2011,34(3):878-892.
    [65] Luo W C, Chu Y C, Ling K V. Inverse Optimal Adaptive Control for AttitudeTracking of Spacecraft[J]. Ieee Transactions on Automatic Control,2005,50(11):1639-1654.
    [66]刘辉,李俊峰.航天器快速姿态机动的力矩陀螺控制[J].宇航学报,2006,(01):
    [67] Zhang J R, Rachid A, Zhang Y. Attitude Control for Part Actuator Failure of AgileSmall Satellite[J]. Acta Mechanica Sinica,2008,24(4):463-468.
    [68] Wie B, Weiss H, Arapostathis A. Quaternion Feedback Regulator for SpacecraftEigenaxis Rotations[J]. Journal of Guidance Control and Dynamics,1989,12(3):375-380.
    [69] Wie B, Bailey D, Heiberg C. Singularity Robust Steering Logic for RedundantSingle-Gimbal Control Moment Gyros[J]. Journal of Guidance Control andDynamics,2001,24(5):865-872.
    [70]李新国,陈士橹.挠性卫星太阳帆板的变结构主动控制[J].西北工业大学学报,1997,15(1):84-87.
    [71]张洪华,黎康,赵宇.挠性卫星姿态快速机动控制[J].中国空间科学技术,2005,25(1):53-59.
    [72]谭文,陈亚陵. μ方法在挠性航天器鲁棒控制设计中的应用[J].宇航学报,1996,17(3):15-19,24.
    [73]孙小松,耿云海,杨涤.中继卫星H∞姿态稳定控制研究[J].航空学报,2006,27(3):468-474.
    [74] Kim H K, Choi S B, Thompson B S. Compliant Control of a Two-Link FlexibleManipulator Featuring Piezoelectric Actuators[J]. Mechanism and Machine Theory,2001,36(3):411-424.
    [75] Baz A, Poh S. Performance of an Active Control-System with PiezoelectricActuators[J]. Journal of Sound and Vibration,1988,126(2):327-343.
    [76] Bailey T, Hubbard J E. Distributed Piezoelectric Polymer Active Vibration Controlof a Cantilever Beam[J]. Journal of Guidance Control and Dynamics,1985,8(5):605-611.
    [77] Baz A, Poh S, Fedor J. Independent Modal Space Control with Positive PositionFeedback[J]. Journal of Dynamic Systems Measurement and Control-Transactionsof the Asme,1992,114(1):96-103.
    [78] Meirovitch L, Baruh H. The Implementation of Modal Filters for Control ofStructures[J]. Journal of Guidance Control and Dynamics,1985,8(6):707-716.
    [79] Papadopoulos M, Garcia E. Closed-Loop Pole Design for Vibration Suppression[J].Journal of Guidance Control and Dynamics,1997,20(2):333-337.
    [80] Mohamed A R, Leipholz H H. Structural Control by Pole Assignment Method[J].1978,104(5):1159-1175.
    [81] Fanson J L, Caughey T K. Positive Position Feedback-Control for Large SpaceStructures[J]. AIAA Journal,1990,28(4):717-724.
    [82] Tuttle T D, Seering W P. Vibration Reduction in0-g Using Input Shaping on theMit Middeck Active Control Experiment[C]//American Control Conference,1995.1995:919-923.
    [83] Banerjee A K, Singhose W E. Command Shaping for Nonlinear Tracking Controlof a Two-Link Flexible Manipulator[J]. Astrodynamics,1998,97(2):1859-1876.
    [84] Singhose W E, Mills B W, Seering W P. Closed-Form Methods for GeneratingOn-Off Commands for Undamped Flexible Spacecraft[J]. Journal of GuidanceControl and Dynamics,1999,22(2):378-382.
    [85] Song G, Agrawal B. Vibration Suppression of Flexible Spacecraft During AttitudeControl[J]. Acta Astronautica,2001,49(2):73-83.
    [86] Chen X J, Steyn W H. Robust Combined Eigenaxis Slew Manoeuvre. AIAAGuidance, Navigation, and Control Conference.1999:521-529.
    [87] Sun Z W, Geng Y H, Xu G D, et al. The Combined Control Algorithm forLarge-Angle Maneuver of HITSAT-1Small Satellite[J]. Acta Astronautica,2004,54(7):463-469.
    [88]孙兆伟,林晓辉,曹喜滨.小卫星姿态大角度机动联合控制算法[J].哈尔滨工业大学学报,2003,(06):663-667,670.
    [89] Lappas V J, Steyn W H, Underwood C I. Control Moment Gyro (CMG) GimbalAngle Compensation Using Magnetic Control During External Disturbances[J].Electronics Letters,2001,37(9):603-604.
    [90] Hall C D, Tsiotras P, Shen H J. Tracking Rigid Body Motion Using Thrusters andMomentum Wheels[J]. Journal of the Astronautical Sciences,2002,50(3):311-323.
    [91] Hartter L L, Rybak S C, Mayo R A, et al. A Hard-Mounted Ultrahigh-AccuracyPointing Control System. Guidance and Control Conference.1972:1-17.
    [92]汤亮.使用控制力矩陀螺的航天器姿态动力学与控制问题研究[D].北京航空航天大学,2005:1-15.
    [93] Verbin D, Lappas V J. Rapid Rotational Maneuvering of Rigid Satellites withHybrid Actuators Configuration[J]. Journal of Guidance Control and Dynamics,2013,36(2):532-547.
    [94] Liden S. A New Fail Operational Control Moment GyroConfiguration[C]//Guidance, Control and Flight Mechanics Conference. AmericanInstitute of Aeronautics and Astronautics,1971:1-9.
    [95] Roithmayr C M, Karlgaar C D, Kumar R R, et al. Dynamics and Control ofAttitude, Power, and Momentum for a Spacecraft Using Flywheels and ControlMoment Gyroscopes[R]. United States,2003:1-91.
    [96] Skelton C E, Hall C D. Mixed Control Moment Gyro and Momentum WheelAttitude Control Strategies[J]. Astrodynamics,2003,116(1):887-899.
    [97] Leeghim H, Lee D, Bang H, et al. Spacecraft Attitude Control by Combination ofVarious Torquers[J]. International Journal of Systems Science,2009,40(10):995-1008.
    [98] Leve F A, Fitzcoy N G. Hybrid Steering Logic for Single-Gimbal Control MomentGyroscopes[J]. Journal of Guidance Control and Dynamics,2010,33(4):1202-1212.
    [99]金磊,徐世杰.采用单框架控制力矩陀螺和动量轮的航天器姿态跟踪控制研究[J].宇航学报,2008,(03):916-921+951.
    [100]Maynard R S. Fluidic Momentum Controller.1985:1-33.
    [101]Nobari N A, Misra A K. Attitude Dynamics and Control of Satellites With FluidRing Actuators[J]. Journal of Guidance Control and Dynamics,2012,35(6):1855-1864.
    [102]Nobari N A, Misra A K. A Hybrid Attitude Controller Consisting ofElectromagnetic Torque Rods and an Active Fluid Ring[J]. Acta Astronautica,(0):
    [103]雷拥军,谈树萍,刘一武.一种航天器姿态快速机动及稳定控制方法[J].中国空间科学技术,2010,(05):48-53+58.
    [104]Huang B, Pour N D, Shah S L. Performance Assessment of AdvancedSupervisory-Regulatory Control Systems with Subspace Lqg Benchmark[J].Automatica,2010,46(8):1363-1368.
    [105]Shuster M D. Survey of Attitude Representations[J]. Journal of the AstronauticalSciences,1993,41(4):439-517.
    [106]Rao A V, Benson D A, Darby C, et al. Algorithm902: GPOPS, A Matlab Softwarefor Solving Multiple-Phase Optimal Control Problems Using the GaussPseudospectral Method[J]. ACM Transactions on Mathematical Software,2010,37(2):1-21.
    [107]Betts J T. Practical Methods for Optimal Control and Estimation Using NonlinearProgramming[M]. Society for Industrial and Applied Mathematics,2010:1-49.
    [108]Morton H J, Junkins J, Blanton J. Analytical Solutions for Euler Parameters[J].Celestial mechanics,1974,10(3):287-301.
    [109]Sidi M J. Spacecraft Dynamics and Control: A Practical Engineering Approach[M].Cambridge Univ Pr,2000:25-64.
    [110]Elbeltagi E, Hegazy T, Grierson D. Comparison among Five Evolutionary-BasedOptimization Algorithms[J]. Advanced Engineering Informatics,2005,19(1):43-53.
    [111]Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[C]//EvolutionaryComputation Proceedings,1998. IEEE World Congress on ComputationalIntelligence.1998:69-73.
    [112]Gill P E, Murray W, Wright M H. Practical Optimization[M]. Academic Press,1981:213-245.
    [113]Ghosh P, Conway B A. Numerical Trajectory Optimization with SwarmIntelligence and Dynamic Assignment of Solution Structure[J]. Journal ofGuidance Control and Dynamics,2012,35(4):1178-1191.
    [114]Wu S N, Sun X Y, Sun Z W, et al. Sliding-Mode Control for Staring-ModeSpacecraft Using a Disturbance Observer[J]. Proceedings of the Institution ofMechanical Engineers Part G-Journal of Aerospace Engineering,2010,224(2):215-224.
    [115]Lappas V, Wie B. Robust Control Moment Gyroscope Steering Logic with GimbalAngle Constraints[J]. Journal of Guidance Control and Dynamics,2009,32(5):1662-1666.
    [116]刘刚,李传江,马广富.应用控制力矩陀螺的卫星姿态快速机动控制[J].航空学报:1-9.
    [117]贾英宏,徐世杰,汤亮.利用能量/动量飞轮的偏置动量姿态控制系统(英文)[J].Chinese Journal of Aeronautics,2004,(04):193-199.
    [118]贾英宏,徐世杰.利用飞轮的航天器姿态跟踪与能量存储(英文)[J]. ChineseJournal of Aeronautics,2005,(01):1-7.
    [119]孙兆伟,叶东,杨正贤.基于输出反馈的柔性航天器变结构跟踪控制方法[J].航空学报,2010,(05):1060-1065.
    [120]Li Z X, Wang B L. Robust Attitude Tracking Control of Spacecraft in the Presenceof Disturbances[J]. Journal of Guidance Control and Dynamics,2007,30(4):1156-1159.
    [121]Vadali S R, Oh H S, Walker S R. Preferred Gimbal Angles for Single GimbalControl Moment Gyros[J]. Journal of Guidance Control and Dynamics,1990,13(6):1090-1095.
    [122]Schaub H, Junkins J L. Singularity Avoidance Using Null Motion andVariable-Speed Control Moment Gyros[J]. Journal of Guidance Control andDynamics,2000,23(1):11-16.
    [123]Cornick D E. Singularity Avoidance Control Laws for Single Gimbal ControlMoment[M]Guidance and Control Conference. American Institute of Aeronauticsand Astronautics,1979:1-21.
    [124]Junkins J L, Kim Y. Introduction to Dynamics and Control of FlexibleStructures[M]. Reston, VA, USA: American Institute of Aeronautics andAstronautics,1993:9-68.
    [125]Wie B. Singularity Analysis and Visualization for Single-Gimbal Control MomentGyro Systems[J]. Journal of Guidance Control and Dynamics,2004,27(2):271-282.
    [126]Leeghim H, Bang H, Park J O. Singularity Avoidance of Control Moment Gyrosby One-Step Ahead Singularity Index[J]. Acta Astronautica,2010,64(9-10):935-945.
    [127]Chang Y C. An Adaptive H∞Tracking Control for a Class of NonlinearMultiple-Input Multiple-Output (MIMO) Systems[J]. Automatic Control, IEEETransactions on,2001,46(9):1432-1437.
    [128]Khalil H K. Nonlinear Systems[M]. New Jersey: Macmillan Pub. Co.,2001:15-57.
    [129]Mohamed Z, Martins J M, Tokhi M O, et al. Vibration Control of a Very FlexibleManipulator System[J]. Control Engineering Practice,2005,13(3):267-277.
    [130]Gennaro S D, Monaco S. Nonlinear Digital Scheme for Attitude Tracking[J].Journal of Guidance Control and Dynamics,1999,22(3):467-477.
    [131]Gennaro S D. Active Vibration Suppression in Flexible Spacecraft AttitudeTracking[J]. Journal of Guidance Control and Dynamics,1998,21(3):400-408.
    [132]Song G B, Buck N V, Agrawal B N. Spacecraft Vibration Reduction UsingPulse-Width Pulse-Frequency Modulated Input Shaper[J]. Journal of GuidanceControl and Dynamics,1999,22(3):433-440.
    [133]Singer N C, Seering W P. Preshaping Command Inputs to Reduce SystemVibration[J]. Journal of Dynamic Systems, Measurement and Control,Transactions of the ASME,1990,112(1):76-82.
    [134]Huey J. The Intelligent Combination of Input Shaping and PID FeedbackControl[D]. Georgia Institute of Technology,2006:320.
    [135]Yan A Z, Wang G Q, Xu H, et al. Reduction of Residual Vibration in a RotatingFlexible Beam[J]. Acta Mechanica,2004,171(3-4):137-149.
    [136]Gawronski W. Advanced Structural Dynamics and Active Control ofStructures[M]. Springer Verlag,2004.
    [137]胡庆雷.挠性航天器姿态机动的主动振动控制[D].哈尔滨工业大学,2006:2-19.
    [138]Boyd S, Ghaoui L E, Feron E, et al. Linear Matrix Inequalities in System andControl Theory[M]. Philadelphia, PA: Society for Industrial Mathematics,1994:45-89.
    [139]Slotine J J, Li W. Applied Nonlinear Control[M]. New Jersey: Prentice HallEnglewood Cliffs,1991:287-290.
    [140]Wen J T Y, Kreutz-Delgado K. The Attitude Control Problem[J]. IEEETransactions on Automatic Control,1991,36(10):1148-1162.
    [141]Jin E, Sun Z. Robust Attitude Tracking Control of Flexible Spacecraft forAchieving Globally Asymptotic Stability[J]. International Journal of Robust andNonlinear Control,2009,19(11):1201-1223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700