用户名: 密码: 验证码:
基于角动量交换的航天器姿态机动控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天事业的发展,航天任务需求日益多样化,对航天器的敏捷性和稳定性也提出了更高的要求。通过设计高效的姿态控制方案及控制分配算法,快速精确地完成姿态机动任务,可显著扩大航天器的可观测范围,实现对重要观测目标的跟踪或重访,并通过回避不期望或不必要的指向增加有效数据的返回率。现有研究往往将姿态控制律和控制分配算法分开考虑,在前者的设计中以系统的稳定性、鲁棒性或最优性等为研究目的,而忽略了执行机构的特性;而后者则倾向于考虑执行机构的能耗或反应速度,却没有考虑姿态控制的任务需求。本文以使用控制力矩陀螺或飞轮作为执行机构的航天器为研究对象,以完成姿态机动任务为最终目标,针对执行机构的物理特性、用于姿态机动的控制分配算法、考虑执行机构特性的姿态机动控制策略等几个问题进行了深入研究,主要包括以下几个方面:
     针对控制力矩陀螺的力矩放大特性、奇异产生机理、奇异点类型以及奇异度量等问题进行了分析。通过分析金字塔构型控制力矩陀螺群角动量包络特性和奇异点的分布情况,阐明了其操纵律设计的难点为回避内部显奇异点。此外,讨论了冗余飞轮构型的力矩分配策略,并绘制了使用能量最优力矩分配策略的几种典型飞轮系力矩包络。
     为充分发挥执行机构的控制能力,实现与航天器角动量的快速交换,分别针对控制力矩陀螺群和冗余飞轮系设计了控制分配算法。一方面,以缩小期望力矩与各控制力矩陀螺角动量的夹角为目的,设计了可快速实现角动量交换的操纵律;不同于传统的局部操纵律,该操纵律始终以到达饱和角动量为目标,并未参考当前奇异度量值,故能有效地避免陷入内部显奇异点。另一方面,基于静态最优化理论和冗余飞轮系力矩包络特性,分别针对四飞轮和多飞轮情况设计了力矩最优分配策略,以输出期望方向的最大力矩。
     考虑执行机构力矩和角动量包络特性,设计了两种欧拉旋转姿态机动控制策略。第一种参考单轴旋转的时间最优解形式,通过监测航天器绕欧拉轴的旋转角度和角速度确定控制力矩;为了应对机动过程中的不确定性,进一步设计了补偿控制器来实时修正航天器旋转方向。第二种为基于姿态误差四元数和角速度反馈的PID递阶饱和控制器。为了确保航天器绕欧拉轴旋转,该控制器采用了一种沿欧拉轴方向的向量对误差姿态进行约束。两种控制器均基于对航天器动力学方程的反馈线性化设计,并考虑了航天器角速度约束、执行机构力矩以及角动量约束等各种因素,可以沿最短路径完成姿态机动,具备近时间最优特性。
     针对机动过程中存在禁止姿态集的情况,基于势函数法和反步法设计了航天器自主姿态机动控制器。为实现对禁止姿态集的回避,结合航天器的运动情况设计了排斥势函数存在条件,根据同禁止姿态的距离构造了一种新的势函数,并由此设计了自主姿态机动控制器。此外,针对控制受限和势函数的局部极小值情况,还分别设计了相应的解决策略。
     针对执行机构存在的物理限制和数量限制等情况,分别提出了可实现航天器姿态机动的控制策略。首先,考虑控制力矩陀螺存在框架角约束情况,设计了空转与鲁棒伪逆切换的复合控制形式的操纵律,并采用过渡域来消除控制切换带来的抖动;其中空转的方向和控制切换逻辑均由当前框架角与期望框架角的关系确定。其次,考虑仅使用两个任意安装的飞轮情况,基于势函数法设计了欠驱动姿态机动控制器,并利用反正切函数对控制器进行了改进以满足力矩受限情况,接着还通过稳定性分析得出了控制参数的自调整规则。最后,通过对力矩输出特性进行理论分析,阐明两个控制力矩陀螺可以沿与其框架轴相关的两个方向连续地输出力矩,使得航天器可沿着两个特定转轴旋转;受欧拉角姿态描述法启发,提出可通过绕这两个转轴交错旋转三次完成姿态机动任务,并设计了几种可行转角的计算方案以及相应的决策指标。
     论文针对各种不同姿态机动任务进行了大量的数值仿真,对本文设计方法的正确性及其实用价值进行了验证。
With the development of the aerospace industry, space exploration mission hasbecome increasingly diverse, and higher request on the agility and stability of thespacecraft has been proposed. Various benefits can be achieved if the spacecraft canaccomplish attitude maneuver mission fast and precisely by adopting efficientattitude control scheme and control allocation algorithm. Specifically, it cansignificantly extend the observation scope of the spacecraft and realize tracking orrevisit mission of important target. Besides, it can also increase the return rate ofvaluable mission data by avoiding undesirable or unnecessary orientation. However,the existing studies usually design attitude control scheme and the controlallocation algorithm separately, and signify the stability, robustness or optimality inattitude control law design, whereas ignore the characteristics of the actuator. Onthe other hand, most of the literatures focus on the energy consumption or responsespeed in control allocation algorithm design without consideration of the controlmission requirements. Therefore, consider the spacecraft actuated by controlmoment gyroscopes (CMG) or flywheels, a serial of problems have beensystematically and deeply studied to achieve desirable attitude maneuverperformance. These problems include physical characteristics of the actuator,control allocation algorithms for fast attitude maneuver, attitude control strategy forspacecraft maneuver subject to various constraints. The main contents include thefollowing aspects:
     The torque amplification characteristics, singularity mechanism, singular pointtype and singular measure of the CMG are analyzed firstly. Then based on theinvestigation on the angular momentum envelope and singular points distribution ofthe pyramid CMG cluster, it is demonstrated that the major challenge of thesteering law design should be avoiding the internal impassable singular points.Besides, the torque allocation strategy for redundant flywheel array is alsodiscussed, and torque envelopes for some typical flywheel configurations usingenergy-optimal allocation strategy are generated.
     Control allocation algorithms for CMG cluster and flywheel array areproposed respectively to maximize the control capacity, so that to transfer itsangular momentum rapidly. On the one hand, aiming at reducing the angle betweenthe direction of desired torque and angular momentum of all CMGs, a novelsteering law, which has fast angular momentum exchange performance, is presented.Different from traditional steering law, this newly designed steering law does not rely on the singular measure of the CMG cluster and always consider the angularmomentum envelope as its goal, thus it can effectively avoid internal impassablesingularities. On the other hand, based on static optimization theory and geometricfeatures of flywheel torque envelope, two torque-optimal allocation strategies aredeveloped respectively for a four-flywheel and a multi-flywheel array, both of themcan output the maximum control torque along desired direction.
     Two attitude control strategies for spacecraft eigenaixs rotation maneuver arepresented. The first one is inspired by the time optimal solution of single-axisrotation. Its control torque is mainly determined by monitoring the rotation angleand angular rate of the spacecraft about eigenaxis, a compensation torque is addedto constrain the rotation axis to be the eigenaxis, so that to reduce the effect ofvarious uncertainties. The second one is a revised PID cascade-saturationquaternion feedback controller, in which a limit vector on attitude error is designedto guarantee eigenaixs rotation. Both of these two controllers are based on feedbacklinearized dynamic equation and can accommodate the limits from spacecraftangular rate, control torque as well as angular momentum of the actuators, and neartime optimal performance are expected.
     An autonomous attitude controller for spacecraft maneuver in the presence offorbidden attitude set is proposed by means of potential function method andbackstepping technique. In order to avoid the forbidden attitude set, the existenceconditions for the repulsive potential function (RPF) are exploited through theincorporation of the spacecraft motions, and a novel RPF is proposed according tothe distance with the forbidden attitude, then an autonomous attitude controller isderived. Meanwhile, solutions dealing with control saturation and local minima ofthe potential function are also provided.
     Control schemes for spacecraft actuated by actuators with physical orquantitative limits are proposed for attitude maneuver. First, a composite controlsteering logic, which switches between null motion and robust inverse steering law,is proposed for CMG with gimbal angle constraints, and a transform domain is alsodevised to eliminate chattering caused by switch. Both the direction of the nullmotion and the switch logic are determined based on the relationship between thecurrent gimbal angles and desired ones. Next, using potential function method, anunderactuated attitude controller for spacecraft actuated only by two arbitrarilyinstalled flywheels is proposed, and an arc tangent function is adopted to restrictthe magnitude of control torque. Accordingly, a control parameter adaptive methodis then developed to ensure the stability of the system. Finally, by theoreticallyanalyzing the characteristic of output torque, it is illustrated that two CMGs can produce continuous control torque along two directions related to their gimbal axes.Inspired by the Euler angles representation, a control strategy to fulfill attitudemaneuver mission by three successive rotations about these two axes is developed,and the computation methods and performance index for several feasible rotationangles are presented in what follows.
     The validity and practical application value are all verified through welldesigned numerical simulations.
引文
[1] Lappas V J, Steyn W H, Underwood C I. Attitude Control for Small Satelliteusing Control Moment Gyros[J]. Acta Astronautica,2002,51(1):101-111.
    [2]屠善澄.卫星姿态动力学与控制(一)[M].北京:中国宇航出版社,1998:20-46.
    [3]屠善澄.卫星姿态动力学与控制(四)[M].北京:中国宇航出版社,2006:245-275.
    [4] Kenny B H, Kascak P E, Jansen R. et al. Control of a High Speed FlywheelSystem for Energy Storage in Space Applications [J]. IEEE Transactions onIndustry Applications,2005,41(4):1029-1038.
    [5] Tsiotras P, Shen H. Satellite Attitude Control and Power Tracking withEnergy/Momentum Wheels [J]. Journal of Guidance, Control, and Dynamics,2001,24(1):23-24.
    [6] Roithmayr C M. International Space Station Attitude Motion Associated withFlywheel Energy Storage[R]. NASA Langley Research Center,2000.
    [7]魏大忠,张激扬,武登云,李刚.200Nms单框架控制力矩陀螺研制[J].空间控制技术与应用,2011,37(6):14-18.
    [8]张志方,董文强,张锦江,何英姿.控制力矩陀螺在天宫一号目标飞行器姿态控制上的应用[J].空间控制技术与应用,2011,37(6):52-59.
    [9] Lappas V J, Oosthuizen P, Madle P, et al. Design, Analysis and In-orbitPerformance of the BILSAT-1Microsatellite Twin CMG ExperimentalCluster [C]. AIAA Guidance, Navigation, and Control Conference andExhibit, Providence, Rhode Island,16-19August2004.
    [10] Thieuw A, Marcille H. Pleiades-HR CMGs-Based Attitude Control SystemDesign, Development Status and Performances[C].17IFAC Symposium onAutomatic Control in Aerospace,2007.
    [11] Defendini A, Faucheux P, Guay P, et al. Control Moment Gyro CMG15-45S:A Compact CMG Product for Agile Satellites in the One Ton Class [C].Proceedings of the10th European Space Mechanisms and TribologySymposium, San Sebastian, Spain,2003.
    [12] Defendini A, Faucheux P, Guay P. A Compact CMG Product for AgileSatellites[C].5th ESA International Conference on Spacecraft Guidance,Navigation and Control Systems, Frascati, Italy,2002.
    [13] Gersh J, Peck M. Violet: A High-Agility Nanosatellite for DemonstratingSmall Control-Moment Gyroscope Prototypes and Steering Laws.AIAAGuidance, Navigation, and Control Conference, Chicago, Illinois,USA,2009.
    [14] Cook L, Golley P, Krome H, et al. Design, Fabrication and Test of a4750Nms Double Gimbals Control Moment Gyroscope [C].23rd AerospaceMechanisms Symposium, Alabama,1989.
    [15] Christopher R. International Space Station use GNC Momentum ManagerController Design for Shuttle Thermal Protection System Repair[C]. AIAAGuidance, Navigation, and Control Conference and Exhibit, San Francisco,USA,2005.
    [16] Schaub H, Vadali S R, Junkins J L. Feedback Control Law for Variable SpeedControl Moment Gyroscopes [J]. Journal of the Astronautical Sciences,1998,46(3):307-328.
    [17] Schaub H, Junkins J L. Singularity Avoidance Using Null Motion andVariable Speed Control Moment Gyros [J]. Journal of Guidance, Control, andDynamics,2000,23(1):11-16.
    [18] McMahon J, Schaub H. Simplified Singularity Avoidance Using Variable-Speed Control Moment Gyroscope Null Motion [J]. Journal of Guidance,Control, and Dynamics,2009,32(6):1938-1943.
    [19] Yoon H, Tsiotras P, Spacecraft Adaptive Attitude and Power Tracking withVariable Speed Control Moment Gyroscopes [J]. Journal of Guidance,Control, and Dynamics,2002,25(6):1081-1090.
    [20] Richie D J, Lappas V J, Prassinos G. A Practical Small Satellite Variable-Speed Control Moment Gyroscope for Combined Energy Storage andAttitude Control [J]. Acta Astronautica,2009,65(11-12):1745-1764.
    [21] Hirohisa K, Naoki M, Kohei T. Adaptive Skewing Pyramid-type CMGs forFast Attitude Maneuver [J]. Transactions of Space Technology,2009,7:19-24.
    [22]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,1998:270-278.
    [23]徐帆,林来兴.角动量包及斜装飞轮的卸载系统[J].航天控制,1986,1:22-30.
    [24] Wie B, Lu J. Feedback Control Logic for Spacecraft Eigenaxis Rotationsunder Slew Rate and Control Constraints [J]. Journal of Guidance, Control,and Dynamics,1995,18(6):1372-1379.
    [25] Harkegard O. Dynamic Control Allocation using Constrained QuadraticProgramming [J]. Journal of Guidance, Control, and Dynamics,2004,27(6):1028-1034.
    [26] Choi Y, Bang H, Lee H. Dynamic Control Allocation for Shaping SpacecraftAttitude Control Command [C]. AIAA Guidance, Navigation, and ControlConference and Exhibit, Keystone, Colorado, USA,2006.
    [27] Schaub H, Lappas V J. Redundant Reaction Wheel Torque DistributionYielding Instantaneous L2Power-Optimal Spacecraft Attitude Control [J].Journal of Guidance, Control, and Dynamics,2009,32(4):1269-1276.
    [28] Lim S, Miotto P. Actuator Allocation Algorithm Using Interior LinearProgramming [C]. AIAA Guidance, Navigation, and Control Conference andExhibit, Keystone, Colorado, USA,2006.
    [29] Choi Y, Leeghim H, Bang H. Efficient Control Torque Distribution Approachfor Spacecraft Attitude Control [C]. AIAA Guidance, Navigation and ControlConference and Exhibit, Honolulu, Hawaii, USA,2008.
    [30] Markley F L, Reynolds R G, Liu F X, Lebsock K L. Maximum Torque andMomentum Envelopes for Reaction Wheel Arrays [C]. AIAA Guidance,Navigation, and Control Conference, Chicago, Illinois, USA,2009.
    [31] Markley F L, Reynolds R G, Liu F X, Lebsock K L. Maximum Torque andMomentum Envelopes for Reaction-Wheel Arrays [J]. Journal of Guidance,Control, and Dynamics,2010,33(5):1606-1614.
    [32] Margulies G, Auburn J N. Geometric Theory of Single-Gimbal ControlMoment Gyro Systems [J]. Journal of the Astronautical Sciences,1978,26(2):159-191.
    [33] Jose A D, Wie B. Computation and Visualization of Control MomentGyroscope Singularities [C]. AIAA Guidance, Navigation, and ControlConference and Exhibit, Monterey, USA, August5-8,2002.
    [34] Wie B. Singularity Analysis and Visualization of Single-Gimbal ControlMoment Gyro Systems [J]. Journal of Guidance, Control, and Dynamics,2004,27(2):271-282.
    [35] Lappas V J, Steyn W H. Torque Amplification of Control Moment Gyros [J].Electronics Letters,2002,38(5):837-839.
    [36] Kurokawa H. A Study of CMG Systems-for Selection and Evaluation [C].Proceedings of16th International Symposium on Space Technology andScience (ISTS), Tokyo,1988:1243-1249.
    [37] Kurokawa H. A Geometry Study of Single Gimbal Control Moment GyrosSingularity Problem and Steering Law [R]. Technical Report of MechanicalEngineering Laboratory TR2175, Tsukuba: Mechanical Engineering Lab,1998.
    [38] Tokar E N. Platonov V N. Singular Surfaces in Unsupported GyrodyneSystems [J]. Cosmic Research,1979,16(5):547-555.(Translation fromosmicheskie Issledovaniia, vol.1978,16:675-685).
    [39] Tang L, Xu S J. A Geometric Analysis of Singularity for Single GimbalControl Moment Gyro Systems [J]. Chinese Journal of Aeronautics,2005,18(4):295-303.
    [40]汤亮,陈义庆.单框架控制力矩陀螺奇异问题研究[J].航空学报,2007,28(5):1181-1189
    [41] Tokar E N, Platonov V N. Singular Surfaces in Unsupported GyrodyneSystems [J]. Cosmic Research,1979,16(5):547-555.
    [42] Kojima H, Matsuda H, Yamaguchi S. Singularity Visualization and SteeringControl Law of Adaptive Skew Pyramid Type CMGs, AIAA Guidance,Navigation, and Control Conference, Portland, Oregon, USA,2011.
    [43] Liska D J, Jacot A D. Control Moment Gyros in Attitude Control [J]. Journalof Spacecrafts and Rockets,1966,3(9):1313-1320.
    [44] Morine L A, Oconnor B J. A Description of the CMG and Its Application toSpace Vehicle Control [J]. Journal of Spacecraft and Rockets,1969,6(3):225-231.
    [45] Chubb W B, Epstein M. Application of Control Moment Gyros in theAttitude Control of the Apollo Telescope Mount [C]. AIAA Guidance,Control and Flight Dynamics Conference, Pasadena, California, USA,1968.
    [46] Ross C H, Worley E. Optimized Momentum and Attitude Control System(MACS) for Skylab[C]. AIAA Guidance, Control and Flight MechanicsConference, New York, USA,1971.
    [47] Cornick D E. Singularity Avoidance Control Laws for Single Gimbal ControlMoment Gyros [C]. AIAA Guidance and Control Conference, AIAA paper79-1698. Newyork, USA,1979:20-33.
    [48] Bedrossian N S. Steering Law Design for Redundant Single Gimbal ControlMoment Gyroscopes [D]. Massachu-setts Institute of Technology,1987.
    [49] Bedrossian N S, Paradiso J, Bergmann E V. Rowell, D. Steering Law Designfor Redundant Single-Gimbal Control Moment Gyroscope [J]. Journal ofGuidance, Control, and Dynamics,1990,13(6):1083-1089.
    [50] Ford K. Hall C. Singular Direction Avoidance Steering for Control-MomentGyros. Journal of Guidance, Control, and Dynamics,2000,23(4):648-656.
    [51] Meng T, Matunaga S. Modified Singular-Direction Avoidance Steering forControl Moment Gyros2011,34(6):1915-1919.
    [52] Leve F A, Fitz-Coy N G. Hybrid Steering Logic for Single-Gimbal ControlMoment Gyroscopes [J]. Journal of Guidance, Control, and Dynamics,2010,33(4):1202-1212.
    [53] Wie B. Singularity Escape Avoidance Steering Logic for Control MomentGyro Systems [J]. Journal of Guidance, Control, and Dynamics,2005,28(5):948-956.
    [54] Jung D, Tsiotras T. An Experimental Comparison of CMG Steering ControlLaws [C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Providence, Rhode Island.2004.
    [55] Lee S M, Rhee S-W. Experiments of Singularity Avoidance Steering ControlLaws for Redundant Single-Gimbal Control Moment Gyros[C].InternationalConference on Control, Automation and Systems, Seoul, Korea,2007.
    [56] Paradiso J. A. Global Steering of Single Gimballed Control MomentGyroscopes Using a Directed Search [J]. Journal of Guidance, Control, andDynamics,1992,15(5):1236-1244.
    [57] Vadali S R, Oh H S, Walker S R. Preferred Gimbal Angles for Single GimbalControl Moment Gyros [J]. Journal of Guidance, Control, and Dynamics,1990,13(6):1090-1095.
    [58] Kurokawa H. Constrained Steering Law of Pyramid-Type Control MomentGyros and Ground Tests. Journal of Guidance, Control, and Dynamics,1997,20(3):445-449.
    [59] Avanzini G. Gimbal-Position Command Generation for a Cluster of ControlMoment Gyroscopes [C]. Proceedings of the AAS/AIAA AstrodynamicsSpecialist Conference, Lake Tahoe, California, USA.2005.
    [60] Kurokawa H. Survey of Theory and Steering Laws of Single-Gimbal ControlMoment Gyros [J]. Journal of Guidance, Control, and Dynamics,2007,30(5):1331-1340.
    [61] Takada K, Kojima H, Matsuda N. CMG Singularity Avoidance SteeringControl Based on Singular Surface Cost Function [C]. The27th InternationalSymposium on Space Technology and Science, Tsukuba,2009.
    [62] Tekinalp O, Yavuzoglu E. A New Steering Law for Redundant ControlMoment Gyroscope Clusters [J]. Aerospace Science and Technology,2005,9:626-634.
    [63]刘刚,李传江,马广富,黄静.应用SGCMG的卫星姿态快速机动控制[J].航空学报,2011,32(10):1905-1913.
    [64] Lee J, Bang H, Lee H. Singularity Avoidance by Game Theory for ControlMoment Gyros[C]. AIAA Guidance, Navigation, and Control Conference andExhibit, San Francisco, California.2005.
    [65] Leeghim H, Bang H, Park J.-O. Singularity Avoidance of Control MomentGyros by One-step Ahead Singularity Index [J]. Acta Astronautica,2008,64(9-10):935-945.
    [66] Leeghim H, Lee H, Lee D, Bang, H. Singularity Avoidance of ControlMoment Gyros by Predicted Singularity Robustness Ground Experiment [J].IEEE Transactions on Control Systems Technology,2009,17(4):884-891.
    [67] Wertz J R. Spacecraft Attitude Determination and Control [M]. Dordrecht:Kluwer Academic Publishers.1978.
    [68] Wie B, Weiss H, Apapostathis A. Quaternion Feedback Regulator forSpacecraft Eigenaxis Rotations [J]. Journal of Guidance, Control, andDynamics,1989,12(3):375-380.
    [69] Won C H. Comparative Study of Various Control Methods for AttitudeControl of a LEO Satellite [J]. Aerospace Science and Technology.1999,3(5):323-333.
    [70] Yang C-D, Sun Y-P. Mixed H2/H∞State-feedback Design for MicrosatelliteAttitude Control [J]. Control Engineering Practice.2002,10(9):951-970.
    [71] Wie B, Byun K W, Warren V W, et al. New Approach to Attitude/MomentumControl for the Space Station. Journal of Guidance, Control and Dynamics [J].1989,12(5):714-722.
    [72] Gennaro S D. Passive Attitude Control of Flexible Spacecraft fromQuaternion Measurements [J]. Journal of Optimization Theory andApplication.2003,116(1):41-60.
    [73] Lizarralde F, Wen J T. Attitude Control without Angular VelocityMeasurement: a Passivity Approach [J]. IEEE Transactions on AutomaticControl.1996,41(3):468-472
    [74] Lo S C, Chen Y P, Smooth Sliding Mode Control for Spacecraft AttitudeTracking Maneuvers [J]. Journal of Guidance, Control, and Dynamics,1995,18(6):1345-1349.
    [75] Dwyer T A W, Sira-Ramirez, H. Variable-Structure Control of SpacecraftAttitude Maneuvers[J]. Journal of Guidance, Control, and Dynamics,1998,11(3):262-270.
    [76] Chen Y P, Lo S C. Sliding-Mode Controller Design for Spacecraft AttitudeTracking Maneuvers[J]. IEEE Transactions on Aerospace and ElectronicSystems,1993,29(4):1328-1333
    [77] Jan Y W, Chiou J C. Minimum-time Spacecraft Maneuver using Sliding-Mode Control [J]. Acta Astronautica,2004,54(1):69-75.
    [78] Kim K S, Kim Y., Robust Backstepping Control for Slew Maneuver usingNonlinear Tracking Function [J]. IEEE Transaction on Control SystemTechnology,2003,11(6):822-829.
    [79] Benaskeur A R, Desbiens A. Backstepping-Based Adaptive PID. IEEProceedings-Control Theory and Applications.2002,149(1):54-59.
    [80] Song B, Ma G F, Li C J. Adaptive Variable Structure Control Based onBackstepping for Spacecraft with Reaction Wheels during Attitude Maneuver[J]. Journal of Harbin Institute of Technology,2009,16(1):138-144.
    [81] Ali I., Radice G., Kim J. Backstepping Control Design with Actuator TorqueBound for Spacecraft Attitude Maneuver [J]. Journal of Guidance, Control,and Dynamics,2010,33(1):254–259.
    [82] Howley B. Genetic Programming of Spacecraft Attitude Maneuvers underReaction Wheel Control [C]. AIAA, Guidance, Navigation and ControlConference, San Diego, USA,1996.
    [83] Zhou Z Q, Colgren R. Nonlinear Attitude Control for Large and FastManeuvers [C]. AIAA Guidance, Navigation, and Control Conference andExhibit. San Francisco, California, USA.2005.
    [84] Vadali S R, Kobberdahl D W. Robust Control of Spacecraft RotationalManeuvers[C]. AIAA24thAerospace Sciences Meeting, Reno, Nevada, USA,1986.
    [85] Chen X J, Steyn W H. Robust Combined Eigenaxis Slew Manoeuvre [C].AIAA. Guidance, Navigation and Control Conference, Portland Oregon, USA.1999.
    [86]宋斌.航天器姿态的鲁棒控制研究[D].哈尔滨工业大学工学博士学位论文,2007.
    [87] Junkins J, Rahman Z, Bang H. Near-Minimum-Time Maneuvers of FlexibleVehicles: a Lyapunov Control Law Design Method. The28thAerospaceSciences Meeting, Reno, Nevada,1990.
    [88] Fujii H A, Kojima H, Nakajima N. Slew Maneuver of a Flexible SpaceStructure with Constraint on Bending Moment [J]. Journal of Guidance,Control and Dynamics,2003,26(2):259-266.
    [89] Ikeda R, Takahashi. Agile and Precise Attitude Maneuver of FlexibleSpacecraft based on Nonstationary Frequency-Shaped Robust Control [C].AIAA Guidance, Navigation, and Control Conference, Toronto, OntarioCanada,2010.
    [90] Bang H, Park Y, Han J. Feedback Control for Slew Maneuver Using On–OffThrusters [J]. Journal of Guidance, Control, and Dynamics,1999,22(6):816-822.
    [91] Bilimoria K D, Wie B. Time-Optimal Three-Axis Reorientation of a RigidSpacecraft [J]. Journal of Guidance, Control, and Dynamics,1993,16(3):446-452.
    [92] Bai X L, Junkins J L. New Results for Time-Optimal Three-AxisReorientation of a Rigid Spacecraft [J]. Journal of Guidance, Control, andDynamics,2009,32(4):1071-1076.
    [93] Vadali S R, Carter M T, Singh T. Near-Minimum-Time Maneuvers of LargeStructures: Theory and Experiments [J]. Journal of Guidance, Control, andDynamics,1995,18(6):1380-1385.
    [94] Liu S-W, Singh T. Fuel/Time Optimal Control of Spacecraft Maneuvers [J].Journal of Guidance, Control, and Dynamics,2006,20(2):394-397.
    [95] Hecht N K, Junkinst J L. Near-Minimum-Time Control of a FlexibleManipulator [J]. Journal of Guidance, Control, and Dynamics,1992,15(2):477-481.
    [96] Shen H J, Tsiotras P. Numerical Approach for Solving Rigid SpacecraftMinimum Time Attitude Maneuvers [J]. Journal of Guidance, Control, andDynamics,1990,13(1):38-45.
    [97] Li C L, Yang C C, Wu C J. Time-optimal Maneuvering Control of a RigidSpacecraft [J]. Acta Astronautica,2007,60(10-11):791-800.
    [98] Oh H S, Yoon Y D, Chang Y K, et al. Near-eigenaxis Rotation Control LawDesign for Moving-to-rest Maneuver [J]. Journal of Guidance, Control, andDynamics,2001,24(6):1228-1231.
    [99] Fahroo F, Ross I M. Costate Estimation by a Legendre PseudospectralMethod [J]. Journal of Guidance, Control, and Dynamics,2001,24(2):270-277.
    [100] Ross I M, Fahroo F. Pseudospectral Knotting Methods for Solving OptimalControl Problems [J]. Journal of Guidance, Control, and Dynamics,2004,27(3):397-405.
    [101] Yan H, Ross I M, Alfriedn K T. Pseudospectral Feedback Control for Three-Axis Magnetic Attitude Stabilization in Elliptic Orbits [J]. Journal ofGuidance, Control, and Dynamics,2007,30(4):1107-1115.
    [102] Huntington G T, Rao A V. Optimal Reconfiguration of Spacecraft FormationsUsing the Gauss Pseudospectral Method [J]. Journal of Guidance, Control,and Dynamics,2008,31(3):689-698.
    [103]雍恩米,唐国金,陈磊.基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J].宇航学报,2008,29(6):1766-1772.
    [104]梅杰,马广富,杨博.基于Legendre伪谱法的卫星轨道转移燃料最优控制[J].哈尔滨工业大学学报,2010,42(3):352-357.
    [105] Fleming A. Real-Time Optimal Slew Maneuver Design and Control [D].Astronautical Engineer Thesis, Naval Postgraduate School.2004.
    [106] Fleming A, Ross I M. Optimal Control of Spinning Axisymmetric Spacecraft:A Pseudospectral Approach[C].AIAA Guidance, Navigation and ControlConference and Exhibit. Honolulu, Hawaii.2008.
    [107] Fleming A, Sekhavat P, Ross I M. Minimum-Time Reorientation of a RigidBody [J]. Journal of Guidance, Control, and Dynamics,2010,33(1):160-170.
    [108] Karpenko M, Bhatt S, Bedrossian N, et al. First Flight Results on Time-Optimal Spacecraft Slews [J]. Journal of Guidance, Control, and Dynamics,2012,35(2):367-376.
    [109] McFarland D,Swenson E,Black J,and Cobbx R. Near Real-Time Closed-LoopOptimal Control Feedback for Spacecraft Attitude Maneuvers[C]. AIAAModeling and Simulation Technologies Conference, Chicago, Illinois,2009.
    [110] Verbin D, and Lappas V J. Spacecraft Maneuver Control with Power LimitedReaction Wheels[C].AIAA Guidance, Navigation, and Control Conference,Toronto, Ontario, Canada,2010.
    [111] Steyn W H. Near-Minimum-Time Eigenaxis Rotation Maneuvers UsingReaction Wheels [J]. Journal of Guidance, Control, and Dynamics.1995,18(5):1184-1189.
    [112] Steyn W H. A Dual-wheel Multi-mode Spacecraft Actuator for Near-minimum-time Large Angle Slew Maneuvers [J]. Aerospace Science andTechnology,2008,12(7):545-554.
    [113] Milenkovic Z, Martin M. An Implementation of an Inertially-Fixed eigenaxisAttitude Maneuver Intercept Algorithm [C]. AIAA Guidance, Navigation andControl Conference and Exhibit. Honolulu, Hawaii.2008.
    [114] Wie B, Lu J. Feedback Control Logic for Spacecraft Eigenaxis Rotationsunder Slew Rate and Control Constraints [J]. Journal of Guidance, Control,and Dynamics,1995,18(6):1372-1379.
    [115] Wie B, Heiberg C, Bailey D. Rapid Multi-Target Acquisition and PointingControl of Agile Spacecraft [J]. Journal of Guidance, Control, and Dynamics,2002,25(1):96-104.
    [116] Beaumet G, Verfaillie G, Charmeau M C, et al. Autonomous Planning for AnAgile Earth-observing Satellite[C]. Proceedings of the9th InternationalSymposium on Artificial Intelligence, Robotics and Automation in Space,Los Angeles, California, USA,2008.
    [117] Hablani H B. Attitude Commands Avoiding Bright Objects and MaintainingCommunication with Ground Station [J]. Journal of Guidance, Control, andDynamics,1999,22(6):759-767.
    [118] Singh G, Macala G, Wong E, Rasmussen R. A Constraint Monitor Algorithmfor the Cassini Spacecraft [C]. Proceedings of the AIAA Guidance,Navigation, and Control Conference, Reston, VA,1997.
    [119] Frazzoli E, Dahleh M A, Feron E. A Randomized Attitude Slew PlanningAlgorithm for Autonomous Spacecraft [C].AIAA Guidance, Navigation, andControl Conference and Exhibit Montreal, Quebec, Canada,2001.
    [120] Kim Y, Mesbahi M. Quadratically Constrained Attitude Control viaSemidefinite Programming [J]. IEEE Transactions on Automatic Control,2004,49(5):731-735.
    [121] Kim Y, Mesbahi M. On the Constrained Attitude Control Problem [C]. AIAAGuidance, Navigation, and Control Conference and Exhibit, Providence,Rhode Island,2004.
    [122]崔平远,徐文明,崔祜涛,仲维国.基于单轴随机扩展算法的自主探测器大角度机动规划[J].宇航学报,2007,28(2):404-408.
    [123]仲维国,崔平远,崔祜涛.航天器复杂约束姿态机动的自主规划[J].航空学报,2007,28(5):1091-1097.
    [124]杨思亮,徐世杰.基于粒子群算法的航天器姿态机动路径规划[J].北京航空航天大学学报,2010,36(1):48-51.
    [125]程小军,崔祜涛,徐瑞,崔平远.几何约束下的航天器姿态机动控制[J].控制与决策,2012,27(5):724-730.
    [126]程小军,崔祜涛,崔平远,徐瑞.具有非凸约束的航天器姿态机动预测控制[J].宇航学报,2011,32(5):1070-1076.
    [127] Geand S S, Cui Y J. New Potential Function for Mobile Robot Path Planning[J]. IEEE. Transactions on Robotics and Automation.2000,16(10):615-619.
    [128] Ge S S, Cui Y J, Dynamic Motion Planning for. Mobile Robots UsingPotential Field Method [J]. Autonomous Robots,2002,13:207-222.
    [129] Yun X, Tan K C, A Wall-following Method for Escaping Local Minima inPotential Field Based Motion Planning [C]. Proceedings of InternationalConference on Advanced Robotics. Monterey, USA,1997.
    [130] Mclnnes C R, Large Angle Slew Maneuvers with Autonomous Sun VectorAvoidance [J]. Journal of Guidance, Control, and Dynamics,1994,17(4):875-877.
    [131] Wisniewskia R, Kulczycki P. Slew Maneuver Control for SpacecraftEquipped with Star Camera and Reaction Wheels [J]. Control EngineeringPractice.2005,13:349-356.
    [132] Radice G, Casasco M, Time-Varying Potential Function Control forConstrained Attitude Tracking [C]. Proceedings of the14th AAS/AIAASpaceflight Mechanics Conference, Maui, Hawaii,2004.
    [133] Ali I, Radice G. Autonomous Attitude Control Using Potential FunctionMethod Under Control Input Saturation [C]. The59th InternationalAstronautical Congress, Glasgow, UK,2008.
    [134] Avanzini1G, Radice G, Ali I. Potential Approach for ConstrainedAutonomous Manoeuvres of a Spacecraft Equipped with A Cluster of ControlMoment Gyroscopes [J]. Journal of Aerospace Engineering,2009,223(3):285-296.
    [135] Lappas V, Wie B. Robust Control Moment Gyroscope Steering Logic withGimbal Angle Constraints. Journal of Guidance, Control, and Dynamics,2009,32(5):1662-1666.
    [136] Tekinalp O, Elmas T, Yavrucuk I. Gimbal Angle Restricted Control MomentGyroscope Clusters [C].4th International Conference on Recent Advances inSpace Technologies.2009:585-590.
    [137] Crouch P E. Spacecraft Attitude Control and Stabilization: Applications ofGeometric Control Theory to Rigid Body Models [J]. IEEE Transactions onAutomatic Control,1984,29(4):321-331.
    [138] Byrnes C I, Isidori A. On the Attitude Stabilization of Rigid Spacecraft [J].Automatica,1991,27(1):87-95.
    [139] Tsiotras P, Corless M, Longuski J M. A Novel Approach to the AttitudeControl of Axi-Symmetric Spacecraft [J]. Automatica,1995,31(8):1099-1112.
    [140] Tsiotras P, Luo J H. Control of Underactuated Spacecraft with BoundedInputs [J]. Automatica,2000,36(8):1153-1169.
    [141] Behal A, Dawson D, Zergeroglu E, Fang Y. Nonlinear Tracking Control of anUnderactuated Spacecraft [J]. Journal of Guidance, Control, and Dynamics,2002,25(5):979-985.
    [142] Kojima H. Stabilization of Angular Velocity of Asymmetrical Rigid BodyUsing Two Constant Torques [J]. Journal of Guidance, Control, andDynamics,2007,30(4):1163-1168.
    [143] Karami M A, Sassani F. Spacecraft Momentum Dumping Using Fewer thanThree External Control Torques[J].Journal of Guidance, Control, andDynamics,2009,32(1):242-247.
    [144] Avanzini G, Giulietti F, Constrained Slews for Single Axis Pointing [J].Journal of Guidance, Control, and Dynamics,2008,31(6):1813-1816.
    [145] Avanzini G, Berardo L, Giulietti F, Minisci E A. Optimal Rotation Sequencesin Presence of Constraints on Admissible Rotation Axes[J]. Journal ofGuidance, Control, and Dynamics,2011,34(2):554-563.
    [146]庄宇飞,马广富,黄海滨.欠驱动刚性航天器时间最优轨迹规划设计[J].控制与决策,2010,25(10):1469-1473.
    [147] Ma G F, Zhuang Y F, Li C J, et al. Feasible Trajectory Generation of anUnderactuated Rigid Spacecraft [J].宇航学报,2011,32(8):1753-1761.
    [148] Zhuang Y F, Ma G F, Li C J, et al. Time-Optimal Maneuvering Control of anUnderactuated Rigid Spacecraft Using Differential Flatness [J].宇航学报,2011,32(8):1753-1761.
    [149] Krishnan H, McClamroch N, Reyhanoglu M. Attitude Stabilization of a RigidSpacecraft Using Two Momentum Wheel Actuators [J]. Journal of Guidance,Control, and Dynamics,1995,18(2):256-263.
    [150] Kim S, Kim Y. Sliding Mode Stabilizing Control Law of UnderactuatedSpacecraft[C]. AIAA Guidance, Navigation, and Control Conference andExhibit, Denver, CO,2000.
    [151] Kim S, Kim Y, Spin-Axis Stabilization of a Rigid Spacecraft Using TwoReaction Wheels [J]. Journal of Guidance, Control, and Dynamics,2001,24(5):1046-1049.
    [152] Nadjim M H, Stephen H, Attitude Stabilization of an Underactuated SatelliteUsing Two Wheels[C]. IEEE Aerospace Conference Proceedings, IEEE, BigSky, Montana, USA,2003,6:2629-2635.
    [153] Lam Q M, Anderson B, Xin M. Preserving Spacecraft Attitude ControlAccuracy Using Theta-D Controller Subject to Reaction Wheel Failures[C]AIAA Infotech@Aerospace2010, Atlanta, Georgia, USA,2010.
    [154] Boyer F, Alamir M. Further Results on the Controllability of a Two-WheeledSatellite [J]. Journal of Guidance, Control, and Dynamics,2007,40(2):611-619.
    [155] Nadjim M H, Phil P. Practical Implementation of Attitude-ControlAlgorithms for an Underactuated Satellite [J]. Journal of Guidance, Control,and Dynamics,2012,35(1):40-50.
    [156] Ge X S, Chen L Q. Optimal Reorientation of Underactuated Spacecraft UsingGenetic Algorithm with Wavelet Approximation [J]. Acta Mechanica Sinica,2009,25(4):547-553.
    [157] Shimoda S, Kubota T, Ichiro N. Attitude Control of Two-Wheel SatelliteUsing Riemannian Geometry[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit, Providence, Rhode Island,2004:1-7.
    [158] Ge X s. Attitude Control of a Rigid Spacecraft with Two Momentum WheelActuators using Genetic Algorithm [J]. Acta Astronautica,2004,55(1):3-8.
    [159] Wang Z, Ge X S. Attitude Control Research of Rigid Spacecraft with TwoMomentum Wheels [J]. Journal of Beijing Institute of Machinery2002,(17)3:1-5.
    [160]金磊,徐世杰.带有两个飞轮的欠驱动航天器姿态稳定控制研究[J]中国空间科学技术,2009,V29(02):8-16.
    [161] Han C Y, Pechev A N. Underactuated Satellite Attitude Control with TwoParallel CMGs[C]. IEEE International Conference on Control andAutomation, IEEE, Guangzhou, China,2007, pp.666-670.
    [162] Jin L, Xu S J. Underactuated Spacecraft Angular Velocity Stabilization andThree-axis Attitude Stabilization Using Two Single Gimbal Control MomentGyros[J]. Acta Mechanica Sinica,2010,26(2):279-288.
    [163] Kwon S, Shimomura T, Okubo H. Pointing Control of Spacecraft Using TwoSGCMGs via LPV Control Theory[J]. Acta Astronautica,2011,68(7-8):1168-1175.
    [164]胡寿松,王执铨,胡维礼.最优控制理论与系统,第二版.[M].北京:科学出版社,2005.
    [165] Khatib O. Real-time Obstacle Avoidance for Manipulators and MobileRobots [J].International Journal of Robotics Research,1986,5(1):90-98.
    [166] Khalil H K. Nonlinear systems,3rd edition [M]. Prentice Hall, Upper SaddleRiver,2002.
    [167] Lyapunov A M. General Problem of Stability of Motion [M]. Taylor&Francis Books Ltd,1992.
    [168] Baik I-C, Kim K-H. Robust Nonlinear Speed Control of PM SynchronousMostor Using Boundary Layer Integral Sliding Mode Control Technique [J].IEEE Transactions on Control Systems Technology,2000,8(1):47-54.
    [169] Lee J J, Xu S S, Yoo D S. Variable Structure Control Using An AdaptiveBoundary of System Uncertainty [J]. International Journal of SystemsScience,1993,24(2):277-287.
    [170] Shuster M D. A Survey of Attitude Representations [J]. Journal of theAstronautical. Sciences, Vol.41, No.4, pp.439-517.
    [171] LaSalle J. and Lefschetz S. Stability by Lyapunov's Direct Method withApplications, Academic, Orlando, FL,1961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700