用户名: 密码: 验证码:
基于贵金属纳米粒子标记技术的均相免疫分析新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免疫分析利用抗体-抗原间的特异性结合反应对蛋白质、药物、激素、毒素、微生物等物质进行高选择性、高亲和性定性定量检测,已被广泛应用于临床医学、化学、药学等领域。传统的免疫分析方法如酶联吸附免疫方法(ELISA)大多采用非均相模式,操作繁琐,分析时间长,需要抗体的包埋,多次洗涤和显色等步骤。难以满足某些快速检测的要求。金纳米粒子(GNPs)易于合成与修饰,具有生物相容性好、光散射特性高等优点,是一种优异的光学标记探针。共振光散射相关光谱(RLSCS)是一种高灵敏度的单颗粒探测方法,该方法基于贵重金属纳米粒子在高聚焦的微区内由于布朗运动会产生散射光光强波动,通过对波动进行自相关分析可获取微区内粒子浓度、扩散系数等信息。
     本文将单颗粒检测方法与贵金属纳米粒子(如金和银纳米粒子)标记技术结合,发展了一些灵敏的均相免疫分析新方法。本论文研究工作主要包括:
     1)本文将RLSCS检测方法和金纳米粒子标记技术结合,构建了肝癌标志物甲胎蛋白(AFP)的均相夹心免疫分析新方法。该方法将AFP的两种抗体通过共价键的形式连接到GNPs上,形成金标抗体探针。当两种抗体探针与含有抗原的样品溶液混合,夹心免疫反应使GNPs聚集形成二聚或者多聚体,导致溶液中GNPs的特征扩散时间的变化,能够被RLSCS灵敏地检测到。研究结果表明GNPs的特征扩散时间与抗原浓度的对数值呈线性相关。系统地研究各种因素对检测的影响。在优化的条件下,AFP线性范围为1pmol/L-1nmol/L,检测下限为1pmol/L。将该方法成功地用于人血清中AFP含量的测定,其结果与ELISA法一致。与传统方法相比,该方法操作简单、分析快速、灵敏度高、选择性好,耗样量小。
     2)竞争免疫模式可同时适用于大分子和小分子的分析。银纳米粒子(SNPs)作为探针载体具有比GNPs更高的光散射强度。将高灵敏的RLSCS方法与银纳米粒子(SNPs)标记技术相结合,建立了均相竞争免疫分析新方法,用于小分子-雌二醇(E2)和大分子-甲胎蛋白(AFP)分析。此方法将E2抗体和AFP的抗体、抗原通过共价的形式包覆在SNPs表面,E2的半抗原(雌二醇与牛血清白蛋白连接物,BSA-E2)以静电吸附作用连接在SNPs上。当含有E2或AFP的样品溶液与过量的包覆了抗体的SNPs溶液混合,通过免疫反应SNPs@Ab上的一部分位点将被占据,再加入AFP抗原和E2半抗原连接的SNPs,使其占据剩下的位点,同时形成二聚或多聚的免疫产物。溶液中SNPs的特征扩散时间将发生变化,而这种变化能够灵敏的被RLSCS检测到。研究结果表明SNPs的特征扩散时间与E2和AFP加入浓度的对数值呈线性相关。系统地研究了各种因素对检测的影响。在优化的条件下,E2的检测线性范围为10pmol/L-1nmol/L,检测下限为10pmol/L;AFP的检测线性范围为100pmol/L-10nmol/L,检测下限为100pmol/L。将该方法用于人尿液中E2含量和人血清中AFP含量的测定,其结果与传统的ELISA方法所得的结果基本吻合。本法具有灵敏度高、操作简单、分析时间短、普适性强等优点,在临床诊断、食品安全检测和环境分析等方面具有广阔应用前景。
     3) GNPs溶液受到激光照射可产生强烈的共振散射光子爆发,光子爆发个数与溶液中GNPs粒子个数呈良好的线性关系。基于检测基线噪声满足高斯分布、纳米粒子光子爆发信号满足泊松分布的特征,发展了光子爆发纳米粒子计数方法。对光子爆发的强度与相应强度下光子爆发个数作图,得到光子爆发强度与个数的关系,通过曲线拟合确定光子爆发的噪声分布区间及其数学期望μ和方差σ,设定阈值=μ+8×σ。通过软件得到光子爆发峰的个数。此方法重现性好、灵敏度高。
     4)基于光子爆发计数技术,发展了均相免疫分析新方法。分别建立了前列腺特异抗原(PSA)和甲胎蛋白(AFP)的夹心和竞争免疫分析方法。其方法的原理类似于散射相关光谱方法,采用金纳米粒子标记抗体或抗原。在夹心免疫分析中,免疫反应后GNPs会形成一些二聚或者低聚体,导致了溶液中粒子数目减少,进而引起光子爆发数目减少,这一变化可以通过光子爆发计数检测技术灵敏的表征。我们对构建的四种分析体系进行了系统的优化。其中所得PSA夹心免疫分析的最优条件为以680pmol/L的20nm GNPs为探针进行实验,线性范围为1pmol/L-10nmol/L,检测下限为1pmol/L;PSA竞争免疫分析的最优条件为以1.36nmol/L的20nm GNPs为探针进行实验,线性范围为10pmol/L-10nmol/L,检测下限为10pmol/L;AFP夹心免疫分析的最优条件为以340pmol/L的40nmGNPs为探针进行实验,线性范围为1pmol/L-10nmol/L,检测下限为1pmol/L;AFP竞争免疫分析的最优条件为以170pmol/L的20nm GNPs为探针进行实验,线性范围为1pmol/L-1nmol/L,检测下限为1pmol/L。最后以优化后的系统对实际样品(血清)中PSA和AFP含量进行了定量检测。实验结果与传统的ELISA方法结果基本吻合。此方法的灵敏度高、选择性好、样品处理简单,是一种具有发展潜力的分析检测新方法。该方法与RLSCS方法相比,重现性得到了一定的改善。
Currently, immunoassay is one of the most important analytical methods forproteins, drugs, hormones, toxins, microbes and other substances based on theantibody-antigen specific binding reaction. Due to its high selectivity and affinityimmunoassay has been widely used in clinical medicine, chemistry, pharmaceuticaland other fields. The heterogeneous assay mode was widely applied in traditionalimmunoassays such as enzyme linked immunosorbent assay (ELISA). However, theheterogeneous immunoassays involve antibody immobilization, immune reaction andwashing cycles, and thus this assay is labor-intensive and time-consuming. Generally,homogeneous immunoassay is an attractive detection format because it is amenable toautomation, reduced the risk of contamination and shorten analysis time. The key inhomogeneous immunoassay is to develop a new detection method for quantitativelyand sensitively distinguishing properties of antibodies (or antigen) andantigen-antibody complexes in the reaction solution. In this thesis, combined singleparticle detection methods with noble metal nanoparticles (such as gold or silvernanoparticles) labelling techniques, we devepled homogeneous immunoassays withhigh sensitivity, and main work is included the following parts.
     As one of the optical probes, gold nanoparticles (GNPs) have many advantages,such as facile synthesis and modification, strong light scattering properties, goodbiocompatibilty and so on. We established a setup of resonance light scatteringcorrelation spectroscopy (RLSCS). The principle of RLSCS is similar to fluorescencecorrelation spectroscopy (FCS). When GNPs pass through the detection volume ofRLSCS system due to Brownian motion, the fluctuation of the scattering lightintensity can be tracked. Certain information such as the concentration or diffusioncoefficient of the detected nanoparticles can be obtained through the correlation analysis of the light fluctuation.
     1. We conjugated two different antibodies (Ab) with GNPs respectively. Inimmunoassays, when two different GNPs labeld with antibodies were mixed in asample containing antigen (Ag) targets, the binding of targets will cause GNPs toform dimers (or oligomers), which leads to the significant increase in thecharacteristic diffusion time of GNPs in the detection volume. The RLSCS methodcan sensitively detect the changes in the characteristic diffusion time of GNPs beforeand after immune reactions. We used this technology in homogeneous immunoassaysfor the liver cancer biomarker alpha-fetoprotein (AFP). The linear range of this assayis from1pmol/L to1nmol/L and the detection limit is1pmol/L for AFP. This newmethod was successfully applied for the direct determination of AFP levels in serafrom healthy subjects and cancer patients. Our results were in good agreement withELISA assays.
     2. Competitive immunoassay mode can be applied to both large and smallmolecules. Silver nanoparticles (SNPs) as a probe carrier have stronger plasmonicscattering property than GNPs. The antibody, antigen and hapten were attached to thesurface of SNPs. The antibody-labeled SNPs were firstly mixed with a samplecontaining antigens, and the part of antibody-labeled SNPs was bound to antigens ofinterest in the sample. And then, the antigen-labeled SNPs were added into the mixedsolution above, and they were bound to free antibody-labeled SNPs (excess) to formdimers (or oligomers), which led to the significant increase in the characteristicdiffusion time of SNPs in a tinny detection volume. In the competitive model, thecharacteristic diffusion time of SNPs decreased with an increase of antigenconcentration. The RLSCS can sensitively detects the changes in the characteristicdiffusion time of SNPs before and after the immunoreactions. In order to demonstratethe universality of this new method, small biomolecules,17-β estradiol (E2), andbiomacromolecules AFP, were used as assay models. The linear ranges of this methodwere from10pmol/L to10nmol/L for E2and100pmol/L to10nmol/L for AFP,respectively, and the detection limits were10pmol/L for E2and100pmol/L for AFP,respectively. The presented method was successfully used to the determination of E2levels in human urine and AFP levels in human sera. Our results were in goodagreement with ELISA assays.
     3. The photon bursting of GNPs will be generated in a highly focused laser beam (less than1fL) due to the plasmon resonance scattering and Brownian motion ofGNPs. The number of photon burst and the number of particles in solution GNPsshowed a good linear relationship. We observed that the noise shows Gaussiandistribution, and photon burst signal of GNPs meets Poisson distribution. Based onthe behaviors of noise and photon burst signal of GNPs, we established the photonburst counting method. On the plot between the intensity and the number of thephoton burst, the relationship between the intensity and the number of the photonburst can be obtained. Through the curve fitting, the noise distribution range ofphoton burst and its mathematical expectation μ and variance σ were determined, wedefined the threshold equals to μ+8×σ. Through software, the number of photonburst can be obtained. This method has good reproducibility and high sensitivity.
     4. Based on the photon burst counting method, we developed the homogeneoussandwich and competitive immunoassay. In assay, sandwich or competitive immunoreactions will cause GNPs to form dimers (or oligomers), which will cause a decreasein the overall number of GNPs in solution and the number of photon burst, thischanges can be detected by photon burst counting technique sensitively. We appliedprostate-specific antigen (PSA) and alpha-fetoprotein (AFP) as modes to evaluate thesystem. The linear range of PSA sandwich immunoassay was1pmol/L-10nmol/L,and the detection limit was1pmol/L; The linear range of PSA competitiveimmunoassay was10pmol/L-10nmol/L, and the detection limit was10pmol/L; Thelinear range of AFP sandwich immunoassay was1pmol/L-10nmol/L, and thedetection limit was1pmol/L; The linear range of AFP competitive immunoassay was1pmol/L-1nmol/L, and the detection limit was1pmol/L. Our results were in goodagreement with ELISA assays.
引文
1. Berson, S. A.; Yalow, R. S., General principles of radioimmunoassay. Clinca Chimica Acta1968.22(1),51-69.
    2. Berson, S. A.; Yalow, R. S., Radioimmunoassay of peptide hormones. Nihon NaibunpiGakkai Zasshi1969.45(6),545-554.
    3. Tang, D.; Yuan, R.; Chai, Y., Ultrasensitive electrochemical immunosensor for clinicalimmunoassay using thionine-doped magnetic gold nanospheres as labels and horseradishperoxidase as enhancer. Analytical Chemistry2008.80(5),1582-1588.
    4. Tang, D.; Yuan, R.; Chai, Y., Magnetic core-shell Fe3O4@Ag nanoparticles coated carbonpaste interface for studies of carcinoembryonic antigen in clinical immunoassay. TheJorurnal of Physical Chemistry B2006.110(24),11640-11646.
    5. Rubenstein, K. E.; Schneider, R. S.; Ullman, E. F.,“Homogeneous” enzyme immunoassay.A new immunochemical technique. Biochemical and Biophysical ResearchCommunnications1972.47(4),846-851.
    6. Yang, X.-Y.; Guo, Y.-S.; Bi, S., et al., Ultrasensitive enhanced chemiluminescence enzymeimmunoassay for the determination of α-fetoprotein amplified by double-codified goldnanoparticles labels. Biosensors and Bioelectronics2009.24(8),2707-2711.
    7. Engvall, E., Enzyme immunoassay ELISA and EMIT. Methods Enzymol1980.70(A),419.
    8. Liu, M.; Jia, C.; Jin, Q., et al., Novel colorimetric enzyme immunoassay for the detection ofcarcinoembryonic antigen. Talanta2010.81(4),1625-1629.
    9. Tanaka, T.; Matsunaga, T., Fully automated chemiluminescence immunoassay of insulinusing antibody-protein A-bacterial magnetic particle complexes. Analytical Chemistry2000.72(15),3518-3522.
    10. Bi, S.; Yan, Y.; Yang, X., et al., Gold Nanolabels for New Enhanced ChemiluminescenceImmunoassay of Alpha‐F etoprotein Based on Magnetic Beads.Chemistry-A EuropeanJournal2009.15(18),4704-4709.
    11. Kim, J.; Barnard, G.; Collins, W., et al., Measurement of plasma estradiol-17beta bysolid-phase chemiluminescence immunoassay. Clinical Chemistry1982.28(5),1120-1124.
    12. Brabant, G.; von zur Mühlen, A.; WüSTER, C., et al., Serum insulin-like growth factor Ireference values for an automated chemiluminescence immunoassay system: results from amulticenter study. Hormone Research in Paediatrics2003.60(2),53-60.
    13. Woodhead, S., Chemiluminescence Immunoassay-a Review. Journal of Clinical LigandAssay1995.18(1),49-53.
    14. Tang, D.; Yu, Y.; Niessner, R., et al., Magnetic bead-based fluorescence immunoassay foraflatoxin B1in food using biofunctionalized rhodamine B-doped silica nanoparticles.Analyst2010.135(10),2661-2667.
    15. Yu, F.; Persson, B.; L f s, S., et al., Surface plasmon fluorescence immunoassay of freeprostate-specific antigen in human plasma at the femtomolar level. Analytical Chemistry2004.76(22),6765-6770.
    16. Zhu, P.; Shelton, D. R.; Li, S., et al., Detection of E. coli O157: H7byimmunomagnetic separation coupled with fluorescence immunoassay. Biosensors andBioelectronics2011.30(1),337-341.
    17. Yu, H.-W.; Jang, A.; Kim, L. H., et al., Bead-based competitive fluorescence immunoassayfor sensitive and rapid diagnosis of cyanotoxin risk in drinking water. EnvironmentalScience&Technology2011.45(18),7804-7811.
    18. Christopoulos, T. K.; Diamandis, E. P., Enzymically amplified time-resolved fluorescenceimmunoassay with terbium chelates. Analytical Chemistry1992.64(4),342-346.
    19. Diamandis, E. P.; Christopoulos, T. K., Europium chelate labels in time-resolvedfluorescence immunoassays and DNA hybridization assays. Analytical Chemistry1990.62(22),1149A-1157A.
    20. Morton, R. C.; Diamandis, E. P., Streptavidin-based macromolecular complex labeled witha europium chelator suitable for time-resolved fluorescence immunoassay applications.Analytical Chemistry1990.62(17),1841-1845.
    21. Diamandis, E. P., Immunoassays with time-resolved fluorescence spectroscopy: principlesand applications. Clinical Biochemistry1988.21(2),139-150.
    22. Dovichi, N. J.; Martin, J. C.; Jett, J. H., et al., Laser-induced fluorescence of flowingsamples as an approach to single-molecule detection in liquids. Analytical Chemistry1984.56(3),348-354.
    23. Mertz, J.; Xu, C.; Webb, W., Single-molecule detection by two-photon-excited fluorescence.Optics Letters1995.20(24),2532-2534.
    24. Kneipp, K.; Wang, Y.; Kneipp, H., et al., Single molecule detection using surface-enhancedRaman scattering (SERS). Physical Review Letters1997.78(9),1667.
    25. Welch, C. M.; Compton, R. G., The use of nanoparticles in electroanalysis: a review.Analytical Bioanalytical Chemistry2006.384(3),601-619.
    26. Chen, M.-C.; Sonaje, K.; Chen, K.-J., et al., A review of the prospects for polymericnanoparticle platforms in oral insulin delivery. Biomaterials2011.32(36),9826-9838.
    27. Yang, Z.; Liu, Z.; Allaker, R., et al., A review of nanoparticle functionality and toxicity onthe central nervous system. Journal of the Royal Society Interface2010.7(Suppl4),S411-S422.
    28. Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A., Nanoparticle-based bio-bar codes for theultrasensitive detection of proteins. Science2003.301(5641),1884-1886.
    29. Park, S.-J.; Taton, T. A.; Mirkin, C. A., Array-based electrical detection of DNA withnanoparticle probes. Science2002.295(5559),1503-1506.
    30. Taton, T. A.; Mirkin, C. A.; Letsinger, R. L., Scanometric DNA array detection withnanoparticle probes. Science2000.289(5485),1757-1760.
    31. Hirsch, L.; Jackson, J.; Lee, A., et al., A whole blood immunoassay using gold nanoshells.Analytical Chemistry2003.75(10),2377-2381.
    32. Martin, C. R.; Mitchell, D. T., Peer Reviewed: Nanomaterials in Analytical Chemistry.Analytical Chemistry1998.70(9),322A-327A.
    33. Baptista, P.; Pereira, E.; Eaton, P., et al., Gold nanoparticles for the development of clinicaldiagnosis methods. Analytical Bioanalytical Chemistry2008.391(3),943-950.
    34. Lee, S.; Cha, E. J.; Park, K., et al., A Near‐Infrared‐Fluorescence‐QuenchedGold‐Nanoparticle Imaging Probe for In Vivo Drug Screening and Protease ActivityDetermination. Angewandte Chemie International Edition2008.120(15),2846-2849.
    35. Janeway, C.; Travers, P.; Hunt, S., Immunobiology: the immune system in health anddisease. Current Biology:1996.
    36. Janeway Jr, C. A.; Medzhitov, R., Innate immune recognition. Science Signaling2002.20(1),197.
    37. Litman, G. W.; Rast, J. P.; Shamblott, M. J., et al., Phylogenetic diversification ofimmunoglobulin genes and the antibody repertoire. Molecular biology and evolution1993.10(1),60-72.
    38. Pier, G. B.; Lyczak, J. B.; Wetzler, L. M., Immunology, infection, and immunity.2004: AmSoc Microbiol.
    39. Mallery, D. L.; McEwan, W. A.; Bidgood, S. R., et al., Antibodies mediate intracellularimmunity through tripartite motif-containing21(TRIM21). Proceedings of the NationalAcademy of Sciences2010.107(46),19985-19990.
    40. Stadlmann, J.; Pabst, M.; Kolarich, D., et al., Analysis of immunoglobulin glycosylation byLC‐E SI‐MS of glycopeptides and oligosaccharides.Proteomics2008.8(14),2858-2871.
    41. Hashira, S.; Okitsu‐Negishi, S.; Yoshino, K., Placental transfer of IgG subclasses in aJapanese population. Pediatrics International2000.42(4),337-342.
    42. Gao, Z. h.; McAlister, V. C.; Wright, J. R., et al., Immunoglobulin‐G subclass antidonorreactivity in transplant recipients. Liver transplantation2004.10(8),1055-1059.
    43. Ishikawa, S.; Hashida, S.; Hashinaka, K., et al., Ultrasensitive and rapid enzymeimmunoassay (thin aqueous layer immune complex transfer enzyme immunoassay) forantibody IgG to HIV‐1p17antigen.Journal of Clinical Laboratory Analysis1998.12(3),179-189.
    44. Hashida, S.; Hashinaka, K.; Nishikata, I., et al., Ultrasensitive and more specific enzymeimmunoassay (immune complex transfer enzyme immunoassay) for p24antigen of HIV‐1in serum using affinity‐p urified rabbit anti‐p24Fab′and monoclonal mouse anti‐p24Fab′. Journal of Clinical Laboratory Analysis1996.10(5),302-307.
    45. Kohno, T.; Sakoda, I.; Ishikawa, E., Sensitive enzyme immunoassay (immune complextransfer enzyme immunoassay) for (anti‐h uman T‐cell leukemia virus type I) IgG inserum using a synthetic peptide, Cys‐E nv gp46(188‐224), as antigen.Journal ofClinical Laboratory Analysis1992.6(2),105-112.
    46. Sheriff, S.; Silverton, E. W.; Padlan, E. A., et al., Three-dimensional structure of anantibody-antigen complex. Proceedings of the National Academy of Sciences1987.84(22),8075-8079.
    47. Pauling, L.; CAMPBELL, D.; Pressman, D., The nature of the forces between antigen andantibody and of the precipitation reaction. Nature1943.23(3).
    48. Frieden, E., Non-covalent interactions: key to biological flexibility and specificity. Journalof Chemical Education1975.52(12),754.
    49. Singer, S.; Campbell, D. H., Physical Chemical Studies of Soluble Antigen—AntibodyComplexes. II. Equilibrium Properties1. Journal of the American Chemical Society1953.75(22),5577-5578.
    50. Friguet, B.; Chaffotte, A. F.; Djavadi-Ohaniance, L., et al., Measurements of the true affinityconstant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay.Journal of Immunological Methods1985.77(2),305-319.
    51. Drake, A. W.; Myszka, D. G.; Klakamp, S. L. Characterizing High AffinityAntigen/Antibody Complexes by Kinetic and Equilibrium Based Methods. Current Trendsin Monoclonal Antibody Development and Manufacturing, Springer:2010.179-192.
    52. Winzor, D. J., An analytical solution to the characterization of antigen antibodyinteractions by kinetic exclusion assay. Analytical Biochemistry2013.438(1),42-46.
    53. Blake, C.; Gould, B. J., Use of enzymes in immunoassay techniques. A review. Analyst1984.109(5),533-547.
    54. O'Sullivan, M.; Bridges, J.; Marks, V., Enzyme immunoassay: a review. Annals of ClinicalBiochemistry1979.16(5),221.
    55. Tsekenis, G.; Garifallou, G.-Z.; Davis, F., et al., Detection of fluoroquinolone antibiotics inmilk via a labeless immunoassay based upon an alternating current impedance protocol.Analytical Chemistry2008.80(23),9233-9239.
    56. Grant, S.; Davis, F.; Pritchard, J. A., et al., Labeless and reversible immunosensor assaybased upon an electrochemical current-transient protocol. Analytica Chimica Acta2003.495(1),21-32.
    57. Wisdom, G. B., Enzyme-immunoassay. Clinical Chemistry1976.22(8),1243-1255.
    58. Porstmann, T.; Kiessig, S., Enzyme immunoassay techniques an overview. Journal ofImmunological Methods1992.150(1),5-21.
    59. Schuurs, A.; Van Weemen, B., Enzyme-immunoassay. Clinica Chimica Acta1977.81(1),1-40.
    60. Monji, N.; Hoffman, A. S., A novel immunoassay system and bioseparation process basedon thermal phase separating polymers. Applied biochemistry and biotechnology1987.14(2),107-120.
    61. Elings, V. B.; Nicoli, D. F. Apparatus and method for homogeneous immunoassay, GooglePatents.1985.
    62. Wild, D., The Immunoassay Handbook. Gulf Professional Publishing:2005.
    63. Okano, K.; Takahashi, S.; Yasuda, K., et al., Using microparticle labeling and counting forattomole-level detection in heterogeneous immunoassay. Analytical Biochemistry1992.202(1),120-125.
    64. Doyle, M. J.; Halsall, H. B.; Heineman, W. R., Heterogeneous immunoassay for serumproteins by differential pulse anodic stripping voltammetry. Analytical Chemistry1982.54(13),2318-2322.
    65. Tu, C. Y.; Kitamori, T.; Sawada, T., et al., Ultrasensitive heterogeneous immunoassay usingphotothermal deflection spectroscopy. Analytical Chemistry1993.65(24),3631-3635.
    66. Kimura, H.; Matsuzawa, S.; Tu, C.-Y., et al., Ultrasensitive heterogeneous immunoassayusing photothermal deflection spectroscopy.2. Quantitation of ultratrace carcinoembryonicantigen in human sera. Analytical Chemistry1996.68(17),3063-3067.
    67. Bromberg, A.; Mathies, R. A., Homogeneous immunoassay for detection of TNT and itsanalogues on a microfabricated capillary electrophoresis chip. Analytical Chemistry2003.75(5),1188-1195.
    68. Liu, X.; Dai, Q.; Austin, L., et al., A one-step homogeneous immunoassay for cancerbiomarker detection using gold nanoparticle probes coupled with dynamic light scattering.Journal of the American Chemical Society2008.130(9),2780-2782.
    69. Chemla, Y.; Grossman, H.; Poon, Y., et al., Ultrasensitive magnetic biosensor forhomogeneous immunoassay. Proceedings of the National Academy of Sciences2000.97(26),14268-14272.
    70. Gosling, J. P., A decade of development in immunoassay methodology. Clinical Chemistry1990.36(8),1408-1427.
    71. Ekins, R. P., Multi-analyte immunoassay. Journal of Pharmaceutical and BiomedicalAnalysis1989.7(2),155-168.
    72. Duan, C.; Meyerhoff, M. E., Separation-free sandwich enzyme immunoassays usingmicroporous gold electrodes and self-assembled monolayer/immobilized capture antibodies.Analytical Chemistry1994.66(9),1369-1377.
    73. Kiening, M.; Niessner, R.; Drs, E., et al., Sandwich immunoassays for the determination ofpeanut and hazelnut traces in foods. Journal of Agricultural and Food Chemistry2005.53(9),3321-3327.
    74. Deiss, F.; LaFratta, C. N.; Symer, M., et al., Multiplexed sandwich immunoassays usingelectrochemiluminescence imaging resolved at the single bead level. Journal of theAmerican Chemical Society2009.131(17),6088-6089.
    75. Oguri, H.; Hirama, M.; Tsumuraya, T., et al., Synthesis-based approach toward directsandwich immunoassay for ciguatoxin CTX3C. Journal of the American Chemical Society2003.125(25),7608-7612.
    76. Mayilo, S.; Kloster, M. A.; Wunderlich, M., et al., Long-range fluorescence quenching bygold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Letters2009.9(12),4558-4563.
    77. Darwish, I. A.; Blake, D. A., One-step competitive immunoassay for cadmium ions:development and validation for environmental water samples. Analytical Chemistry2001.73(8),1889-1895.
    78. Tao, L.; Kennedy, R. T., On-line competitive immunoassay for insulin based on capillaryelectrophoresis with laser-induced fluorescence detection. Analytical Chemistry1996.68(22),3899-3906.
    79. Zhao, X.; Shippy, S. A., Competitive immunoassay for microliter protein samples withmagnetic beads and near-infrared fluorescence detection. Analytical Chemistry2004.76(7),1871-1876.
    80. Schmalzing, D.; Nashabeh, W., Capillary electrophoresis based immunoassays: a criticalreview. Electrophoresis1997.18(12-13),2184-2193.
    81. Anderson, G. P.; Lamar, J. D.; Charles, P. T., Development of a luminex based competitiveimmunoassay for2,4,6-trinitrotoluene (TNT). Environmental Science&Technology2007.41(8),2888-2893.
    82. Shelby, R. A.; Rottinghaus, G. E.; Minor, H. C., Comparison of thin-layer chromatographyand competitive immunoassay methods for detecting fumonisin on maize. Journal ofAgricultural and Food Chemistry1994.42(9),2064-2067.
    83. Guan, D.; Li, P.; Zhang, Q., et al., An ultra-sensitive monoclonal antibody-basedcompetitive enzyme immunoassay for aflatoxin M1 in milk and infant milkproducts. Food Chemistry2011.125(4),1359-1364.
    84. Quinn, C. D.; Sefers, S. E.; Babiker, W., et al., C. Diff Quik Chek complete enzymeimmunoassay provides a reliable first-line method for detection of Clostridium difficile instool specimens. Journal of Clinical Microbiology2010.48(2),603-605.
    85. Cheow, L. F.; Ko, S. H.; Kim, S. J., et al., Increasing the sensitivity of enzyme-linkedimmunosorbent assay using multiplexed electrokinetic concentrator. Analytical Chemistry2010.82(8),3383-3388.
    86. Kurita, R.; Arai, K.; Nakamoto, K., et al., Development of electrogeneratedchemiluminescence-based enzyme linked immunosorbent assay for sub-pM detection.Analytical Chemistry2010.82(5),1692-1697.
    87. Peck, K. A.; Lomax, D. P.; Olson, O. P., et al., Development of an enzyme‐linkedimmunosorbent assay for quantifying vitellogenin in Pacific salmon and assessment of fieldexposure to environmental estrogens. Environmental Toxicology and Chemistry2011.30(2),477-486.
    88. Wang, L.; Zhang, Y.; Gao, X., et al., Determination of Chloramphenicol Residues in Milkby Enzyme-Linked Immunosorbent Assay: Improvement by Biotin-Streptavidin-AmplifiedSystem. Journal of Agricultural and Food Chemistry2010.58(6),3265-3270.
    89. Rissin, D. M.; Kan, C. W.; Campbell, T. G., et al., Single-molecule enzyme-linkedimmunosorbent assay detects serum proteins at subfemtomolar concentrations. NatureBiotechnology2010.28(6),595-599.
    90. Stern, E.; Vacic, A.; Li, C., et al., A Nanoelectronic Enzyme‐Linked Immunosorbent Assayfor Detection of Proteins in Physiological Solutions. Small2010.6(2),232-238.
    91. Engvall, E.; Perlmann, P., Enzyme-linked immunosorbent assay (ELISA) quantitative assayof immunoglobulin G. Immunochemistry1971.8(9),871-874.
    92. Van Weemen, B.; Schuurs, A., Immunoassay using antigen—enzyme conjugates. FEBSLetters1971.15(3),232-236.
    93. Lidofsky, S.; Imasaka, T.; Zare, R., Laser fluorescence immunoassay of insulin. AnalyticalChemistry1979.51(11),1602-1605.
    94. Zuk, R.; Rowley, G.; Ullman, E., Fluorescence protection immunoassay: a newhomogeneous assay technique. Clinical Chemistry1979.25(9),1554-1560.
    95. Lukens, H. R.; Williams, C. B.; Levison, S. A., et al., Fluorescence immunoassay techniquefor detecting organic environmental contaminants. Environmental Science&Technology1977.11(3),292-297.
    96. Sedlacek, H.; Mück, K.-F.; Rehkopf, R., et al., A new method for fluorescenceimmunoassay using plane surface solid phases (FIAPS). Journal of Immunological Methods1979.26(1),11-24.
    97. Parish, C. R., Fluorescent dyes for lymphocyte migration and proliferation studies.Immunology and Cell Biology1999.77(6),499-508.
    98. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S., et al., Quantum dots versus organicdyes as fluorescent labels. Nature Methods2008.5(9),763-775.
    99. Kinosita Jr, K.; Kawato, S.; Ikegami, A., A theory of fluorescence polarization decay inmembranes. Biophysical Journal1977.20(3),289-305.
    100. Chen, X.; Levine, L.; Kwok, P.-Y., Fluorescence polarization in homogeneous nucleic acidanalysis. Genome Research1999.9(5),492-498.
    101. Dandliker, W.; Kelly, R.; Dandliker, J., et al., Fluorescence polarization immunoassay.Theory and experimental method. Immunochemistry1973.10(4),219-227.
    102. Jolley, M., Fluorescence polarization immunoassay for the determination of therapeuticdrug levels in human plasma. Journal of analytical toxicology1981.5(5),236-240.
    103. Ye, Z.; Tan, M.; Wang, G., et al., Preparation, characterization, and time-resolvedfluorometric application of silica-coated terbium (III) fluorescent nanoparticles. AnalyticalChemistry2004.76(3),513-518.
    104. Yuan, J.; Wang, G.; Majima, K., et al., Synthesis of a terbium fluorescent chelate and itsapplication to time-resolved fluoroimmunoassay. Analytical Chemistry2001.73(8),1869-1876.
    105.林金明,化学发光基础理论与应用.2004:化学工业出版社化学与应用化学出版中心.
    106.王鹏;张文艳,免疫电化学发光.分析化学1998.26(7),898-903.
    107.徐国宝;董绍俊,电化学发光及其应用.分析化学2001.29(1),103-108.
    108.赵利霞;李振甲;魏彦林, et al.,化学发光免疫分析.世界科技研究与发展2004.26(4),24-33.
    109. Huntress, E. H.; Stanley, L. N.; Parker, A. S., The oxidation of3-aminophthalhydrazide ("luminol") as a lecture demonstration of chemiluminescence. Journal of Chemical Education1934.11(3),142.
    110. Huntress, E.; Stanley, L.; Parker, A., The preparation of3-aminophthalhydrazide for use inthe demonstration of chemiluminescence. Journal of the American Chemical Society1934.56(1),241-242.
    111. King, D. W.; Cooper, W. J.; Rusak, S. A., et al., Flow injection analysis of H2O2in naturalwaters using acridinium ester chemiluminescence: method Development and optimizationusing a kinetic model. Analytical Chemistry2007.79(11),4169-4176.
    112. Arnold, L.; Hammond, P. W.; Wiese, W., et al., Assay formats involvingacridinium-ester-labeled DNA probes. Clinical Chemistry1989.35(8),1588-1594.
    113. Beck, S.; Koster, H., Applications of dioxetane chemiluminescent probes to molecularbiology. Analytical Chemistry1990.62(21),2258-2270.
    114. Sigvardson, K. W.; Birks, J. W., Peroxyoxalate chemiluminescence detection of polycyclicaromatic hydrocarbons in liquid chromatography. Analytical Chemistry1983.55(3),432-435.
    115. Akiyama, S., Peroxyoxalate Chemiluminescence Assay of Hydrogen. Analytical Sciences1991.7,709-713.
    116. Arakawa, H.; Maeda, M.; Tsuji, A., Enzyme immunoassay of cortisol bychemiluminescence reaction of luminol-peroxidase. Bunseki Kagaku1977.26,322-326.
    117. Arakawa, H.; Maeda, M.; Tsuji, A., Chemiluminescence enzyme immunoassay of cortisolusing peroxidase as label. Analytical Biochemistry1979.97(1),248-254.
    118. Imai, K.; Gohda, R.; Fukushima, T., et al., Optimization of the Reaction Conditions for thePeroxyoxalate Chemiluminescence Detection System of Fluorescent Compounds in HPLC.Biomedical Chromatography1997.11(2),73-73.
    119. Stanley, P. E., A survey of more than90commercially available luminometers and imagingdevices for low‐l ight measurements of chemiluminescence and bioluminescence,including instruments for manual, automatic and specialized operation, for HPLC, LC, GLCand microtitre plates. Part1: Descriptions. Journal of Bioluminescence andChemiluminescence1992.7(2),77-108.
    120. Wang, J.; Huang, W.; Liu, Y., et al., Capillary electrophoresis immunoassaychemiluminescence detection of zeptomoles of bone morphogenic protein-2in rat vascularsmooth muscle cells. Analytical Chemistry2004.76(18),5393-5398.
    121. Wang, J.; Ren, J., A sensitive and rapid immunoassay for quantification of CA125in humansera by capillary electrophoresis with enhanced chemiluminescence detection.Electrophoresis2005.26(12),2402-2408.
    122. Ji, X.; He, Z.; Ai, X., et al., Determination of clenbuterol by capillary electrophoresisimmunoassay with chemiluminescence detection. Talanta2006.70(2),353-357.
    123. Bhattacharyya, A.; Klapperich, C., Design and testing of a disposable microfluidicchemiluminescent immunoassay for disease biomarkers in human serum samples.Biomedical Microdevices2007.9(2),245-251.
    124. Yakovleva, J.; Davidsson, R.; Lobanova, A., et al., Microfluidic enzyme immunoassayusing silicon microchip with immobilized antibodies and chemiluminescence detection.Analytical Chemistry2002.74(13),2994-3004.
    125. Sista, R. S.; Eckhardt, A. E.; Srinivasan, V., et al., Heterogeneous immunoassays usingmagnetic beads on a digital microfluidic platform. Lab on a Chip2008.8(12),2188-2196.
    126. Zhao, L.; Sun, L.; Chu, X., Chemiluminescence immunoassay. TrAC Trends in AnalyticalChemistry2009.28(4),404-415.
    127. Fu, Z.; Hao, C.; Fei, X., et al., Flow-injection chemiluminescent immunoassay forα-fetoprotein based on epoxysilane modified glass microbeads. Journal of ImmunologicalMethods2006.312(1),61-67.
    128. Liu, H.; Yu, J. C.; Bindra, D. S., et al., Flow injection solid-phase chemiluminescentimmunoassay using a membrane-based reactor. Analytical Chemistry1991.63(7),666-669.
    129. Arefyev, A.; Vlasenko, S.; Eremin, S., et al., Flow-injection enzyme immunoassay ofhaptens with enhanced chemiluminescence detection. Analytica Chimica Acta1990.237,285-289.
    130. Kalcher, K.; Kauffmann, J. M.; Wang, J., et al., Sensors based on carbon paste inelectrochemical analysis: a review with particular emphasis on the period1990–1993.Electroanalysis1995.7(1),5-22.
    131. Drummond, T. G.; Hill, M. G.; Barton, J. K., Electrochemical DNA sensors. NatureBiotechnology2003.21(10),1192-1199.
    132. Zhao, Q.; Gan, Z.; Zhuang, Q., Electrochemical sensors based on carbon nanotubes.Electroanalysis2002.14(23),1609-1613.
    133. Tang, D.; Su, B.; Tang, J., et al., Nanoparticle-based sandwich electrochemicalimmunoassay for carbohydrate antigen125with signal enhancement using enzyme-coatednanometer-sized enzyme-doped silica beads. Analytical Chemistry2010.82(4),1527-1534.
    134. Wang, L.; Lei, J.; Ma, R., et al., Host-Guest Interaction of Adamantine with-cyclodextrinFunctionalized AuPd Bimetallic Nanoprobe for Ultrasensitive ElectrochemicalImmunoassay of SmallMolecule. Analytical Chemistry2013.85(13),6505-6510.
    135. Lin, D.; Wu, J.; Wang, M., et al., Triple Signal Amplification of Graphene Film, PolybeadCarried Gold Nanoparticles as Tracing Tag and Silver Deposition for UltrasensitiveElectrochemical Immunosensing. Analytical Chemistry2012.84(8),3662-3668.
    136. Feng, L. N.; Bian, Z. P.; Peng, J., et al., Ultrasensitive Multianalyte ElectrochemicalImmunoassay Based on Metal Ion Functionalized Titanium Phosphate Nanospheres.Analytical Chemistry2012.84(18),7810-7815.
    137. Li, Y.; Zhong, Z.; Chai, Y., et al., Simultaneous electrochemical immunoassay of three livercancer biomarkers using distinguishable redox probes as signal tags and gold nanoparticlescoated carbon nanotubes as signal enhancers. Chemical Communications2012.48(4),537-539.
    138. Lei, J.; Ju, H., Signal amplification using functional nanomaterials for biosensing. ChemicalSociety Reviews2012.41(6),2122-2134.
    139. Gao, Z.; Xu, M.; Hou, L., et al., Irregular-shaped platinum nanoparticles as peroxidasemimics for highly efficient colorimetric immunoassay. Analytica Chimica Acta2013.776,79-86.
    140. Zhou, G.; Liu, Y.; Luo, M., et al., Peptide-Capped Gold Nanoparticle for ColorimetricImmunoassay of Conjugated Abscisic Acid. ACS Applied Materials&Interfaces2012.4(9),5010-5015.
    141. Wangoo, N.; Kaushal, J.; Bhasin, K. K., et al., Zeta potential based colorimetricimmunoassay for the direct detection of diabetic marker HbA1c using gold nanoprobes.Chemical Communications2010.46(31),5755-5757.
    142. Lakowicz, J. R., Principles of fluorescence spectroscopy. Springer:2009.
    143. Kreisig, T.; Hoffmann, R.; Zuchner, T., Homogeneous fluorescence-based immunoassaydetects antigens within90seconds. Analytical Chemistry2011.83(11),4281-4287.
    144. Chen, L.; Zhang, X.; Zhang, C., et al., Dual-color fluorescence and homogeneousimmunoassay for the determination of human enterovirus71. Analytical Chemistry2011.83(19),7316-7322.
    145. Zeng, Q.; Zhang, Y.; Liu, X., et al., Multiple homogeneous immunoassays based on aquantum dots–gold nanorods FRET nanoplatform. Chemical Communications2012.48(12),1781-1783.
    146. Huang, X.; Li, L.; Qian, H., et al., A Resonance Energy Transfer betweenChemiluminescent Donors and Luminescent Quantum‐Dots as Acceptors (CRET).Angewandte Chemie International Edition2006.118(31),5264-5267.
    147. Liu, Y.-m.; Mei, L.; Liu, L.-j., et al., Sensitive chemiluminescence immunoassay bycapillary electrophoresis with gold nanoparticles. Analytical Chemistry2011.83(3),1137-1143.
    148. Pasternack, R. F.; Bustamante, C.; Collings, P. J., et al., Porphyrin assemblies on DNA asstudied by a resonance light-scattering technique. Journal of the American Chemical Society1993.115(13),5393-5399.
    149. Scolaro, L. M.; Romeo, A.; Pasternack, R. F., Tuning porphyrin/DNA supramolecularassemblies by competitive binding. Journal of the American Chemical Society2004.126(23),7178-7179.
    150. Mazzaglia, A.; Angelini, N.; Darcy, R., et al., Novel heterotopic colloids of anionicporphyrins entangled in cationic amphiphilic cyclodextrins: spectroscopic investigation andintracellular delivery. Chemistry-A European Journal2003.9(23),5762-5769.
    151. Zhu, J.; Wang, Y.; Huang, L., et al., Resonance light scattering characters of core–shellstructure of Au–Ag nanoparticles. Physics Letters A2004.323(5),455-459.
    152. Huang, C. Z.; Li, K. A.; Tong, S. Y., Determination of nucleic acids by a resonancelight-scattering technique with α, β, γ, δ-tetrakis [4-(trimethylammoniumyl) phenyl]porphine. Analytical Chemistry1996.68(13),2259-2263.
    153. Chen, F.; Huang, J.; Ai, X., et al., Determination of DNA by Rayleigh light scatteringenhancement of molecular “light switches”. Analyst2003.128(12),1462-1466.
    154. Huang, C. Z.; Li, K. A.; Tong, S. Y., Determination of nanograms of nucleic acids by theirenhancement effect on the resonance light scattering of the cobalt(II)/4-[(5-chloro-2-pyridyl) azo]-1,3-diaminobenzene complex. Analytical Chemistry1997.69(3),514-520.
    155. Yguerabide, J.; Yguerabide, E. E., Resonance light scattering particles as ultrasensitivelabels for detection of analytes in a wide range of applications. Journal of CellularBiochemistry2001.84(S37),71-81.
    156. Ling, J.; Li, Y. F.; Huang, C. Z., Visual sandwich immunoassay system on the basis ofplasmon resonance scattering signals of silver nanoparticles. Analytical Chemistry2009.81(4),1707-1714.
    157. Sánchez-Martínez, M.; Aguilar-Caballos, M.; Gómez-Hens, A., Homogeneousimmunoassay for soy protein determination in food samples using gold nanoparticles aslabels and light scattering detection. Analytica Chimica Acta2009.636(1),58-62.
    158. Liu, X.; Huo, Q., A washing-free and amplification-free one-step homogeneous assay forprotein detection using gold nanoparticle probes and dynamic light scattering. Journal ofImmunological Methods2009.349(1),38-44.
    159. Feng, P.; Shu, W. Q.; Huang, C. Z., et al., Total internal reflected resonance light scatteringdetermination of chlortetracycline in body fluid with the complex cation ofchlortetracycline-europium-trioctyl phosphine oxide at the water/tetrachloromethaneinterface. Analytical Chemistry2001.73(17),4307-4312.
    160. Liu, H.; Dong, C.; Huang, X., et al., Spatially Resolved Scattering Correlation SpectroscopyUsing a Total Internal Reflection Configuration. Analytical Chemistry2012.84(8),3561-3567.
    161. Roll, D.; Malicka, J.; Gryczynski, I., et al., Metallic colloid wavelength-ratiometricscattering sensors. Analytical Chemistry2003.75(14),3440-3445.
    162. Aslan, K.; Lakowicz, J. R.; Geddes, C. D., Plasmon light scattering in biology and medicine:new sensing approaches, visions and perspectives. Current Opinion in Chemical Biology2005.9(5),538-544.
    163. Aslan, K.; Holley, P.; Davies, L., et al., Angular-ratiometric plasmon-resonance based lightscattering for bioaffinity sensing. Journal of the American Chemical Society2005.127(34),12115-12121.
    164. Vidal, E.; Palomeque, M. E.; Lista, A. G., et al., Flow injection analysis: Rayleigh lightscattering technique for total protein determination. Analytical Bioanalytical Chemistry2003.376(1),38-41.
    165. Huang, C. Z.; Liu, Y.; Hong Wang, Y., et al., Resonance light scattering imaging detectionof proteins with α, β, γ, δ-tetrakis ( p-sulfophenyl) porphyrin. AnalyticalBiochemistry2003.321(2),236-243.
    166. Yguerabide, J.; Yguerabide, E. E., Light-scattering submicroscopic particles as highlyfluorescent analogs and their use as tracer labels in clinical and biological applications: I.Theory. Analytical Biochemistry1998.262(2),137-156.
    167. Eigen, M.; Rigler, R., Sorting single molecules: application to diagnostics and evolutionarybiotechnology. Proceedings of the National Academy of Sciences1994.91(13),5740-5747.
    168. Schwille, P.; Bieschke, J.; Oehlenschl ger, F., Kinetic investigations by fluorescencecorrelation spectroscopy: the analytical and diagnostic potential of diffusion studies.Biophysical chemistry1997.66(2),211-228.
    169. Schwille, P.; Meyer-Almes, F.-J.; Rigler, R., Dual-color fluorescence cross-correlationspectroscopy for multicomponent diffusional analysis in solution. Biophysical Journal1997.72(4),1878-1886.
    170. Sharma, S.; Pal, N.; Chowdhury, P. K., et al., Understanding Growth Kinetics of Nanorodsin Microemulsion: A Combined Fluorescence Correlation Spectroscopy, Dynamic LightScattering, and Electron Microscopy Study. Journal of the American Chemical Society2012.134(48),19677-19684.
    171. Wang, K.; Qiu, X.; Dong, C., et al., Single‐Molecule Technology for Rapid Detection ofDNA Hybridization Based on Resonance Light Scattering of Gold Nanoparticles.ChemBioChem2007.8(10),1126-1129.
    172. Qiu, X.; Tang, L. C.; Dong, C. Q., et al., Characterization of gold nanoparticlebioconjugation by resonance light scattering correlation spectroscopy. Chinese ChemicalLetters2010.21(10),1227-1230.
    173. Tang, L.; Dong, C.; Ren, J., Highly sensitive homogenous immunoassay of cancerbiomarker using silver nanoparticles enhanced fluorescence correlation spectroscopy.Talanta2010.81(4),1560-1567.
    174. Huang, X.; Ren, J., Gold nanoparticles based chemiluminescent resonance energy transferfor immunoassay of alpha fetoprotein cancer marker. Analytica Chimica Acta2011.686(1),115-120.
    175. Lu, Y.; Huang, X.; Ren, J., Sandwich immunoassay for alpha-fetoprotein in human serausing gold nanoparticle and magnetic bead labels along with resonance Rayleigh scatteringreadout. Microchimica Acta2013.180(7-8),635-642.
    176. Xie, X. S.; Trautman, J. K., Optical studies of single molecules at room temperature. AnnualReview of Physical Chemistry1998.49(1),441-480.
    177. Ren, X.; Gavory, G.; Li, H., et al., Identification of a new RNA· RNA interaction site forhuman telomerase RNA (hTR): structural implications for hTR accumulation and adyskeratosis congenita point mutation. Nucleic Acids Research2003.31(22),6509-6515.
    178. Soper, S. A.; Mattingly, Q. L.; Vegunta, P., Photon burst detection of single near-infraredfluorescent molecules. Analytical Chemistry1993.65(6),740-747.
    179. Hirschfeld, T., Optical microscopic observation of single Smallmolecules. Applied Optics1976.15(12),2965-2966.
    180.朱勇;欧阳俊,单光子计数系统的设计与实现.仪器仪表学报2007.28(4),28-30.
    181. Agrawal, A.; Zhang, C.; Byassee, T., et al., Counting single native biomolecules and intactviruses with color-coded nanoparticles. Analytical Chemistry2006.78(4),1061-1070.
    182. Zhang, C.-y.; Johnson, L. W., Single quantum-dot-based aptameric nanosensor for cocaine.Analytical Chemistry2009.81(8),3051-3055.
    183. Zhang, C.-Y.; Johnson, L. W., Homogenous rapid detection of nucleic acids using two-colorquantum dots. Analyst2006.131(4),484-488.
    184.宋文斌.单颗粒计数及其在凝血酶分析中的应用,2011.上海交通大学.
    1. Yalow, R. S.; Berson, S. A., Assay of plasma insulin in human subjects by immunologicalmethods. Nature1959.184,1648-1649.
    2. Chon, H.; Lee, S.; Son, S. W., et al., Highly sensitive immunoassay of lung cancer markercarcinoembryonic antigen using surface-enhanced Raman scattering of hollow goldnanospheres. Analytical Chemistry2009.81(8),3029-3034.
    3. Tao, L.; Kennedy, R. T., On-line competitive immunoassay for insulin based on capillaryelectrophoresis with laser-induced fluorescence detection. Analytical Chemistry1996.68(22),3899-3906.
    4. Schultz, N. M.; Kennedy, R. T., Rapid immunoassays using capillary electrophoresis withfluorescence detection. Analytical Chemistry1993.65(21),3161-3165.
    5. Schultz, N. M.; Huang, L.; Kennedy, R. T., Capillary electrophoresis-based immunoassay todetermine insulin content and insulin secretion from single islets of Langerhans. AnalyticalChemistry1995.67(5),924-929.
    6. Lai, G.; Yan, F.; Ju, H., Dual signal amplification of glucose oxidase-functionalizednanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemicaldetection of tumor markers. Analytical Chemistry2009.81(23),9730-9736.
    7. Hoogenboom, H. R., Selecting and screening recombinant antibody libraries. NatureBiotechnology2005.23(9),1105-1116.
    8. Wang, W. U.; Chen, C.; Lin, K. H., et al., Label-free detection of Small-molecule–proteininteractions by using nanowire nanosensors. Proceedings of the National Academy of Sciences2005.102(9),3208-3212.
    9. Bailey, R. C.; Kwong, G. A.; Radu, C. G., et al., DNA-encoded antibody libraries: a unifiedplatform for multiplexed cell sorting and detection of genes and proteins. Journal of theAmerican Chemical Society2007.129(7),1959-1967.
    10. Rusling, J. F.; Kumar, C. V.; Gutkind, J. S., et al., Measurement of biomarker proteins forpoint-of-care early detection and monitoring of cancer. Analyst2010.135(10),2496-2511.
    11. Dai, Q.; Liu, X.; Coutts, J., et al., A one-step highly sensitive method for DNA detection usingdynamic light scattering. Journal of the American Chemical Society2008.130(26),8138-8139.
    12. Narayanan, R.; Lipert, R. J.; Porter, M. D., Cetyltrimethylammonium bromide-modifiedspherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhancedRaman spectroscopy based heterogeneous immunoassays. Analytical Chemistry2008.80(6),2265-2271.
    13. Sharlow, E. R.; Leimgruber, S.; Yellow-Duke, A., et al., Development, validation andimplementation of immobilized metal affinity for phosphochemicals (IMAP)-basedhigh-throughput screening assays for low-molecular-weight compound libraries. NatureProtocols2008.3(8),1350-1363.
    14. Cruz-Aguado, J. A.; Penner, G., Fluorescence polarization based displacement assay for thedetermination of Smallmolecules with aptamers. Analytical Chemistry2008.80(22),8853-8855.
    15. Tachi, T.; Kaji, N.; Tokeshi, M., et al., Microchip-based homogeneous immunoassay usingfluorescence polarization spectroscopy. Lab on a Chip2009.9(7),966-971.
    16. H rm, H.; Sarrail, G.; Kirjavainen, J., et al., Comparison of homogeneous single-labelfluorometric binding assays: fluorescence polarization and dual-parametric quenchingresonance energy transfer technique. Analytical Chemistry2010.82(3),892-897.
    17. Tian, J.; Zhou, L.; Zhao, Y., et al., Multiplexed detection of tumor markers with multicolorquantum dots based on fluorescence polarization immunoassay. Talanta2012.92,72-77.
    18. Zhu, Z.; Ravelet, C.; Perrier, S., et al., Single-Stranded DNA Binding Protein-AssistedFluorescence Polarization Aptamer Assay for Detection of SmallMolecules. AnalyticalChemistry2012.84(16),7203-7211.
    19. Yang, R.; Jin, J.; Chen, Y., et al., Carbon nanotube-quenched fluorescent oligonucleotides:probes that fluoresce upon hybridization. Journal of the American Chemical Society2008.130(26),8351-8358.
    20. Liu, L.; Shao, M.; Dong, X., et al., Homogeneous immunoassay based on two-photonexcitation fluorescence resonance energy transfer. Analytical Chemistry2008.80(20),7735-7741.
    21. Huang, X.; Ren, J., Gold nanoparticles based chemiluminescent resonance energy transfer forimmunoassay of alpha fetoprotein cancer marker. Analytica Chimica Acta2011.686(1),115-120.
    22. Leyris, J. P.; Roux, T.; Trinquet, E., et al., Homogeneous time-resolved fluorescence-basedassay to screen for ligands targeting the growth hormone secretagogue receptor type1a.Analytical Biochemistry2011.408(2),253-262.
    23. Chen, M. J.; Wu, Y. S.; Lin, G. F., et al., Quantum-dot-based homogeneous time-resolvedfluoroimmunoassay of alpha-fetoprotein. Analytica Chimica Acta2012.741,100-105.
    24. Kupstat, A.; Kumke, M. U.; Hildebrandt, N., Toward sensitive, quantitative point-of-caretesting (POCT) of protein markers: miniaturization of a homogeneous time-resolvedfluoroimmunoassay for prostate-specific antigen detection. Analyst2011.136(5),1029-1035.
    25. Ranzoni, A.; Sabatte, G.; van IJzendoorn, L. J., et al., One-step homogeneous magneticnanoparticle immunoassay for biomarker detection directly in blood plasma. ACS Nano2012.6(4),3134-3141.
    26. Lin, D.; Wu, J.; Yan, F., et al., Ultrasensitive immunoassay of protein biomarker based onelectrochemiluminescent quenching of quantum dots by hemin bio-bar-coded nanoparticletags. Analytical Chemistry2011.83(13),5214-5221.
    27. Wang, C.; Liu, D.; Wang, Z., Gold nanoparticle based dot-blot immunoassay for sensitivelydetecting Alzheimer's disease related β-amyloid peptide. Chemical Communications2012.48(67),8392-8394.
    28. Daniel, M. C.; Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, andnanotechnology. Chemical Reviews2004.104(1),293-346.
    29. Jans, H.; Huo, Q., Gold nanoparticle-enabled biological and chemical detection and analysis.Chemical Society Reviews2012.41(7),2849-2866.
    30. Nam, J. M.; Thaxton, C. S.; Mirkin, C. A., Nanoparticle-based bio-bar codes for theultrasensitive detection of proteins. Science2003.301(5641),1884-1886.
    31. Lai, G.; Wu, J.; Ju, H., et al., Streptavidin‐Functionalized Silver‐N anoparticle‐EnrichedCarbon Nanotube Tag for Ultrasensitive Multiplexed Detection of Tumor Markers. AdvancedFunctional Materials2011.21(15),2938-2943.
    32. Li, Y.; Kang, Q. S.; Sun, G.-P., et al., Microchip-based immunoassays with application ofsilicon dioxide nanoparticle film. Analytical Bioanalytical Chemistry2012.403(8),2449-2457.
    33. Zhang, K.; Yang, H., Photon-by-photon determination of emission bursts from diffusingsingle chromophores. The Journal of Physical Chemistry B2005.109(46),21930-21937.
    34. Huang, C. C.; Yang, Z.; Lee, K. H., et al., Synthesis of highly fluorescent gold nanoparticlesfor sensing mercury (II). Angewandte Chemie International Edition2007.119(36),6948-6952.
    35. Chen, G.; Wang, Y.; Tan, L. H., et al., High-purity separation of gold nanoparticle dimers andtrimers. Journal of the American Chemical Society2009.131(12),4218-4219.
    36. Lee, J. S.; Lytton-Jean, A. K.; Hurst, S. J., et al., Silver nanoparticle-oligonucleotideconjugates based on DNA with triple cyclic disulfide moieties. Nano Letters2007.7(7),2112-2115.
    37. Li, H.; Sun, Z.; Zhong, W., et al., Ultrasensitive electrochemical detection for DNA arraysbased on silver nanoparticle aggregates. Analytical Chemistry2010.82(13),5477-5483.
    38. Jiang, Y.; Zhao, H.; Zhu, N., et al., A simple assay for direct colorimetric visualization oftrinitrotoluene at picomolar levels using gold nanoparticles. Angewandte ChemieInternational Edition2008.120(45),8729-8732.
    39. Taton, T. A.; Mirkin, C. A.; Letsinger, R. L., Scanometric DNA array detection withnanoparticle probes. Science2000.289(5485),1757-1760.
    40. Liu, G. L.; Long, Y. T.; Choi, Y., et al., Quantized plasmon quenching dips nanospectroscopyvia plasmon resonance energy transfer. Nature Methods2007.4(12),1015-1017.
    41. Cao, Y. C.; Jin, R.; Mirkin, C. A., Nanoparticles with Raman spectroscopic fingerprints forDNA and RNA detection. Science2002.297(5586),1536-1540.
    42. Storhoff, J. J.; Lucas, A. D.; Garimella, V., et al., Homogeneous detection of unamplifiedgenomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. NatureBiotechnology2004.22(7),883-887.
    43. Liu, X.; Dai, Q.; Austin, L., et al., A one-step homogeneous immunoassay for cancerbiomarker detection using gold nanoparticle probes coupled with dynamic light scattering.Journal of the American Chemical Society2008.130(9),2780-2782.
    44. Jin, R., Super robust nanoparticles for biology and biomedicine. Angewandte ChemieInternational Edition2008.47(36),6750-6753.
    45. Xu, C. S.; Cang, H.; Montiel, D., et al., Rapid and quantitative sizing of nanoparticles usingthree-dimensional single-particle tracking. The Journal of Physical Chemistry C2007.111(1),32-35.
    46. Cang, H.; Shan Xu, C.; Yang, H., Progress in single-molecule tracking spectroscopy.Chemical Physics Letters2008.457(4),285-291.
    47. He, H.; Ren, J., A novel evanescent wave scattering imaging method for single gold particletracking in solution and on cell membrane. Talanta2008.77(1),166-171.
    48. He, H.; Xie, C.; Ren, J., Nonbleaching fluorescence of gold nanoparticles and its applicationsin cancer cell imaging. Analytical Chemistry2008.80(15),5951-5957.
    49. Shi, X.; Wang, S.; Meshinchi, S., et al., Dendrimer‐Entrapped Gold Nanoparticles as aPlatform for Cancer‐Cell Targeting and Imaging.Small2007.3(7),1245-1252.
    50. Murphy, C. J.; Gole, A. M.; Stone, J. W., et al., Gold nanoparticles in biology: beyond toxicityto cellular imaging. Accounts of Chemical Research2008.41(12),1721-1730.
    51. Jiang, W.; Kim, B. Y.; Rutka, J. T., et al., Nanoparticle-mediated cellular response issize-dependent. Nature Nanotechnology2008.3(3),145-150.
    52. Li, J.-L.; Wang, L.; Liu, X.-Y., et al., In vitro cancer cell imaging and therapy usingtransferrin-conjugated gold nanoparticles. Cancer Letters2009.274(2),319-326.
    53. Jiang, Y.; Zhao, H.; Lin, Y., et al., Colorimetric detection of glucose in rat brain using goldnanoparticles. Angewandte Chemie International Edition2010.122(28),4910-4914.
    54. Kong, B.; Zhu, A.; Luo, Y., et al., Sensitive and selective colorimetric visualization of cerebraldopamine based on double molecular recognition. Angewandte Chemie International Edition2011.123(8),1877-1880.
    55. Elghanian, R.; Storhoff, J. J.; Mucic, R. C., et al., Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of gold nanoparticles.Science1997.277(5329),1078-1081.
    56. Shen, Q.; Nie, Z.; Guo, M., et al., Simple and rapid colorimetric sensing of enzymaticcleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticlesas indicator. Chemical Communications2009.45(8),929-931.
    57. Liu, J.; Lu, Y., Colorimetric Cu2+detection with a ligation DNAzyme and nanoparticles.Chemical Communications2007.43(46),4872-4874.
    58. Jiang, T.; Liu, R.; Huang, X., et al., Colorimetric screening of bacterial enzyme activity andinhibition based on the aggregation of gold nanoparticles. Chemical Communications2009.45(15),1972-1974.
    59. Liu, R.; Liew, R.; Zhou, J., et al., A Simple and Specific Assay for Real‐Time ColorimetricVisualization of β‐Lactamase Activity by Using Gold Nanoparticles.Angewandte ChemieInternational Edition2007.119(46),8955-8959.
    60. He, W.; Huang, C. Z.; Li, Y. F., et al., One-step label-free optical genosensing system forsequence-specific DNA related to the human immunodeficiency virus based on themeasurements of light scattering signals of gold nanorods. Analytical Chemistry2008.80(22),8424-8430.
    61. Jiang, Z.; Liao, X.; Deng, A., et al., Catalytic Effect of Nanogold on Cu (II) N2H4Reactionand Its Application to Resonance Scattering Immunoassay. Analytical Chemistry2008.80(22),8681-8687.
    62. Aslan, K.; Holley, P.; Davies, L., et al., Angular-ratiometric plasmon-resonance based lightscattering for bioaffinity sensing. Journal of the American Chemical Society2005.127(34),12115-12121.
    63. Han, G.; Xing, Z.; Dong, Y., et al., One‐Step Homogeneous DNA Assay withSingle‐N anoparticle Detection.Angewandte Chemie International Edition2011.123(15),3524-3527.
    64. Yguerabide, J.; Yguerabide, E. E., Resonance light scattering particles as ultrasensitive labelsfor detection of analytes in a wide range of applications. Journal of Cellular Biochemistry2001.84(S37),71-81.
    65. Du, B. A.; Li, Z. P.; Liu, C. H., One‐step homogeneous detection of DNA hybridization withgold nanoparticle probes by using a linear light‐s cattering technique.Angewandte ChemieInternational Edition2006.45(47),8022-8025.
    66. Yao, J.; Larson, D. R.; Vishwasrao, H. D., et al., Blinking and nonradiant dark fraction ofwater-soluble quantum dots in aqueous solution. Proceedings of the National Academy ofSciences2005.102(40),14284-14289.
    67. Kim, S. A.; Heinze, K. G.; Schwille, P., Fluorescence correlation spectroscopy in living cells.Nature Methods2007.4(11),963-973.
    68. Dong, C.; Qian, H.; Fang, N., et al., Study of fluorescence quenching and dialysis process ofCdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy.The Journal of Physical Chemistry B2006.110(23),11069-11075.
    69. Kuyper, C. L.; Budzinski, K. L.; Lorenz, R. M., et al., Real-time sizing of nanoparticles inmicrofluidic channels using confocal correlation spectroscopy. Journal of the AmericanChemical Society2006.128(3),730-731.
    70. Wang, K.; Qiu, X.; Dong, C., et al., Single‐Molecule Technology for Rapid Detection ofDNA Hybridization Based on Resonance Light Scattering of Gold Nanoparticles.ChemBioChem2007.8(10),1126-1129.
    71. Sabanayagam, C.; Lakowicz, J., Fluctuation correlation spectroscopy and photon histogramanalysis of light scattered by gold nanospheres. Nanotechnology2007.18(35),355402.
    72. Chen, Z.; Lei, Y.; Chen, X., et al., An aptamer based resonance light scattering assay ofprostate specific antigen. Biosensors and Bioelectronics2012.36(1),35-40.
    73. Zou, X.; Huang, H.; Gao, Y., et al., Detection of avian influenza virus based on magneticsilica nanoparticles resonance light scattering system. Analyst2012.137(3),648-653.
    74.潘宏程;蒋治良;袁伟恩, et al.,金纳米粒子共振散射与共振吸收的关系.应用化学2005.22(3),282-285.
    75.蒋治良;冯忠伟;李廷盛, et al.,金纳米粒子的共振散射光谱.中国科学B辑2001.31(2),0-0.
    76. Freeman, R. G.; Hommer, M. B.; Grabar, K. C., et al., Ag-clad Au nanoparticles: novelaggregation, optical, and surface-enhanced Raman scattering properties. The Journal ofPhysical Chemistry1996.100(2),718-724.
    77. Abelev, G., Production of embryonal serum α-globulin by hepatomas: review of experimentaland clinical data. Cancer research1968.28(7),1344-1350.
    78. O'Conor, G. T.; Tatarinov, Y. S.; Abelev, G., et al., A collaborative study for the evaluation of aserologic test for primary liver cancer. Cancer1970.25(5),1091-1098.
    79. Maeng, J. H.; Lee, B. C.; Ko, Y. J., et al., A novel microfluidic biosensor based on anelectrical detection system for alpha-fetoprotein. Biosensors and Bioelectronics2008.23(9),1319-1325.
    80. Song, H.; Chen, D. L.; Ismagilov, R. F., Reactions in droplets in microfluidic channels.Angewandte Chemie International Edition2006.45(44),7336-7356.
    81. Shi, W.; Wen, H.; Lu, Y., et al., Droplet microfluidics for characterizing theneurotoxin-induced responses in individual Caenorhabditis elegans. Lab on a Chip2010.10(21),2855-2863.
    1. Oguri, H.; Hirama, M.; Tsumuraya, T., et al., Synthesis-based approach toward directsandwich immunoassay for ciguatoxin CTX3C. Journal of the American Chemical Society2003.125(25),7608-7612.
    2. Liu, M.; Zhao, H.; Quan, X., et al., Distance-independent quenching of quantum dots bynanoscale-graphene in self-assembled sandwich immunoassay. Chemical Communications2010.46(42),7909-7911.
    3. Wang, J.; Munir, A.; Li, Z., et al., Aptamer–Au NPs conjugates-enhanced SPR sensing for theultrasensitive sandwich immunoassay. Biosensors and Bioelectronics2009.25(1),124-129.
    4. Raj, J.; Herzog, G.; Manning, M., et al., Surface immobilisation of antibody on cyclic olefincopolymer for sandwich immunoassay. Biosensors and Bioelectronics2009.24(8),2654-2658.
    5. Gnedenko, O. V.; Mezentsev, Y. V.; Molnar, A. A., et al., Highly sensitive detection of humancardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhancedSPR biosensor. Analytica Chimica Acta2012.759,105-109.
    6. Mayilo, S.; Kloster, M. A.; Wunderlich, M., et al., Long-range fluorescence quenching bygold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Letters2009.9(12),4558-4563.
    7. Bidlingmaier, M.; Freda, P. U., Measurement of human growth hormone by immunoassays:current status, unsolved problems and clinical consequences. Growth Hormone&IGFResearch2010.20(1),19-25.
    8. Chowdhury, V. S.; Yamamoto, K.; Ubuka, T., et al., Melatonin stimulates the release ofgonadotropin-inhibitory hormone by the avian hypothalamus. Endocrinology2010.151(1),271-280.
    9. Sowers, M.; McConnell, D.; Gast, K., et al., Anti-Müllerian hormone and inhibin B variabilityduring normal menstrual cycles. Fertil Steril2010.94(4),1482-1486.
    10. Kulasingam, V.; Jung, B. P.; Blasutig, I. M., et al., Pediatric reference intervals for28chemistries and immunoassays on the Roche cobas6000analyzer—A CALIPER pilot study.Clinical Biochemistry2010.43(13),1045-1050.
    11. Li, J.; Liu, J.; Zhang, H.-C., et al., Broad specificity indirect competitive immunoassay fordetermination of nitrofurans in animal feeds. Analytica Chimica Acta2010.678(1),1-6.
    12. Tan, C.; Gajovic-Eichelmann, N.; St cklein, W. F., et al., Direct detection ofΔ9-tetrahydrocannabinol in saliva using a novel homogeneous competitive immunoassay withfluorescence quenching. Analytica Chimica Acta2010.658(2),187-192.
    13. Wang, L.; Chen, W.; Xu, D., et al., Simple, Rapid, Sensitive, and Versatile SWNT PaperSensor for Environmental Toxin Detection Competitive with ELISA. Nano Letters2009.9(12),4147-4152.
    14. Hu, W.; Li, X.; He, G., et al., Sensitive competitive immunoassay of multiple mycotoxins withnon-fouling antigen microarray. Biosensors and Bioelectronics2013.50(15),338-344.
    15. Zhang, J.; Liu, S.; Yang, P., et al., Rapid detection of algal toxins by microfluidicimmunoassay. Lab on a Chip2011.11(20),3516-3522.
    16. Lee, J.-S.; Lytton-Jean, A. K.; Hurst, S. J., et al., Silver nanoparticle-oligonucleotideconjugates based on DNA with triple cyclic disulfide moieties. Nano Letters2007.7(7),2112-2115.
    17. Li, H.; Sun, Z.; Zhong, W., et al., Ultrasensitive electrochemical detection for DNA arraysbased on silver nanoparticle aggregates. Analytical Chemistry2010.82(13),5477-5483.
    18. Jiang, Y.; Zhao, H.; Zhu, N., et al., A simple assay for direct colorimetric visualization oftrinitrotoluene at picomolar levels using gold nanoparticles. Angewandte ChemieInternational Edition2008.120(45),8729-8732.
    19. Cao, Y.; Jin, R.; Mirkin, C. A., DNA-modified core-shell Ag/Au nanoparticles. Journal of theAmerican Chemical Society2001.123(32),7961-7962.
    20. Han, X.; Wang, H.; Ou, X., et al., Highly sensitive, reproducible, and stable SERS sensorsbased on well-controlled silver nanoparticle-decorated silicon nanowire building blocks.Journal of Matericals Chemistry2012.22(28),14127-14132.
    21. Larguinho, M.; Baptista, P. V., Gold and silver nanoparticles for clinical diagnostics—Fromgenomics to proteomics. Journal of Proteomics2012.75(10),2811-2823.
    22. Gao, J.; Huang, X.; Liu, H., et al., Colloidal stability of gold nanoparticles modified with thiolcompounds: bioconjugation and application in cancer cell imaging. Langmuir2012.28(9),4464-4471.
    23. Tai, S. S. C.; Xu, B.; Sniegoski, L. T., et al., Development and evaluation of a candidatereference measurement procedure for the determination of19-norandrosterone in human urineusing isotope-dilution liquid chromatography/tandem mass spectrometry. AnalyticalChemistry2006.78(10),3393-3398.
    24. Kuehnbaum, N. L.; Britz-McKibbin, P., Comprehensive profiling of free and conjugatedestrogens by capillary electrophoresis–time of flight/mass spectrometry. Analytical Chemistry2011.83(21),8063-8068.
    25. Blonder, J.; Johann, D. J.; Veenstra, T. D., et al., Quantitation of steroid hormones in thin freshfrozen tissue sections. Analytical Chemistry2008.80(22),8845-8852.
    26. Qin, F.; Zhao, Y.-Y.; Sawyer, M. B., et al., Hydrophilic interaction liquidchromatography-tandem mass spectrometry determination of estrogen conjugates in humanurine. Analytical Chemistry2008.80(9),3404-3411.
    27. Wu, C. H.; Motohashi, T.; Abdel-Rahman, H. A., et al., Free and protein-bound plasmaestradiol-17β during the menstrual cycle. Journal of Clinical Endocrinology&Metabolism1976.43(2),436-445.
    1. Montes-Burgos, I.; Walczyk, D.; Hole, P., et al., Characterisation of nanoparticle size and stateprior to nanotoxicological studies. Journal of Nanoparticle Research2010.12(1),47-53.
    2. Thaxton, C. S.; Georganopoulou, D. G.; Mirkin, C. A., Gold nanoparticle probes for thedetection of nucleic acid targets. Clinica Chimica Acta2006.363(1),120-126.
    3. Zhang, J.; Liu, J.; Peng, Q., et al., Nearly monodisperse Cu2O and CuO nanospheres:preparation and applications for sensitive gas sensors. Chemistry of materials2006.18(4),867-871.
    4. Zhang, T.; Wang, W.; Zhang, D., et al., Biotemplated synthesis of gold nanoparticle–bacteriacellulose nanofiber nanocomposites and their application in biosensing. Advanced FunctionalMaterials2010.20(7),1152-1160.
    5. Zhang, C. Y.; Johnson, L. W., Simple and accurate quantification of quantum dots viasingle-particle counting. Journal of the American Chemical Society2008.130(12),3750-3751.
    6. Agrawal, A.; Zhang, C.; Byassee, T., et al., Counting single native biomolecules and intactviruses with color-coded nanoparticles. Analytical Chemistry2006.78(4),1061-1070.
    7. Zhang, C. Y.; Johnson, L. W., Homogenous rapid detection of nucleic acids using two-colorquantum dots. Analyst2006.131(4),484-488.
    8. D’Antoni, C. M.; Fuchs, M.; Harris, J. L., et al., Rapid quantitative analysis using a singlemolecule counting approach. Analytical Biochemistry2006.352(1),97-109.
    9. Li, H.; Ying, L.; Green, J. J., et al., Ultrasensitive coincidence fluorescence detection of singleDNA molecules. Analytical Chemistry2003.75(7),1664-1670.
    10. Neely, L. A.; Patel, S.; Garver, J., et al., A single-molecule method for the quantitation ofmicroRNA gene expression. Nature Methods2005.3(1),41-46.
    11. Nalefski, E. A.; D’Antoni, C. M.; Ferrell, E. P., et al., Single-molecule detection forfemtomolar quantification of proteins in heterogeneous immunoassays. Clinical Chemistry
    2006.52(11),2172-2175.
    12. Liang, C.; Sung, K. B.; Richards-Kortum, R. R., et al., Design of a high-numerical-apertureminiature microscope objective for an endoscopic fiber confocal reflectance microscope.Applied Optics2002.41(22),4603-4610.
    13. Tiziani, H. J.; Uhde, H. M., Three-dimensional analysis by a microlens-array confocalarrangement. Applied Optics1994.33(4),567-572.
    14. Muller, M.; Squier, J.; Wolleschensky, R., et al., Dispersion pre-compensation of15femtosecond optical pulses for high-numerical-aperture objectives. Journal of microscopy1998.191(2),141-150.
    15. Guild, J. B.; Xu, C.; Webb, W. W., Measurement of group delay dispersion of high numericalaperture objective lenses using two-photon excited fluorescence. Applied Optics1997.36(1),397-401.
    16. Kettling, U.; Koltermann, A.; Schwille, P., et al., Real-time enzyme kinetics monitored bydual-color fluorescence cross-correlation spectroscopy. Proceedings of the National Academyof Sciences1998.95(4),1416-1420.
    17. Dauty, E.; Verkman, A., Actin cytoskeleton as the principal determinant of size-dependentDNA mobility in cytoplasm A New Barrier for non-viral gene delivery. Journal of BiologicalChemistry2005.280(9),7823-7828.
    18.宋文斌.单颗粒计数及其在凝血酶分析中的应用,2011.上海交通大学.
    19. Gordon, J. P.; Mollenauer, L. F., Phase noise in photonic communications systems using linearamplifiers. Optics Letters1990.15(23),1351-1353.
    20.傅惠民,正态分布百分位值和百分率的置信限和容忍限公式.航空学报1994.15(1),94-101.
    21. Otsuka, H.; Akiyama, Y.; Nagasaki, Y., et al., Quantitative and reversible lectin-inducedassociation of gold nanoparticles modified with α-lactosyl-ω-mercapto-poly (ethylene glycol).Journal of the American Chemical Society2001.123(34),8226-8230.
    22. Mashhadizadeh, M. H.; Eskandari, K.; Foroumadi, A., et al., Self‐AssembledMercapto‐C ompound‐G old‐N anoparticle‐Modified Carbon Paste Electrode forPotentiometric Determination of Cadmium (II). Electroanalysis2008.20(17),1891-1896.
    23. Storhoff, J. J.; Lucas, A. D.; Garimella, V., et al., Homogeneous detection of unamplifiedgenomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. NatureBiotechnology2004.22(7),883-887.
    24. Yonezawa, T.; Kunitake, T., Practical preparation of anionic mercapto ligand-stabilized goldnanoparticles and their immobilization. Colloids and Surfaces A: Physicochemical andEngineering Aspects1999.149(1),193-199.
    25. Mashhadizadeh, M. H.; Khani, H.; Foroumadi, A., et al., Comparative studies of mercaptothiadiazoles self-assembled on gold nanoparticle as ionophores for Cu (II) carbon pastesensors. Analytica Chimica Acta2010.665(2),208-214.
    26. Xie, J.; Lee, J. Y.; Wang, D. I., Synthesis of single-crystalline gold nanoplates in aqueous
    solutions through biomineralization by serum albumin protein. The Journal of Physical
    Chemistry C2007.111(28),10226-10232.
    1.宋文斌.单颗粒计数及其在凝血酶分析中的应用,2011.上海交通大学.
    2. Shao, Y.; Xu, S.; Zheng, X., et al., Optical fiber LSPR biosensor prepared by goldnanoparticle assembly on polyelectrolyte multilayer. Sensors2010.10(4),3585-3596.
    3. Cui, R.; Liu, C.; Shen, J., et al., Gold nanoparticle–colloidal carbon nanosphere hybridmaterial: preparation, characterization, and application for an amplified electrochemicalimmunoassay. Advanced Functional Materials2008.18(15),2197-2204.
    4. Stoeva, S. I.; Lee, J. S.; Smith, J. E., et al., Multiplexed detection of protein cancer markerswith biobarcoded nanoparticle probes. Journal of the American Chemical Society2006.128(26),8378-8379.
    5. Thanh, N. T. K.; Rosenzweig, Z., Development of an aggregation-based immunoassay foranti-protein A using gold nanoparticles. Analitical Chemistry2002.74(7),1624-1628.
    6. Liu, X.; Dai, Q.; Austin, L., et al., A one-step homogeneous immunoassay for cancerbiomarker detection using gold nanoparticle probes coupled with dynamic light scattering.Journal of the American Chemical Society2008.130(9),2780-2782.
    7. Hirsch, L.; Jackson, J.; Lee, A., et al., A whole blood immunoassay using gold nanoshells.Analitical Chemistry2003.75(10),2377-2381.
    8. Raschke, G.; Kowarik, S.; Franzl, T., et al., Biomolecular recognition based on single goldnanoparticle light scattering. Nano Letters2003.3(7),935-938.
    9. Claridge, S. A.; Goh, S. L.; Frechet, J. M., et al., Directed assembly of discrete goldnanoparticle groupings using branched DNA scaffolds. Chemistry of Materials2005.17(7),1628-1635.
    10. Wang, K.; Qiu, X.; Dong, C., et al., Single‐Molecule Technology for Rapid Detection ofDNA Hybridization Based on Resonance Light Scattering of Gold Nanoparticles.ChemBioChem2007.8(10),1126-1129.
    11. Stenman, U.-H.; Leinonen, J.; Zhang, W. M., et al. Prostate-specific antigen. Seminars incancer biology, Seminars in Cancer Biology1999.9(2),83-93.
    12. Michael, K.; Brawer, M. D. Prostate‐specific antigen. Seminars in surgical oncology2000.18(1),3-9.
    13. Lilja, H., Biology of prostate-specific antigen. Urology2003.62(5),27-33.
    14. Balk, S. P.; Ko, Y. J.; Bubley, G. J., Biology of prostate-specific antigen. Journal of ClinicalOncology2003.21(2),383-391.
    15. Stamey, T. A.; Yang, N.; Hay, A. R., et al., Prostate-specific antigen as a serum marker foradenocarcinoma of the prostate. New England Journal of Medicine1987.317(15),909-916.
    16. Catalona, W.; Richie, J.; Ahmann, F., et al., Comparison of digital rectal examination andserum prostate specific antigen in the early detection of prostate cancer: results of amulticenter clinical trial of6,630men. The Journal of Urology1994.151(5),1283-1290.
    17. Richie, J. P.; Catalona, W. J.; Ahmann, F. R., et al., Effect of patient age on early detection ofprostate cancer with serum prostate-specific antigen and digital rectal examination. Urology1993.42(4),365-374.
    18. Morote, J.; Raventos, C.; Lorente, J., et al., Comparison of percent free prostate specificantigen and prostate specific antigen density as methods to enhance prostate specific antigenspecificity in early prostate cancer detection in men with normal rectal examination andprostate specific antigen between4.1and10ng./ml. The Journal of Urology1997.158(2),502-504.
    19. Crawford, E. D.; Schutz, M. J.; Clejan, S., et al., The effect of digital rectal examination onprostate-specific antigen levels. JAMA: The Journal of the American Medical Association1992.267(16),2227-2228.
    20. Chybowski, F.; Bergstralh, E.; Oesterling, J., The effect of digital rectal examination on theserum prostate specific antigen concentration: results of a randomized study. The Journal ofUrology1992.148(1),83.
    21. Collins, G. N.; Martin, P. J.; Wynn-Davies, A., et al., The effect of digital rectal examination,flexible cystoscopy and prostatic biopsy on free and total prostate specific antigen, and thefree-to-total prostate specific antigen ratio in clinical practice. The Journal of Urology1997.157(5),1744-1747.
    22. Abelev, G., Production of embryonal serum α-globulin by hepatomas: review of experimentaland clinical data. Cancer research1968.28(7),1344-1350.
    23. O'Conor, G. T.; Tatarinov, Y. S.; Abelev, G., et al., A collaborative study for the evaluation of aserologic test for primary liver cancer. Cancer1970.25(5),1091-1098.
    24. Maeng, J.-H.; Lee, B. C.; Ko, Y.-J., et al., A novel microfluidic biosensor based on anelectrical detection system for alpha-fetoprotein. Biosensors and Bioelectronics2008.23(9),1319-1325.
    25. Sato, Y.; Nakata, K.; Kato, Y., et al., Early recognition of hepatocellular carcinoma based onaltered profiles of alpha-fetoprotein. New England Journal of Medicine1993.328(25),1802-1806.
    26. Colli, A.; Fraquelli, M.; Casazza, G., et al., Accuracy of ultrasonography, spiral CT, magneticresonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: a systematic review.The American Journal of Gastroenterology2006.101(3),513-523.
    27. Shiraki, K.; Takase, K.; Tameda, Y., et al., A clinical study of lectin‐reactivealpha‐f etoprotein as an early indicator of hepatocellular carcinoma in the follow‐up ofcirrhotic patients. Hepatology1995.22(3),802-807.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700