用户名: 密码: 验证码:
基于傅立叶变换近红外光谱的绍兴黄酒风味成分定量分析及其酒龄鉴别的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酒是我国的传统酒种,绍兴黄酒集营养和保健为一体,以其低耗粮、低酒度、高营养而备受广大消费者的喜爱,在整个黄酒业的生产、消费以及出口中占有主导地位。随着消费者对于绍兴黄酒中营养成分的关注度不断提高,为黄酒中的风味营养成分寻找一种快速检测方法成为国家检测部门、厂家、商家以及消费者各方面的共同要求。同时,绍兴黄酒陈酿机理的不明确,致使使用近红外进行绍兴黄酒酒龄鉴别的研究难以深入进行下去,因此,对陈酿中绍兴黄酒的多项风味营养成分进行理化和近红外的研究已成为改善黄酒科研现状、提高黄酒消费档次、促进黄酒业规范化、科学化和国际化发展的迫切要求。本研究是对本课题组前期研究(基于傅立叶变换近红外的绍兴黄酒中酒精度、糖度、pH值和总酸指标定量,基酒酒龄1、2、3、4、5年陈定性鉴别)的进一步深入和拓展,目的是实现绍兴黄酒风味营养成分及其基酒酒龄(新酒1年陈、1-3年陈、5年陈和8-10年陈)和勾兑酒酒龄(3年陈、5年陈、6年陈和8年陈)的快速检测和鉴别。
     本文以绍兴黄酒基酒和勾兑酒为研究对象,利用傅立叶变换近红外光谱分析技术、现代仪器分析技术和化学计量学分析方法,开展绍兴黄酒中总糖、非糖固形物、葡萄糖、异麦芽糖、异麦芽三糖、麦芽糖、潘糖、乙酸、柠檬酸和15种氨基酸的定量检测,基酒及勾兑酒酒龄傅立叶变换近红外分类鉴别及其风味成分变化机理的研究,并在此基础上建立绍兴黄酒各风味成分指标、基酒及勾兑酒酒龄快速鉴别的傅立叶变换近红外光谱分析模型。
     本文的主要研究内容和研究结论如下:
     (1)为研究绍兴黄酒陈酿机理及建立绍兴黄酒近红外光谱指纹库,提出了十年不间断、动态研究绍兴黄酒基酒各风味成分指标的样品采集方案,以及将动态实验数据和非动态实验数据相结合研究绍兴黄酒基酒陈酿过程中风味成分和光谱变化的实验方案,设计了用于绍兴黄酒勾兑酒酒龄鉴别研究的勾兑酒配方方法。
     (2)对绍兴黄酒基酒和勾兑酒样品的近红外原始光谱和预处理光谱特征进行了分析,发现基酒和勾兑酒光谱特征基本相同,均在982、1185、1460、1692、1776、1934以及2265和2302 nm波长附近有比较明显的吸收峰,其中982、1185、1460、1934 nm处的吸收可能与O-H基团有关,而1692、2265和2302 nm处的吸收则可能与C-H基团有关,1776 nm处的吸收可能与糖类成分的吸收有关,各特征峰与绍兴黄酒中糖、酸、氨基酸等风味成分所含有的主要基团C-H、O-H、N-H等的吸收直接相关。
     (3)分析了绍兴黄酒基酒1年陈、1-3年陈、5年陈和8-10年陈样品中5种糖、3种酸和16种氨基酸的含量变化趋势,发现异麦芽三糖、柠檬酸和蛋氨酸的含量可以作为区别绍兴黄酒新酒1年陈和陈酿后陈年酒(1-3年陈、5年陈和8-10年陈)的判别依据。
     (4)对使用Chauvenet检验剔除光谱异常样品后的绍兴黄酒基酒新酒1年陈、1-3年陈、5年陈和8-10年陈共63个样品进行了定性分析。结果如下:
     通过分析7个不同光程(0.5、1.0、1.5、2.0、2.5、3.0和5.0 mm)的分类结果,发现1.0 mm光程分类结果最优。
     通过比较判别分析(Discriminant Analysis,DA)、判别偏最小二乘(DiscriminantPartial Least Squares,DPLS)、簇类独立软模式分类法(Soft Independent Modeling ofClass Analogy,SIMCA)和最小二乘-支持向量机(Least Squares-Support VectorMachine,LS-SVM)的分类结果,以及全波段、800-1250 nm、1250-1650 nm、1650-2200nm、2200-2500 nm和1250-2200 nm共6个波段和Savitzky-Golay滤波平滑(包括5点、15点和25点三种)、多元散射校正(Multiplictive Scatter Correction,MSC)、标准归一化(Standard Normal Variate,SNV)以及一阶和二阶微分共7种光谱预处理方法对于分类模型的优化效果,发现1.0 mm光程全波段前8个主成分得分输入的LS-SVM方法判别结果最优,校正集正确率97.87%,预测集正确率93.75%,1年陈、1-3年陈和8-10年陈判别正确率为100%,5年陈判别正确率为75%。
     (5)对剔除光谱异常样品的绍兴黄酒勾兑酒3年陈、5年陈、6年陈和8年陈共99个样品进行了定性分析,结果如下:
     通过比较DA、DPLS、SIMCA和LS-SVM的分类结果,以及6个建模波段和7种光谱预处理方法对于分类模型的优化效果,发现1.0 mm光程全波段前6个主成分得分输入的LS-SVM方法判别结果最优,校正集和预测集正确率均达到100%。
     (6)对绍兴黄酒中的总糖、非糖固形物、葡萄糖、异麦芽糖、异麦芽三糖、麦芽糖、潘糖、乙酸、柠檬酸和15种氨基酸进行了定量分析,结果如下:
     通过比较各指标不同光程的PLSR定量模型,发现总糖、非糖固形物、葡萄糖、麦芽糖、天门冬氨酸、苏氨酸、丝氨酸、甘氨酸、丙氨酸、缬氨酸、异亮氨酸、亮氨酸、酪氨酸、苯丙氨酸、乙酸的0.5 mm光程定量模型效果最优,潘糖2.0 mm光程定量模型效果最优,赖氨酸和精氨酸2.5 mm光程定量模型效果最优,异麦芽糖、异麦芽三糖、柠檬酸、谷氨酸、脯氨酸、组氨酸5.0 mm光程定量模型效果最优。
     使用杠杆值和学生残差的方法剔除浓度异常样品后用于总糖、非糖固形物、葡萄糖、异麦芽糖、异麦芽三糖、麦芽糖、潘糖、乙酸、柠檬酸定量分析的样品数分别为83、84、123、123、119、120、122、123、124个,用于天门冬氨酸、丝氨酸、谷氨酸、脯氨酸、甘氨酸定量分析的样品数为各90个,丙氨酸为91个,苏氨酸、亮氨酸和组氨酸为各89个,缬氨酸、异亮氨酸、酪氨酸、苯丙氨酸和精氨酸为各88个,赖氨酸87个。
     使用PLSR、PCR、SMLR和LS-SVM四种定量方法建立各风味成分指标定量模型,并使用6个建模波段和7种光谱预处理方法对各模型进行优化,发现:
     ①使用PLSR方法的1)全波段结合25点平滑处理所建立的总糖、非糖固形物、麦芽糖、天门冬氨酸、甘氨酸、异亮氨酸、苯丙氨酸、脯氨酸定量模型,结合15点平滑处理建立的葡萄糖、潘糖、丝氨酸、丙氨酸、缬氨酸、亮氨酸、赖氨酸定量模型,结合5点平滑建立的苏氨酸模型,结合MSC校正所建立的酪氨酸模型,结合原始光谱所建立的异麦芽三糖、组氨酸模型结果最优;2)800-1250 nm波段结合MSC校正的柠檬酸模型,结合SNV校正的谷氨酸定量模型结果最优。
     使用SMLR方法的5个波长(958、1182、947、998和989 nm)结合SNV校正的精氨酸定量模型结果最优。
     使用LS-SVM方法的全波段10主成分得分输入所建立的异麦芽糖、乙酸模型结果最优。
     ②各风味成分指标最优模型的校正集相关系数、交叉验证相关系数、校正误差、预测误差和交叉验证误差分别为总糖0.98677、0.96119、0.741g/L、1.1g/L和1.26g/L,非糖固形物0.98264、0.94269、1.18g/L、1.24g/L和2.12g/L;葡萄糖0.91173、0.79683、1330 mg/L、1550 mg/L和1950 mg/L,异麦芽三糖0.97566、0.84996、223 mg/L、320mg/L和537 mg/L,麦芽糖0.81837、0.699、665 mg/L、748 mg/L和841 mg/L,潘糖0.94010、0.82750、428 mg/L、506 mg/L和706 mg/L;柠檬酸0.98147、0.93231、224mg/L、410 mg/L和423 mg/L;天门冬氨酸0.96745、0.8554、109 mg/L、215 mg/L和226 mg/L,苏氨酸0.96552、0.66033、69.6 mg/L、153 mg/L、202 mg/L,丝氨酸0.90998、0.78218、201 mg/L、290 mg/L、304 mg/L,谷氨酸0.94025、0.8184、281 mg/L、377mg/L、479 mg/L,脯氨酸0.96682、0.70022、244 mg/L、604 mg/L、693 mg/L,甘氨酸0.9416、0.82303、193 mg/L、305 mg/L、328 mg/L,丙氨酸0.98693、0.83257、121mg/L、450 mg/L、417 mg/L,缬氨酸0.9374、0.83179、84.7 mg/L、182 mg/L、136 mg/L,异亮氨酸0.87051、0.71624、66.8 mg/L、75.9 mg/L、96.6 mg/L,亮氨酸0.93946、0.86623、149 mg/L、266 mg/L和217 mg/L,酪氨酸0.97965、0.78817、48.8 mg/L、157 mg/L、150 mg/L,苯丙氨酸0.92269、0.77895、77.8 mg/L、157 mg/L、133 mg/L,赖氨酸0.92269、0.77895、101 mg/L、122 mg/L、167 mg/L,组氨酸0.96504、0.81526、86.9 mg/L、177mg/L、192 mg/L,精氨酸0.78312、0.72322、399 mg/L、592 mg/L和445 mg/L。校正集相关系数、预测集相关系数、校正误差和预测误差分别为异麦芽糖0.91417、0.70894、210 mg/L和264 mg/L,乙酸0.93979、0.79075、157.5 mg/L和283.6 mg/L。
     使用PLSR载荷光谱提取了24种风味成分的吸收特征波长,但由于各成分所含基团的相似使各成分在近红外区域的吸收重叠在一起,各成分吸收特征波长的特异性还需要进一步的研究确定。各风味成分指标的近红外定量模型精度和稳定性仍需进一步提高,基酒酒龄和勾兑酒酒龄近红外鉴别模型仍需通过增加样本量、样本类型等措施来提高其判别准确率或考察其推广性。本文的研究展示了近红外光谱在快速定量检测绍兴黄酒风味成分以及基酒和勾兑酒酒龄快速鉴别中的潜力,为研发基于近红外光谱的黄酒风味成分快速定量检测和市售黄酒酒龄的快速鉴别仪器打下了良好的基础,并为绍兴黄酒计算机勾兑系统的研制提供了依据。
Chinese rice wine is a kind of traditional alcoholic beverage in China. Shaoxing rice wine is the best representation of Chinese rice wine, and it is popular among consumers due to its low consumption of grain, low percent alcohol and high nutritional value. Shaoxing rice wine is in the lead in production and consumption (especially export) of Chinese rice wine. With increasing consumer concern of nutrient components in Shaoxing rice wine, it becomes a demand of quality control departments of government, breweries, sealers and consumers to find a rapid technology or method to detect nutrient components in Shaoxing rice wine. At the same time, because the aging mechanisms is uncertain, the intensive research on discrimination of Shaoxing rice wine age can not be carried out. So making a study of nutrient components in Shaoxing rice wine based on chemical method and near infrared is needed urgently in order to develop Shaoxing rice wine scientific research, improve its quality and grade, accordingly to promote Shaoxing rice wine industry toward standardization, scientization and internationalization. This study is a further extension of the former research projects done by our group members (quantification of alcoholic degree, soluble solids content, pH and total acid; discrimination of Shaoxing rice base wine with age of 1, 2, 3, 4 and 5 years old). The aim of this study is to rapidly detect flavor components, base wine ages (1, 1-3, 5 and 8-10 years old) and blended wine ages (3, 5, 6 and 8 years old) of Shaoxing rice wine.
     The objects of this research are base wine and blended wine of Shaoxing rice wine. Detection of flavor components were carried out based on fourier transform near infrared spectroscopy (FT-NIR), chemometrics techniques combined with modern physical-chemical analysis techniques. Quantitative models for total sugar, nonsugar solid, glucose, isomaltose, isomaltotriose, maltose, panose, acetic acid, citric acid and fifteen amino acids, were established using NIR spectra and reference data determined by physical-chemical methods. In this dissertation, age classification and discrimination of base wine and blended wine were also studied using FT-NIR spectroscopy technique and pattern recognition methods. Qualitative models were established for classification and discrimination of base wine ages (1, 1-3, 5 and 8-10 years old) and blended wine ages (3, 5, 6 and 8 years old) respectively. The explanation for discriminant results of base wine ages using concentration of flavor components in Shaoxing rice wine samples were carried out too.
     The main contents and conclusions were:
     1. The sampling plan of continuously investigating flavor components in Shaoxing rice wine in ten years, and the combination of continuous data and non-continuous data to analyze changing trends of flavor components and NIR spectra of base wine samples, were put forward. The blending formulas of Shaoxing rice wine blended wine samples, which were used to establish qualitative models for discrimination of blended wine with different marked ages, were designed.
     2. The curve characteristics of original and pretreatment (smooth and derivative) spectra of base wine and blended wine samples were analyzed. Spectra of base wine and blended wine had a very similar shape, and mainly showed absorption bands at around 982, 1185, 1460, 1692, 1776, 1934, 2265 and 2302 nm. The absorption at 982, 1185, 1460, 1934 nm might be related with O-H group; 1692,2265 and 2302 nm with C-H group; 1776 nm with some sugars. The absorption at these bands directly related with flavor components such as sugars, organic acids and amino acids in Shaoxing rice wine.
     3. Changing trends of five sugars, three acid and sixteen amino acids in Shaoxing rice wine base wine with age of 1, 1-3, 5 and 8-10 years old, were analyzed. Concentrations of isomaltotriose, citric acid and methionine in 1 year old and aged (1-3, 5, 8-10 years old) base wine were absolutely different, with which 1 year old and aged Shaoxing rice wine can be discriminated.
     4. After spectra outliers being eliminated, sixty-three base wine samples with age of 1, 1-3, 5 and 8-10 years old were analyzed qualitatively:
     Comparison results of seven optical path-lengths (0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 5.0 mm) indicated that classification correctness of the model with optical path-length of 1.0 mm was better than models with other optical path-lengths.
     Comparison results of DA, DPLS, SIMCA, with six modeling bands (800-2500 nm, 800-1250 nm, 1250-1650 nm, 1650-2200 nm, 2200-2500 and 1250-2200 nm) and seven pretreatment methods (5, 15 and 25 points smooth, MSC and SNV), and LS-SVM input by different principal components indicated that classification correctness of the model established using LS-SVM with input of the first eight principal components were optimal. The optimal model had accurate rates of 97.87% for calibration set and 93.75% for prediction set; 100% for base wine samples with age of 1, 1-3 and 8-10 years old, and 75% for samples of 5 years old.
     5. After spectra outliers being eliminated, ninety-nine blended wine samples with age of 3, 5, 6 and 8 years old were analyzed qualitatively:
     Comparison results of DA, DPLS, SIMCA, with six modeling bands (800-2500 nm, 800-1250 nm, 1250-1650 nm, 1650-2200 nm, 2200-2500 and 1250-2200 nm) and seven pretreatment methods (5,15 and 25 points smooth, MSC and SNV), and LS-SVM input by different principal components indicated that classification correctness of the model established using LS-SVM with input of the first six principal components were optimal. The optimal model had a accurate rate of 100% for calibration set and prediction set; for blended wine samples with age of 3, 5, 6 and 8 years old.
     6. After spectra outliers being eliminated, total sugar, nonsugar solid, glucose, isomaltose, isomaltotriose, maltose, panose, acetic acid, citric acid and fifteen amino acids in Shaoxing rice wine samples were analyzed quantitatively.
     Comparison results of seven optical path-lengths (0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 5.0 mm) indicated that for total sugar, nonsugar solid, glucose, maltose, aspartic acid, threonine, serine, glycin, alanine, vlaine, isolecine, leucine, tyrosine, phenylalanine and acetic acid, the quantitative results with optical path-length of 0.5 mm were better than those results with other optical path-lengths; for panose was optical path-length of 2.0 mm; for lysine and arginine was 2.5 mm; for isomaltose, isomaltotriose, citric acid, glutamine and proline was 5.0 mm.
     After concentration outliers being eliminated by leverage and student residual testing, the number of samples used for quantitative analysis of total sugar, nonsugar solid, glucose, isomaltose, isomaltotriose, maltose, panose, acetic acid, citric acid were 83, 84, 123, 123, 119, 120, 122, 123, 124; of aspartic acid, serine, glutamine, proline and glycin were 90 respectively; of alanine were 91; of threonine, leucine and histidine were 89 respectively; of vlaine, isolecine, tyrosine, phenylalanine and arginine were 88; of lysine was 87.
     Comparison results of PLSR with six modeling bands (800-2500 nm, 800-1250 nm, 1250-1650 nm, 1650-2200 ran, 2200-2500 and 1250-2200 nm) and seven pretreatment methods (5, 15 and 25 points smooth, MSC and SNV), PCR with seven pretreatment methods, SMLR with different wavelength numbers and seven pretreatment methods, and LS-SVM input by different principal components indicated that:
     (1) The models established using PLSR with 1) 800-2500 nm combined with 25 points smooth for total sugar, nonsugar solid, maltose, aspartic acid, glycin, isolecine, phenylalanine and proline; combined with 15 points smooth for glucose, panose, serine, alanine, vlaine, leucine and lysine; combined with 5 points smooth for threonine; combined with MSC for tyrosine; combined with original spectra for isomaltotriose and histidine; 2) 800-1250 nm combined with MSC for citric acid and with SNV for glutamine, were optimal.
     (2) The models established using SMLR with five wavelengths (958, 1182, 947, 998 and 989 nm) combined with SNV for arginine, were optimal.
     (3) The models established using LS-SVM with input by the first ten principal components for isomaltose and acetic acid, respectively, were optimal.
     The parameters, the correlation coefficient of calibration set and cross-validation, the root mean square error of calibration, prediction and cross-validation, of the optimal models for twenty-six flavor components were as follows: for total sugar, 0.98677, 0.96119, 0.741 g/L, 1.1 g/L and 1.26 g/L; for nonsugar solid, 0.98264, 0.94269, 1.18 g/L, 1.24 g/L and 2.12 g/L; for glucose, 0.91173, 0.79683, 1330 mg/L, 1550 mg/L and 1950 mg/L; for isomaltotriose, 0.97566, 0.84996, 223 mg/L, 320 mg/L and 537 mg/L; for maltose, 0.81837, 0.699, 665 mg/L, 748 mg/L and 841 mg/L; for panose, 0.94010, 0.82750, 428 mg/L, 506 mg/L and 706 mg/L; for tartaric acid, 0.87063, 0.81603, 21.8 mg/L, 34.6 mg/L and 25.7 mg/L; for citric acid, 0.98147, 0.93231, 224 mg/L, 410 mg/L and 423 mg/L; for aspartic acid, 0.96745, 0.8554, 109 mg/L, 215 mg/L and 226 mg/L; for threonine, 0.96552, 0.66033, 69.6 mg/L, 153 mg/L and 202 mg/L; for serine, 0.90998, 0.78218, 201 mg/L, 290 mg/L and 304 mg/L; for glutamine, 0.94025, 0.8184, 281 mg/L, 377 mg/L and 479 mg/L; for proline, 0.96682, 0.70022, 244 mg/L, 604 mg/L and 693 mg/L; for glycin, 0.9416, 0.82303, 193 mg/L, 305 mg/L and 328 mg/L; for alanine, 0.98693, 0.83257, 121 mg/L, 450 mg/L and 417 mg/L; for vlaine, 0.9374, 0.83179, 84.7 mg/L, 182 mg/L and 136 mg/L; for isolecine, 0.87051, 0.71624, 66.8 mg/L, 75.9 mg/L and 96.6 mg/L; for leucine, 0.93946, 0.86623, 149 mg/L, 266 mg/L and 217 mg/L; for tyrosine, 0.97965, 0.78817, 48.8 mg/L, 157 mg/L and 150 mg/L; for phenylalanine, 0.92269, 0.77895, 77.8 mg/L, 157 mg/L and 133 mg/L; for lysine, 0.92269, 0.77895, 101 mg/L, 122 mg/L and 167 mg/L; for histidine, 0.96504, 0.81526, 86.9 mg/L, 177 mg/L and 192 mg/L; for arginine, 0.78312, 0.72322, 399 mg/L, 592 mg/L and 445 mg/L; the correlation coefficient of calibration and prediction set, the root mean square error of calibration and prediction, for isomaltose, 0.91417, 0.70894, 210 mg/L and 264 mg/L; for acetic acid, 0.93979, 0.79075, 157.5 mg/L and 283.6 mg/L.
     PLSR loading spectra on the full spectra were investigated to extract absorption features of twenty-four flavor components in Shaoxing rice wine samples. The absorption of these components overlapped due to the structure similarity, so the speciality of the absorption features should be confirmed in future studies. The precision and robustness of quantitative models for flavor components need improved, and the accurate rate and adaptability of qualitative models respectively for base wine and blended wine with different ages should be promoted through adding samples and modeling methods. The results obtained in this study indicated the potentiality of NIR spectroscopy technique to rapidly detect flavor components in Shaoxing rice wine, and discriminate base wine and blended wine with different ages. The study laid foundation for developing an instrument for rapid detecting flavor components and ages of commercial Shaoxing rice wine, and provided bases for establishing computer blending system of Shaoxing rice wine.
引文
[1]李家寿.黄酒色、香、味成分来源浅析.酿酒科技.2001,(3):48-50.
    [2]郭翔.黄酒风味物质分析与控制的研究.江南大学硕士论文.2004,7.
    [3]栾金水.绍兴黄酒的传统酿制工艺.中国酿造.2005,(1):35-38.
    [4]国家标准《绍兴酒》GB17946-2000.
    [5]杨国军.黄酒的陈化.酿酒科技.2006,(6):75-76.
    [6]汪建国.黄酒中色、香、味、体的构成和来源浅析.中国酿造.2004,(4):6-10.
    [7]陈成,殷子建,徐速.浅析黄酒的历史及营养价值.酿酒.2002,29(1):4-5.
    [8]谢广发,戴军,赵光鳌,陈尚卫,帅桂兰.黄酒中的功能性低聚糖及其功能.中国酿造.2005,(2):39-40.
    [9]叶杰,倪莉.黄酒营养成分及功能.福建轻纺.2004,(9):1-3.
    [10]傅金泉.黄酒生产技术.北京:化学工业出版社,2005,8.
    [11]葡萄糖.百度百科.http://baike.baidu.com/view/16023.htm.
    [12]王良东.低聚异麦芽糖性质、功能、生产和应用.粮食与油脂.2008,(4):43-47.
    [13]尤新.功能性低聚糖发展动向及前景.中国食品添加剂.2000,(3):45-49.
    [14]汪建明,赵征,王勇志.低聚糖的分离与鉴定.食品研究与开发.2000,21(3):3-5.
    [15]龚芳红,张德纯.功能性低聚糖及其检测方法研究的现状.中国微生态学杂志.2009,21(2):177-180.
    [16]范怀德.乔自林.黄酒营养价值的研究.西北民族学院学报(自然科学版).2000,21(2):47-49.
    [17]徐岳正,周建弟,丁关海.浅谈绍兴酒中的有机酸.酿酒科技.2004,(6):77-78.
    [18]汪建国.浅谈黄酒中有机酸的特征和功能.中国酿造.2008,(14):81-83.
    [19]汪建国.黄酒的营养价值、保健功能及产品创新.江苏调味副食品.2004,21(3):10-13.
    [20]马忠.中国绍兴黄酒.北京:中国财政经济出版社.1999.
    [21]汪建国,奕水明.我国名优黄酒的产生、特征、改革和发展.中国酿造.2008,(10):16-20.
    [22]周健弟.浅谈黄滔中的氨基酸含量及其含量的控制.酿酒科技.2002,(4):73-74.
    [23]魏桃英.浅析绍兴黄酒中的氨基酸.酿酒.2007,34(2):76-77.
    [24]杨国军.黄酒中的苦味物质及其来源探讨.食品与发酵工业.2004,30(2):87-90.
    [25]胡文浪.黄酒工艺学.北京:轻工业出版社,1997.
    [26]王小生.必需氨基酸对人体健康的影响.中国食物与营养.2005,(7):48-49.
    [27]杨国军.中国黄酒业调研报告.中国酿造.2005,(4):1-5.
    [28]酿酒工业协会.http://www.okokok.com.cn/Htmls/GenCharts/071107/341.html.
    [29]谢广发.孟中法.董海.黄酒的技术现状与对策.酿酒.2002,29(2):31-33.
    [30]中国糖酒招商网.http://www.cntjzs.cn/text_show.asp?id=14148.
    [31]汪建国,徐亮.我国黄酒的特征及展望.江苏调味副食品.2005,22(6):5-9.
    [32]傅祖康.以战略创新推动绍兴黄酒业健康持续发展.中国酿造.2008,(3):97-98.
    [33]谢广发.浅谈黄酒业的现状与发展思路.中国酿造.2003,(4):1-4.
    [34]王树英,徐岩,徐文琦.中国黄酒与日本清酒氨基酸成份和成因研究与分析.酿酒.1997,(6):10-11.
    [35]李小平,张俊雄.两种甜型黄酒的营养成分分析.预防医学文献信息.1999,5(1):51.
    [36]鲍忠定,许荣年.黄酒香气成分的分析.酿酒科技.1999,(5):66-68.
    [37]鲍忠定,孙培龙,许荣年.动态顶空进样GC/MS法测定不同酒龄绍兴酒的挥发性醛类化合物.酿酒科技.2007,(1):97-98.
    [38]鲍忠定,孙培龙,许荣年.吹扫捕集与气相色谱-质谱联用测定不同酒龄绍兴酒中挥发性醇酯类化合物.酿酒科技.2008,(9):104-107.
    [39]宣栋梁,翟武.气质联用分析黄酒中有机酸.现代预防医学.2001,28(2):11.
    [40]王卫国,赵永亮,丁明丽,高琦.黄滔发酵过程中微量元素的转化研究.酿酒科技.2001,(2):61-62.
    [41]栾金水.黄酒中风味物质的研究.中国酿造.2002,(6):21-24.
    [42]陈青俊,丁献荣,汪庆旗,顾秀英.高效液相色谱-二极管阵列检测法测定黄酒中β-苯乙醇的含量.食品与发酵工业.2004,30(3):94-96.
    [43]郭翔,胡普信,徐岩,赵光鳌.黄酒挥发性风味物质的研究.酿酒科技.2004,(5):79-81.
    [44]谢广发,戴军,赵光鳌,帅桂兰,李莉.黄酒中的γ-氨基丁酸及其功能.中国酿造.2005,(3):49-50.
    [45]戴军,谢广发,陈尚卫,帅桂兰,顾小红,赵光螯.绍兴黄酒中一种ACE活性抑制肽的分离和鉴定.食品与发酵工业.2005,31(5):98-101.
    [46]陆永梅,董明盛,吕欣,李超.高效液相色谱法测定黄酒中生物胺的含量.食品科学.2006,27(1):196-199.
    [47]Lu Y.M.,Lu X.,Chen X.H.,Jiang M.,Li C.,Dong M.S.A survey of biogenic amines in Chinese rice wines.Food Chemistry.2007,(100):1424-1428.
    [48]殷德荣.毛细管气相色谱法测定绍兴黄酒中挥发性物质.中国卫生检验杂志.2006,16(8):930-931.
    [49]Fei Q.,Mao L.C.,Zhu C.G.,Xie G.F.Antioxidant properties of Chinese yellow wine,its concentrate and volatiles.Lebensm Wiss Technol.2006,(39),111-117.
    [50]Fei Q.,Mao L.C.,Pan X.Antioxidant activities of Wve Chinese rice wines and the involvement of phenolic compounds.Food Research International.2006,(39),581-587.
    [51]罗涛,范文来,郭翔.徐岩.赵光鳌.汪建华.董鲁平,袁军川.顶空固相微萃取(HS-SPME)和气相色 谱-质谱(GC-MS)联用分析黄酒中挥发性和半挥发性微量成分.酿酒科技.2007,(6):121-124.
    [52]胡健,池国红,何喜红.黄酒发酵过程中主要香气成分的变化.酿酒科技.2007,(12):60-64.
    [53]储葛庆,李博斌,刘兴泉,郑云峰.用离子色谱法分析研究黄滔中的有机酸.酿酒科技.2008,(4):108-111.
    [54]郑春亮,郑睿行,黄韬睿,刘颖杉.黄酒香气成分的研究.生命科学仪器.2008,6(5):30-34.
    [55]王立媛,曹建明.黄酒中挥发性风味物质检测方法的进展.中国卫生检验杂志.2006,16(3):380-381.
    [56]罗涛,范文来,徐岩.中国黄酒中挥发性和不挥发性物质的研究现状与展望.酿酒.2007,34(1):44-48.
    [57]谢广发.绍兴黄酒功能性组分的检测与研究.江南大学硕士论文.2005,5.
    [58]严衍禄.近红外光谱分析基础与应用.北京:中国轻工业出版社.2005,1.
    [59]陆婉珍.现代近红外光谱分析技术(第二版).北京:中国石化出版社.2007,1.
    [60]陈卫军,魏益民,欧阳韶晖,张国权.近红外技术及其在食品工业中的应用.食品科技.2001,(4):35-37.
    [61]史苏佳.近红外的光学特性及在食品中的检测原理和应用.山西食品工业.2005,(4):39-42.
    [62]王莉,季克良,徐岩.近红外光谱技术及其在白酒质量控制中的应用展望.酿酒.2005,32(5):17-19.
    [63]褚小立,王艳斌,陆婉珍.近红外光谱定量校正模型的建立及应用.理化检验(化学分册).2008,44(8):796-800.
    [64]吴忠义,张慧芳.红外光谱技术在中药质量控制中的应用.中国药业.2006,15(11):60-61.
    [65]张萍,闫继红,朱志华,刘庆生,范志影,李为喜.近红外光谱技术在食品品质鉴别中的应用研究.现代科学仪器.2006,(1):60-62.
    [66]费坚,岳田利,张飞,袁亚宏,高振鹏.果品-果汁加工中的近红外光谱技术.西北农业学报.2005,14(1):88-93.
    [67]周德成,刘木清,周小丽,韩磊.近红外光谱分析在食品药品检测中的应用.红外.2006,27(3):28-31.
    [68]李炎,张月学,徐香玲,蒿若超.近红外反射光谱(NIRS)分析技术及其在农业上的应用.黑龙江农业科学.2008,(1):105-108.
    [69]李旭东,张根明.近红外光谱分析技术的发展与应用研究.重庆科技学院学报.2008,10(2):33-35.
    [70]郭利健,王惠娟,杨宁.近红外光谱分析技术及其应用.河北化工.2008,31(8):31-32.
    [71]刘青格,邵定蓉,李署坚.相关检测技术在近红外光谱分析中的应用.光谱学与光谱分析.2005,(12):1978-1981.
    [72]赵环环,严衍禄.噪声对近红外光谱分析的影响及相应的数学处理方法.光谱学与光谱分析.2006,26(5):842-845.
    [73]王硕,徐可欣.牛奶成分近红外光谱数据的预处理研究.红外.2006,27(11):27-30.
    [74]高荣强.范世福.严衍禄.赵丽丽.近红外光谱的数据预处理研究.光谱学与光谱分析.2004,24(12): 1563-1565.
    [75]Gorry P.A.General Least-Squares Smoothing and Differentiation by the Convolution(Savitzky-Golay) Method.Analytical Chemistry.1990,(62):570-573.
    [76]王动民.近红外光谱关键技术研究及相关应用软件开发.暨南大学硕士学位论文.2007,5.
    [77]Guo Q.,Wu W.,Massart D.L.The robust normal variate transform for pattern recognition with near-infrared data.Analytica Chimica Acta.1999,382:87.
    [78]赵强,张工力,陈星旦.多元散射校正对近红外光谱分析定标模型的影响.光学精密工程.2005,13(1):53-58.
    [79]王娜.近红外光谱分析技术在几个药品及食品质量分析中的应用.西北大学硕士学位论文.2007,6.
    [80]Groot P.J.D.,Postma G.J.,Melssen W.J.Influence of wavelength selection and data preprocessing on NIR based classification of demolition waste.Applied Spectroscopy.2002,55(2):173.
    [81]Carlos E.B.,Olivieri A.C.Net analyte preprocessing:a new and versatile multivariate calibration technique.Analysis of mixture of rubber antioxidants by NIR spectroscopy.Journal of Near Infrared Spectroscopy.2001,(9):245.
    [82]诸小立,许育鹏,陆婉珍.用于近红外光谱分析的化学计量学方法研究与应用进展.分析化学.2008,36(5):702-709.
    [83]韩磊,李兴兵,谭跃进.近红外光谱数据分析方法研究.计算机技术与发展.2006,16(5):2-3.
    [84]韩立苹.绿茶主要品质指标近红外测定方法的研究.浙江大学硕士学位论文.2007,5.
    [85]祝诗平.近红外光谱品质检测方法研究.中国农业大学博士学位论文,2003.
    [86]魏广芬,唐祯安,余隽.基于主成分分析和BP神经网络的气体识别方法研究.传感技术学报.2001,(4):292-298.
    [87]Misra J.B.,Mthur R.S.,Bhat D.M.Near-lnfrared Transmittance Spectroscopy:A Potential Tool for Non-Destructive Determination of Oil Content in Groundnuts.Journal of the Science of Food and Agriculture.2000,80:237-240.
    [88]曲楠.近红外光谱技术在药物无损非破坏定量分析中的应用研究.吉林大学博士学位论文.2008,6.
    [89]张银,周孟然.近红外光谱分析技术的数据处理方法.红外技术.2007,29(6):345-348.
    [90]蒋健,张金华,冯莲英.近红外光谱法在调合汽油控制分析中的应用.http://www.cheml.com/fxfa/syhg/44.htm.
    [91]王硕.近红外光谱分析中牛奶模型优化方法的初步研究,天津大学硕士学位论文.2005,8.
    [92]聚类分析.http://gs.dhu.edu.cn/statistics_web/course/jlfx_word.htm.
    [93]马氏距离.百度百科.http://baike.baidu.com/view/1236162.htm.
    [94]计算机在判别分析中的应用.http://www.teacher.com.cn/netcourse/tis002a/DYTJZDYY/PB/Pb.htm.
    [95]朱尔一,杨芃原.化学计量学技术及应用.北京:科学出版社.2001,11.
    [96]张宁,张德权.李淑荣.周洪杰,李庆鹏.方梦琳.近红外光谱定性分析技术在食品安全中的应用研究进展.食品科技.2008,(8):218-221.
    [97]李国正,王猛.曾华军(译).支持向量机导论.北京:电子工业出版社.2004,3.
    [98]邹婷婷.支持向量机回归-近红外光谱法用于药物无损非破坏定量分析的研究.吉林大学博士学位论文.2008,6.
    [99]张录达,金泽宸,沈晓南,赵龙莲,李军会,严衍禄.SVM回归法在近红外光谱定量分析中的应用研究.光谱学与光谱分析.2005,25(9):1400-1403.
    [100]陶卿,曹进德,孙德敏.基于支持向量机分类的回归方法.软件学报.2002,13(5):1024-1028.
    [101]张浩然,汪晓东,张长江,徐秀玲.一种新型回归支持向量机的学习算法.测试技术学报.2006,20(2):168-173.
    [102]刘解放,侯振雨,姚树文.支持向量机及在近红外光谱分析中的应用.重庆工学院学报(自然科学).2008,22(3):47-50.
    [103]孙德山.支持向量机分类与回归方法研究.中南大学博士学位论文.2004,4.
    [104]虞科,程翼字.一种基于最小二乘支持向量机算法的近红外光谱判别分析方法.分析化学.2006,34(4):561-564.
    [105]Cavinato A.G.,Mayes,D.M.,Ge Z.,Callis J.B.Noninvasive method for monitoring ethanol in fermentation processes using fiber-optic near-infrared spectroscopy.Analytical Chemistry.1990,62(18),1977-1982.
    [106]Van Hare D.R.,O'Rourke P.E.,Prather W.S.,Bowers,M.B.,Hovanec M.J.On-Line Fiber Optic Spectrometry.Du Pont Publication DP-MS-88-186,Du Pont:Wilmington,DE,1989.
    [107]Takuo Y.,Tadanori A.,Yasuhisa N.,Masehiro T.Prediction of the Concentrations of Ethanol and Acetic Acid in the Culture Broth of a Rice Vinegar Fermentation Using Near-Infrared Spectroscopy.Journal of Fermentation and Bioengineering.1997.5(84):461-465.
    [108]Dambergs R.G,Kambouris A.,Francis I.L.Rapid Analysis of Methanol in Grape-Derived Distillation Products Using Near-Infrared Transmission Spectroscopy.Journal of Agricultural and Food Chemistry.2002,(50):3079-3084.
    [109]Mends L.S.,Oliveria F.C.C.,Suarez P.A.Z.Determination of ethanol in fuel ethanol and beverages by Fourier transform(FT)-near infrared and FT-Raman spectrometries.Analytica Chimica Acta.2003,(493):219-231.
    [110]Sauvage L.,Frank D.,Stearne J.Trace metal studies of selected white wines:an alternative approach.Analytica Chimica Acta.2002,(458):223-230.
    [111]Cozzolino D.. Kwiatkowski M.J., Parker M. Prediction of phenolic compounds in red wine fermentations by visible and near infrared spectroscopy. Analytica Chimica Acta. 2004,(513):73-80.
    [112]Urbano-Cuadrado M., Luque de Castro M.D., Perez-Juan P.M. Near infrared reflectance spectroscopy and multivariate analysis in enology Determination or screening of fifteen parameters in different types of wines. Analytica Chimica Acta. 2004, (527): 81-88.
    [113]Urbano-Cuadrado M., Luque de Castro M.D., Perez-Juan P.M. Comparison and joint use of near infrared spectroscopy and Fourier transform mid infrared spectroscopy for the determination of wine parameters. Talanta.2005, (66): 218-224.
    [114] Saiz-Abajo M.J., Gonzalez-Saiz J.M., Pizarro C. Prediction of organic acids and other quality parameters of wine vinegar by near-infrared spectroscopy. A feasibility study. Food Chemistry. 2006, (99): 615-621.
    [115]Fernando A. I., Salvador G., Miguel de la G. Combination of mid- and near-infrared spectroscopy for the determination of the quality properties of beers. Analytica Chimica Acta. 2006, 571(2): 167-174.
    [116]Rafael L., Fernando A. I., Salvador G. Determination of quality parameters of beers by the use of attenuated total reflectance-Fourier transform infrared spectroscopy. Talanta. 2006, (69): 469-480.
    [117]Zeaiter M., Roger J.M., Bellon-Maurel V. dynamic orthogonal projection. A new method to maintain the on-line robustness of multivariate calibrations. Application to NIR-based monitoring of wine fermentations. Chemometrics and intelligent laboratory systems. 2006. (80): 227-235.
    [118]Mcleod G., Clelland K., Tapp H., Katherine Kemsley E., Wilson R.H., Poulter G., Coombs D., Hewitt C.J. A comparison of variate pre-selection methods for use in partial least squares regression: a case study on NIR spectroscopy applied to monitoring beer fermentation. Journal of Food Engineering. 2009, (90): 300-307.
    [119]Fernandez-Novales J., Lopez M.I., Sanchez M.T., Garcia J.A., Morales J. A feasibility study on the use of a miniature fiber optic NIR spectrometer for the prediction of volumic mass and reducing sugars in white wine fermentations. Journal of Food Engineering. 2008, (89): 325-329.
    [120]Reid L.M., O'Donnell C.P., Downey G. Recent technological advances for the determination of food authenticity. Trends in Food Science & Technology. 2006, (17), 344-353.
    [121]Cozzolino D., Smyth H. E., Gishen M. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. Journal of Agricultural and Food Chemistry. 2003, (51), 7703-7708.
    
    [122]Roussel S.. Bellon-Maurel V.. Roger J. M., Grenier, P. Fusion of aroma. FT-IR and UV sensor data based on the Bayesian inference.Application to the discrimination of white grape varieties.Chemometrics and Intelligent Laboratory Systems.2003,(65),209-219.
    [123]Saiz-Abajo M.J.,Gonzalez-Saiz J.M.,Pizarro C.Classification of Wine and Alcohol Vinegar Samples Based on Near-Infrared Spectroscopy.Feasibility Study on the Detection of Adulterated Vinegar Samples.Journal of Agricultural and Food Chemistry.2004,(52):7711-7719.
    [124]Pontes M.J.C.,Santos S.R.B.,Araujo M.C.U.Classification of distilled alcoholic beverages and verification of adulteration by near infrared spectrometry.Food Research International.2006,(39):182-189.
    [125]Liu L.,Cozzolino D.,Cynkar W.U.,Gishen M.,Colby C.B.Geographic Classification of Spanish and Australian Tempranillo Red Wines by Visible and Near-Infrared Spectroscopy Combined with Multivariate Analysis.Journal of Agricultural and Food Chemistry.2006,(54):6754-6759.
    [126]Liu L.D.,Cozzolino W.U.,Cynkar R.G.,Dambergs L.,Janik B.K.,O'Neill C.B.,Colby,M.Gishen.Preliminary study on the application of visible-near infrared spectroscopy and chemometrics to classify Riesling wines from different countries.Food Chemistry.2007,106(2):781-786.
    [127]Tomoaki S.,Masanori K.,Toshio A.Discrimination of Japanese sake using a portable near-infrared spectrometer and chemometrics.Bunseki Kagaku.2003,9(52):653-660.
    [128]罗红群,刘绍璞.多波长叠加近红外吸收光谱法直接测定酒精饮料中的乙醇.分析化学.1998,26(1):97-99.
    [129]逯家辉,滕利荣.蒋富明,任玉林,邱芳萍,王友兵.短波近红外光谱法分析酒中乙醇含量.吉林大学学报(理学版).2002,41(2):245-247.
    [130]邱芳萍,逯家辉,滕利荣,蒋富明,任玉林.近红外光谱法结合多变量校正技术快速分析酒中乙醇含量.东北师大学报(自然科学版).2002,34(4):50-54.
    [131]李继光,张根生,毛迪锐.近红外分光光度法在白酒检测中的应用.食品与机械.2004,20(1):22-25.
    [132]王友兵.短波近红外光谱法分析酒中乙醇含量初探.白城师范学院学报.2004,18(4):44-46.
    [133]张玲,于健.基于偏最小二乘(PLS)法白酒中乙醇含量的近红外检测.食品工业.2006,(4):27-29.
    [134]彭帮柱,龙明华,岳田利,袁亚宏.傅立叶变换近红外光谱法检测白酒总酸和总酯.农业工程学报.2006,22(12):216-219.
    [135]彭帮柱,龙明华,岳田利,袁亚宏,赵志华.用偏最小二乘法及傅里叶变换近红外光谱快速检测白酒酒精度.农业工程学报.2007,23(4):233-237.
    [136]李代禧,吴智勇,徐端钧,徐元植.啤酒主要成分的近红外光谱法测定.分析化学2004,32(8):1070-1073.
    [137]陈斌,王豪,林松,赵杰文.基于相关系数法与遗传算法的啤酒酒精度近红外光谱分析.农业工程学报.2005, 21(7):99-102.
    [138]陆道礼.林松,陈斌.近红外光谱法快速测定啤酒中乙醇的含量.酿酒科技.2005,(4):87-89.
    [139]冯尚坤,徐海菊.基于BP神经网络的啤酒酒精度近红外光谱快速检测.红外技术.2008,30(1):58-60.
    [140]冯尚坤,徐海菊.正交信号校正方法在啤酒酒精度近红外光谱分析中的应用.酿酒科技.2008,(2):119-120.
    [141]田磊.耿朝曦.韩东海.近红外光谱分析技术在葡萄酒行业中的应用.中外食品.2006,(5):49-52.
    [142]王豪,邬蓓蕾,岑倩.傅立叶变换近红外光谱法快速测定葡萄酒中的酒精度.中国酿造.2008,(7):72-74.
    [143]王德福,李保国,张颖超,蔡绍松,邹振民.近红外光谱对年份葡萄酒的验证检测试验.酿酒科技.2008,(9):111-112.
    [144]陈郁,周小锋,于文博,唐平,周学秋.近红外光谱法测定黄酒中氨基酸态氮和酒精度的研究.计算机与应用化学.2008,25(3):361-364.
    [145]刘飞,王莉,何勇,蒋益虹.应用可见近红外光谱进行黄酒品种的判别.光谱学与光谱分析.2008,28(3):586-589.
    [146]Liu F.,He Y.,Wang L.,Pan H.M.Feasibility of the use of visible and near infrared spectroscopy to assess soluble solids content and pH of rice wines.Journal of Food Engineering.2007,(83):430-435.
    [147]邓德文,郑校先,朱宏霞.近红外光谱仪在黄酒品质分析中的应用.食品科学.2008,(5):117.
    [148]朱宏霞,邓德文,郑校先.傅立叶变换近红外透射法分析黄酒酒精度.酿酒科技.2008,(9):113-114.
    [149]Yu H.Y.,Ying Y.B:,Fu X.P.,Lu H.S.Quality determination of Chinese rice wine based on Fourier transform near infrared spectroscopy.Journal of Near Infrared Spectroscopy.2006,14(1):37-44.
    [150]Yu H.Y.,Ying Y.B:,Fu X.P.,Lu H.S.Classification of Chinese rice wine of different marking age based on Fourier transform near infrared spectroscopy.Journal of Food Quality.2006,29:339-352.
    [151]Yu H.Y.,Ying Y.B:,Xie L.J.,Zhou Y.,Fu X.P.Prediction of trace metals in Chinese rice wine by near infrared spectroscopy.Transactions of the ASABE.2006,49(5):1463-1467.
    [152]Yu H.Y.,Zhou Y.,Fu X.P.,Xie L.J.,Ying Y.B.Discrimination between Chinese rice wines of different geographical origins by NIRS and AAS.European Food Research and Technology.2007,225(3-4),313-320.
    [153]Yu H.Y.,Ying Y.B.,Fu X.P.,Lu H.S.PLS-NIR determination of five parameters in different types of Chinese rice wine.Proceeding of SPIE.2005,Vol.5996:59961D-1-11.
    [154]于海燕,应义斌,傅霞萍,陆辉山.徐惠荣.近红外透射光谱应用于黄酒酒龄的定性分析.光谱与光谱学分析.2007,27(5):920-923.
    [155]于海燕,应义斌,谢丽娟.傅霞萍.光程对黄酒金属元素近红外透射光谱分析精度的影响.光谱与光谱学分 析.2007,27(6):1118-1120.
    [156]于海燕.黄酒品质和酒龄的近红外光谱分析方法研究.浙江大学博士学位论文.2007,1.
    [157]Yu H.Y.,Niu X.Y..Li B.B,Ying Y.B.Effect of Optical Path Length on Prediction Precision of Calibration Models Developed for Enological Parameters of Rice Wine.2008 ASABE Annual International Meeting.Paper number 084877,2008 Providence,Rhode Island,June 29-July 2,2008.
    [158]Yu H.Y.,Niu X.Y.,Ying Y.B,Pan X.X.Non-Invasive Determination of Enological Parameters of Rice Wine by Vis-NIR Spectroscopy and Least-Squares Support Vector Machines.2008 ASABE Annual International Meeting.Paper number 084875,2008 Providence,Rhode Island,June 29-July 2,2008.
    [159]Yu H.Y.,Ying Y.B.,Niu X.Y,Li B.B,Pan X.X.Prediction of Enotogical Parameters in Chinese Rice Wine Using Chemometrics and FT-NIRS.Biological Engineering.2008,1(2):203-218.
    [160]Yu H.Y.,Niu X.Y.,Lin H.J.,Ying Y.B.,Li B.B.,Pan X.X.A Feasibility Study on On-Line Determination of Rice Wine Composition by Vis-NIR Spectroscopy and Least-Squares Support Vector Machines.Food Chemistry.2009,(113):291-296.
    [161]塔牌绍兴酒.http://www.pagodawine.com/web/gsii.asp.
    [162]古越龙山.http://www.shaoxingwine.com.cn/web/about.asp.
    [163]会稽山绍兴酒股份有限公司.http://www.donefengwine.com/info/?fcode=003002.
    [164]陈斌.液态食品品质的近红外光谱分析技术.江苏理工大学硕士学位论文.2001.
    [165]Rambla F.J.,Garrigues S.,de la Guardia M.PLS-NIR determination of total sugar,glucose,fructose and sucrose in aqueous solutions of fruit juices.Analytica Chimica Acta.1997,344,41-53.
    [166]Jensen P.S.,Bar J.Near-infrared transmission spectroscopy of aqueous solutions:Influence of optical pathlength on signal-to-noise ratio.Applied Spectroscopy.2002,56(12):1600-1606.
    [167]汪嚥,卢延辉,王蕊,徐可欣.光程长对光谱测量误差的影响.天津大学学报.2004,37(10):906-909.
    [168]何金成,杨祥龙,王立人.近红外光谱透射法测量废水化学需氧量(COD)的光程选择.红外与毫米波学报.2007,26(4):317-320.
    [169]祝诗平,王一鸣,张小超,吴静珠.近红外光谱建模异常样品剔除准则与方法.农业机械学报.2004,35(4):115-119.
    [170]Buning-Pfaue H.Analysis of water in food by near infrared spectroscopy.Food Chemistry.2003,82,107-115.
    [171]朱向荣,李娜,史新元,乔延江,张卓勇.最小二乘支持向量机算法与紫外光谱法用于鉴别清开灵注射液四混中间体.分析化学.2008,36(6):770-774.
    [172]刘俊.赵光鳌,帅桂兰,胡志明,孟中法,周建明.黄酒中非糖固形物的研究.食品与发酵工业.2006,32(4):81-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700