用户名: 密码: 验证码:
高功率微波源注入S波段两腔大间隙速调管放大器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单个高功率微波源(HPM)输出功率的继续提高受到了腔内强场击穿等物理机制的限制。为进一步提高HPM系统的输出功率,研究人员提出了多个HPM源空间相干功率合成的方案,这要求多个HPM源必须是频率一致和相位锁定的。与高功率微波振荡器相比,高功率微波放大器如相对论速调管放大器具有频率、相位稳定的优点,因此成为了HPM空间相干功率合成的首选器件之一。但在向更高的频段发展时,大型的速调管放大器功率合成阵列的商用大功率种子源面临着输出功率不足的问题。鉴于此,本文提出了利用高功率微波源作为种子源,注入锁定多台速调管放大器进行功率合成的思路。作为该思路的初步验证工作,本文开展了利用一台S波段相对论返波振荡器(RBWO)作为种子源,驱动并锁定一台高注入功率、两腔、大间隙相对论速调管放大器(WKA)频率和相位的研究。论文的研究内容和主要结论如下:
     基于电路理论和粒子模拟程序,系统研究了金属膜片-回流杆结构对WKA谐振腔高频特性及WKA基本工作特性的影响。分析结果表明:WKA谐振腔的间隙宽度是相同工作频率常规RKA的2倍以上,能够承受更强的电场而不发生击穿,因而允许数十MW的高注入功率;在抑制WKA谐振腔空间电荷效应中起主导作用的是回流杆而非金属膜片,一旦加载了回流杆,只需要填充少量的金属膜片就能够把间隙附近的空间电势压力抑制到较低的水平;回流杆的尺寸对间隙电场分布特征和电子负载电导的影响较小,因此回流杆的加载并不会明显影响WKA的基本工作特性如束流调制和微波提取效果等。
     在物理分析方面,研究了高注入功率条件下大间隙速调管的微波注入和束流群聚特征。根据等效电路模型得到了谐振腔与电子束及外电路的阻抗匹配条件,为WKA输入腔的设计打下了理论基础;随着注入功率的增加,WKA的束流群聚过程由小信号线性区过渡到大信号非线性区,这分别和小信号的Webster去聚理论以及考虑到电子超越现象的Roe理论的预言结果基本一致;在高注入功率条件下出现的第二峰值电流与多重电子超越现象密切相关,利用电子多重超越效应可把WKA输入腔的群聚电流深度由第一峰值电流的饱和值80%继续提高到92%,从而获得更高的群聚束流功率。
     在粒子模拟方面,对RBWO种子源驱动的高注入功率、两腔WKA进行了优化设计和三维粒子模拟研究。采用优化结构模型,在二极管电压595kV、电流4.9kA、导引磁场约1.5T、净注入功率约36MW、工作频率3.6GHz时,束流群聚深度达92%,两腔WKA的输出功率约为1.05GW,功率效率超过36%。在此基础上,获得了两腔WKA输出功率对RBWO种子源的注入频率、净吸收功率以及二极管电压的依赖关系,研究了WKA对以上输入参数的容忍度。模拟结果指出:两腔WKA的输出频率被RBWO种子源的注入频率线性锁定;高注入功率条件下电子束调制的强烈非线性效应,显著提高了两腔WKA输出功率对高功率种子源RBWO注入功率变化的容忍度;由于省去了品质因数较高的中间腔,两腔WKA的3dB相对工作带宽达到了2.5%,在一定程度上提高了对RBWO种子源注入频率变化的容忍度。同时,分析了加速器二极管电压变化对RBWO-WKA系统锁相效果的影响。分析结果显示:在RBWO种子源初始相位、注入频率以及电子直流渡越效应等三种与二极管电压变化有关的因素中,RBWO种子源初始相位的变化对两腔WKA锁相效果的影响最为显著;然而无论如何,只要二极管电压的变化量足够小,就能利用RBWO种子源锁定两腔WKA的相位,这要求在实验中对加速器的主开关实施外部触发措施。
     在实验研究方面,详细阐述了RBWO-WKA实验系统的设计思想,以及关键设备的准备情况。利用电子束直流冲击法检验了两腔WKA的工作机制,结果说明在150ns的电脉宽下,所设计的两腔WKA工作在放大机制。研究了RBWO-WKA的基本工作特性:两腔WKA的输出频率被RBWO种子源的注入频率线性锁定;在注入功率约22.5MW,注入频率3.55GHz,二极管电压530kV,电流4.1kA,约束磁场1.6T时,两腔WKA的检波功率约229MW,半高宽70ns,功率效率10.9%,功率增益约10dB;结合粒子模拟结果,分析了两腔WKA实验功率和效率偏低的原因。同时,观察了加速器主开关的触发特性对RBWO-WKA系统锁相效果的影响。在主开关工作于电触发模式时,二极管电压稳定在530kV,工作频率稳定在3.55GHz左右,单炮次时RBWO注入信号和WKA输出信号的实时相位差稳定在±16°之内,多炮次时的相对相位差则锁定在±11°之内,保持锁相的时间超过40ns。理论计算结果表明,两个采用类似锁相技术的两腔WKA具有实现高效率相干功率合成的潜力。
Due to the characteristics of high power, high efficiency, stable frequency andphase, the relativistic klystron amplifier has been proved to be one of the promisingcandidates for the high-power microwave coherent power combining. However, therelativistic amplifier devices always require the external injection source to supply tensof or hundreds of kilo-watts power. It means that RF power up to10MW is needed forlocking dozens of amplifiers. This is beyond the output capacity of the external sourcewhich is, commonly, a commercial magnetron of MW levels, particularly as attemptingto scale the system to the higher operation frequency. One potential solution for thisissue is employing a high power external source of GW-class to replace the commercialmagnetron. Because of the plenteous output power of the external source, there is nolimitation on increasing the number of the amplifiers.
     In this dissertation, the mentioned idea is preliminarily validated at a relativelylower frequency by using an S-band relativistic backward wave oscillator (RBWO) asan external source to drive a high power injection two-cavity wide-gap klystronamplifier (WKA) for frequency and phase locking. The related theoretical analyses, PICsimulations and initial experiments are carried out on such a RBWO-WKA system. Thedetailed contents and main conclusions are presented as following.
     In part one, influences of the washers/rods structure of the WKA on the highfrequency characteristics and the basic operation of the amplifier are investigated. Theanalyses show that the return current rods play the more important role in depressing thespace-charge potential of the wide-gap cavity than the metallic washers. Once the rodsare employed, the potential effect can be greatly suppressed even a fewer of washers areused. Moreover, only if the wide-gap cavities are properly tuned, influences of the rodsize on the basic operation of the WKA, such as the beam current modulation and theRF power extraction, are believed to be very weak.
     In part two, to further understand the essential operation process of the WKA underthe high power inspiring case, the external RF signal injection and beam currentbunching are inspected. The impedance matching condition between the electron beamand the external load is obtained according to the circuit model. Considering theelectron bunching theory and the PIC simulation results together, the formationmechanism of the second peak current in the case of high voltage modulationcoefficient is discussed. The results indicate that the second peak current has a closerelation with the electron multiple-overtaking phenomenon.
     In part three, the two-cavity WKA with high power injection is researched in detailthrough the three dimensions electromagnetic particle-in-cell (PIC) code. Basing on theoptimized configuration, the WKA output power of about1.5GW with the conversion efficiency of36%and power gain of14.6dB is achieved under diode voltage of595kV,beam current of4.9kA, input power of36MW and working frequency of3.6GHz.Furthermore, dependences and sensitivities of the output power on the diode voltage,the injection power and frequency of the RBWO source are attained. Benefited from thehigh power injection condition and the two-cavity structure, affects of the injectionpower and frequency on the WKA output power are alleviated. The phase locking effectof the WKA with regard to the diode voltage is also discussed. It demonstrates thatoutput frequency of the WKA is linearly locked by the input frequency of the RBWO.However, for practical application in a power combining system, frequency and phaselocking are supposed to be satisfied simultaneously. In order to restrict the phasedifference of the two-cavity WKA within a narrow enough range, the external RBWOsource should have good frequency reproducibility and stability from pulse to pulse. Itrequires excellent voltage stability in the experiment.
     In part four, the initial experimental studies on the two-cavity WKA driven by theRBWO are accomplished. Preparations of the dual-beam accelerator, the dual-cathodediode, the RBWO external source, the solenoid of the WKA and the time-delay triggersystem are introduced. Under the injection power of~22.5MW, injection frequency of3.55GHz, diode voltage of530kV, beam current of4.1kA and confinementmagnetic-field of1.6T, the WKA output power is about229MW with RF pulse widthof70ns, conversion efficiency of10.9%and power gain of about10dB. Theseexperimental results are compared with that of the PIC simulation cases. Moreover, theperformance of the triggered gas-gap switch of the accelerator is examined and theinfluence of the diode voltage on the phase-locking effect of the RBWO-WKA systemis observed. While the gas-gap switch is externally triggered, the diode voltage and theinjection frequency from the RBWO are maintained around530kV and3.55GHzrespectively within a series of shots. Phase difference between the external source andthe two-cavity amplifier is less than±16°in a single shot, and phase jitter within±11°isgained from shot to shot, with locking duration of about40ns.
引文
[1] Steven H. Gold,Gregory S. Nusinovich. Review of high-power microwave source research [J].Rev. Sci. Instrum.1997,68(11):3945.
    [2]罗勇,李宏福.高功率微波的需求及发展[J].真空电子技术,2004,(1):2.
    [3] Robert J. Barker, Edi Schamiloglu著.高功率微波源与技术[M].清华大学出版社,北京,2005.
    [4]周传明,刘国治,刘永贵等.高功率微波[M].原子能出版社,北京,2007.
    [5] James Benford, John A. Swegle, Edi Schamiloglu著,江伟华,张弛译.高功率微波(第2版)[M].国防工业出版社,北京,2008.
    [6] J. A. Swegle, J. W. Poukey and G. T. Leifeste. Backward wave oscillators with rippled wallresonators: analytic theory and numerical simulation [J]. Phys. Fluids.1985,28(9):2882.
    [7] B. Levush, T. M. Antonsen, A. Bromborsky, et al. Theory of relativistic backward waveoscillators with end reflections [J]. IEEE Trans. Plasmas Sci.1992,20(3):263.
    [8] D. M. Larald, S. Edl, W. L. Raymond, et al. Efficiency enhancement of high power vacuumBWO’s using nonuniform slow wave structure [J]. IEEE Trans. Plasmas Sci.1994,22(5):554.
    [9] L. Baruch, M. A. Thomas, N. V. Alexander, et al. High-efficiency relativistic backward waveoscillator: theory and design [J]. IEEE Trans. Plasmas Sci.1996,24(3):843.
    [10]张军,靳振兴,杨建华等. X波段GW长脉冲高功率微波源的设计与实验[J].强激光与粒子束,2010,22(11):2643.
    [11] Xingjun Ge, Huihuang Zhong, Baoliang Qian, et al. An L band coaxial relativistic backwardwave oscillator with mechanical frequency tunability [J]. Appl. Phys. Lett.2010,97(10):101503.
    [12] Wang Ting, Qian Baoliang, Zhang Jiande, et al. Preliminary experimental investigation of adual-band relativistic backward wave oscillator with dual beams [J]. Phys. Plasmas.2011,18(01):013107.
    [13] Jun Zhu, Ting Shu, Jun Zhang, et al. Experimental investigation of a Ka band high powermillimeter wave generator operated at low guiding magnetic field [J]. Phys. Plasmas.2011,18(05):053101.
    [14] Liang Gao, Baoliang Qian and Xingjun Ge. A compact P-band coaxial relativistic backwardwave oscillator with only three periods slow wave structure [J]. Phys. Plasmas.2011,18(10):103111.
    [15] Renzhen Xiao, Yan Teng, Changhua Chen, et al. High efficiency coaxial klystron-likerelativistic backward wave oscillator with a premodulation cavity [J]. Phys. Plasmas.2011,18(11):113102.
    [16] D. Shiffler, J. A. Nation and G. S. Kerslick. A high power traveling wave tube amplifier [J].IEEE Trans. Plasmas Sci.1990,18(3):546.
    [17] E. B. Abubakirov. An X-band gigawatt amplifier [J]. IEEE Trans. Plasmas Sci.2002,30(3):1041.
    [18] S. P. Bugaev, V. A. Cherepenin, V. I. Kanavets, et al. Relativistic multiwave Cerenkovgenerators [J]. IEEE Trans. Plasmas Sci.1990,18(3):525.
    [19]舒挺.多波切伦科夫振荡器的研究[D].长沙:国防科学技术大学,1998.
    [20] S. P. Bugaev. Investigation of a millimeter wavelength range relativistic diffraction generator[J]. IEEE Trans. Plasmas Sci.1990,18(3):518.
    [21] J. Benford. History and future of the relativistic magnetron [J]. International Conference onthe Origins and Evolution of the Cavity Magnetron,2010:40.
    [22] William M. White, Ronald M. Gilgenbach, Michael C. Jones, et al. Radio frequency primingof a long-pulse relativistic magnetron [J]. IEEE Trans. Plasmas Sci.2006,34(3):627.
    [23] Wei Li, Yonggui Liu. An efficient mode conversion configuration in relativistic magnetronwith axial diffraction output [J]. J. Appl. Phys.2009,106(05):053303.
    [24] M. D. Haworth, G. Baca, J. Benford, et al. Significant pulse lengthening in a multi-gigawattmagnetically insulated transmission line oscillator [J]. IEEE Trans. Plasmas Sci.2006,26(3):312.
    [25]樊玉伟.磁绝缘线振荡器及其相关技术研究[D].长沙:国防科学技术大学,2007.
    [26]李志强,钟辉煌,樊玉伟等. S波段锥形磁绝缘线振荡器长脉冲实验研究[J].强激光与粒子束,2010,20(2):255.
    [27] Daibing Chen, Dong Wang, Fanbao Meng, et al. Bifrequency magnetically insulatedtransmission line oscillator [J]. IEEE Trans. Plasmas Sci.2009,37(1):23.
    [28] D. Price, D. Fittinghoff, J. Benford, et al. Operational features and microwave characteristicsof the vircator II experiment [J]. IEEE Trans. Plasmas Sci.1988,16(2):177.
    [29] Harold A. Davis, Robert D. Fulton, E. G. Sherwood, et al. Enhanced-efficiency, narrow-bandgigawatt microwave output of the reditron oscillator [J]. IEEE Trans. Plasmas Sci.1990,18(3):611.
    [30] Robert F. Hoeberling and Michael V. Fazio. Advances in virtual cathode microwave sources[J]. IEEE T. Eelectromagn. C.1992,34(3):252.
    [31] Liu Jinliang, Zhang Yazhou, Li Chuanlu, et al. Narrow band microwave generation fromvirtual cathode oscillating inside a resonant cavity [J]. Proc. SPIE1996,2843:307.
    [32] Vladimir P. Grigoryev and Tamara V. Koval. Phase locking of high-power coaxial triode witha virtual cathode [J]. Proc. SPIE1997,3158:175.
    [33] Weihua Jiang, James Dickens and Magne Kristiansen. Efficiency enhancement of a coaxialvirtual cathode oscillator [J]. IEEE Trans. Plasmas Sci.1999,27(5):1543.
    [34]杨温渊,丁武.一种高效率和高功率的双同轴虚阴极振荡器[J].强激光与粒子束,2003,15(11):1079.
    [35]王弘刚,张亚洲.新型虚阴极振荡器的研究[J].强激光与粒子束,2004,16(2):209.
    [36] Weihua Jiang, Nami Shimada, Sarita Devi Prasad, et al. Experimental and simulation studiesof new configuration of virtual cathode oscillator [J]. IEEE Trans. Plasmas Sci.2004,32(1):54.
    [37]刘静,舒挺,李志强.新型反馈式轴向同轴虚阴极振荡器[J]. Acta Phys. Sin.2010,59(4):2629.
    [38] M. Friedman, V. Serlin, Y. Y. Lau, et al. Operation of a multi-gigawatt relativistic klystronamplifier [J]. Proc. SPIE1989,1061:34.
    [39] M. Friedman, J. Krall, Y. Y. Lau, et al. Efficient generation of multi-gigawatt rf power by aklystronlike amplifier [J]. Rev. Sci. Instum.1990,61(1):171.
    [40] D. G. Colombant and Y. Y. Lau. Maximum microwave conversion efficiency from amodulated intense relativistic electron beam [J]. Phys. Rev. A1992,45(4):45.
    [41] V. Serlin and M. Friedman. External modulation of intense relativistic electron beams withspatial and velocity inhomogeneities [J]. Appl. Phys. Lett.1993,62(22):2772.
    [42] V. Serlin and M. Friedman. The two-beam configuration of the relativistic klystron amplifier[J]. Proc. SPIE1993,1872:96.
    [43] V. Serlin, M. Friedman. M. Lampe, et al. RF extraction issues in the relativistic klystronamplifiers [J]. Proc. SPIE1994,2154:11.
    [44]黄华,孟凡宝,常安碧等.强流短脉冲相对论速调管放大器实验研究[J].强激光与粒子束,2004,16(10):1291.
    [45]黄华,孟凡宝,范植开等.相对论速调管三轴提取腔的分析与设计[J]. Acta Phys. Sin.2006,55(10):5344.
    [46]雷禄容,范植开,黄华等.相对论速调管放大器双间隙输出腔的粒子模拟[J].强激光与粒子束,2007,19(8):1338.
    [47]雷禄容,黄华,罗雄等.速调管放大器大漂移管尺寸输入腔的3维分析与模拟[J].强激光与粒子束,2011,23(1):151.
    [48] Kyle J. Hendricks, P. Dale Coleman, Raymond W. Lemke, et al. Extraction of1GW rf powerfrom an injection locked relativistic klystron oscillator [J]. Phys. Rev. Lett.1996,76(1):154.
    [49] K. J. Hendricks, M. D. Haworth, T. Englert, et al. Increasing the RF energy per pulse of anRKO [J]. IEEE Trans. Plasmas Sci.1998,26(3):320.
    [50]李少甫,杨中海.新型高功率径向强流速调管振荡器[J].强激光与粒子束,2006,18(11):1888.
    [51]黄华,罗雄,罗光耀等.开孔锁定长脉冲相对论扩展互作用腔振荡器的实验研究[J].强激光与粒子束,2010,22(5):1098.
    [52] R. Bruce Miller, Carl A. Muehlenweg, Kerry W. Habiger, et al. Super-reltron progress [J].IEEE Trans. Plasmas Sci.1994,22(5):701.
    [53] H. J. Kim, J. J. Choi, B. J. Lee, et al. MAGIC3D simulation of an ultra-compact, highlyefficiency, and high power reltron tube [J]. IEEE T. Dielect. El. In.2009,16(4):961.
    [54] Jacques Gardelle. The arletron: a new buncher for high repetition rate HPM operation [J].IEEE Trans. Plasmas Sci.2009,37(7):1225.
    [55] Barry M. Marder, M. Collins Clark, Larry D. Bacon, et al. The split-cavity oscillator: a highpower e-beam modulator and microwave source [J]. IEEE Trans. Plasmas Sci.1992,20(3):312.
    [56]贺军涛,钟辉煌,钱宝良.非均匀三腔谐振腔渡越时间效应的小信号分析[J].强激光与粒子束,2003,15(10):985.
    [57]陈代兵,刘庆想,何琥等. X波段五腔渡越管振荡器的理论与实验研究[J].强激光与粒子束,2005,17(1):93.
    [58]王晓东,范植开,张运俭等. C波段新型渡越管模拟研究[J].强激光与粒子束,2007,19(8):1343.
    [59]臧杰峰,刘庆想,林远超等.新型径向边加载渡越时间振荡器[J].强激光与粒子束,2009,21(12):1871.
    [60] Yibing Cao, Juntao He, Jiande Zhang, et al. High power microwave generation from thelow-impedance transit-time oscillator without foils [J]. Phys. Plasmas.2012,19(7):072106.
    [61] S. P. Bugaev, V. I. Kanavets, A. I. Klimov, et al. Interaction of an electron beam and anelectromagnetic field in a multiwave1010W Cerenkov generator [J]. Sov. J. Commnu.Technol. Electron.1987,32(11):79.
    [62] R. Z. Xiao, X. W. Zhang, L. J. Zhang, et al. Efficient generation of multigigawatt power by aklystron like relativistic backward wave oscillator [J]. Laser Part. Beams2010,28(3):505.
    [63] Renzhen Xiao, Changhua Chen, Jun Sun, et al. A high power high efficiency klystron likerelativistic backward wave oscillator with a dual-cavity extractor [J]. Appl. Phys. Lett.2011,98(10):101502.
    [64] M. Friedman, V. Serlin, Y. Y. Lau, et al. Relativistic klystron amplifier I–High poweroperation [J]. Proc. SPIE1991,1407:2.
    [65] Jun Zhang, Zhenxing Jin, Jianhua Yang, Huihuang Zhong, et al. Recent advance in long-pulseHPM sources with repetitive operation in S-, C-and X-bands [J]. IEEE Trans. Plasmas Sci.2011,39(6):1438.
    [66]葛行军. L波段可调谐同轴相对论返波管振荡器研究[D].长沙:国防科技大学,2010.
    [67] Liang Gao, Baoliang Qian, Xingjun Ge, et al. Experimental study of a compact P-bandcoaxial relativistic backward wave oscillator with three periods slow wave structure [J]. Phys.Plasmas2012,19(8):083113.
    [68] James Benford and Gregory Benford. Survey of pulse shortening in high power microwavesources [J]. IEEE Trans. Plasmas Sci.1997,25(2):311.
    [69] David Price, Jerrold S. Levine and James N. Benford. Diode plasma effects on the microwavepulse length from relativistic magnetrons [J]. IEEE Trans. Plasmas Sci.1998,26(3):348.
    [70] Forrest J. Agee. Evolution of pulse shortening research in narrow band, high powermicrowave sources [J]. IEEE Trans. Plasmas Sci.1998,26(3):235.
    [71] S. D. Korovin, G. A. Mesyats, I. V. Pegel, et al. Pulsewidth limitation in the relativisticbackward wave oscillator [J]. IEEE Trans. Plasmas Sci.2000,28(3):485.
    [72]黄华,范植开,谭杰等.长脉冲相对论速调管中束流脉冲缩短的研究[J]. Acta Phys. Sin.2004,53(4):1129.
    [73] S. D. Polevin, S. D. Korovin, I. K. Kurkan, et al. Pulse lengthening of S-band resonantrelativistic BWO [C]//13thInternational Symposium On High Current ElectronicsProceeding.2004:246.
    [74] Chao Chang, Guozhi Liu, Chuanxiang Tang, et al. Review of recent theories and experimentsfor improving high power microwave window breakdown thresholds [J]. Phys. Plasmas2011,18(5):055702.
    [75] Wee Yong Woo. Phase locking of multiple microwave oscillators [J]. Proc. SPIE1989,1061:229.
    [76] J. S. Levine, N. Aiello and J. Benford. Design of a compact phase locked module ofrelativistic magnetrons [J]. Proc. SPIE1990,1226:60.
    [77]李伟,刘永贵,杨建华.同轴辐射相对论磁控管的功率合成研究[J]. Acta Phys. Sin.2012,61(3):038401.
    [78] W. Woo, J. Benford, D. Fittinghoff, et al. Phase locking of high power microwave oscillators[J]. J. Appl. Phys.1989,65(2):861.
    [79] D. Price, H. Sze, D. Fittinghoff, et al. High power vircator phase locking demonstrations atphysics international [J]. Proc. SPIE1989,1061:206.
    [80] G. S. Nusinovich, O. V. Sinitsyn, J. Rodgers, et al. Phase locking in backward waveoscillators with strong end reflections [J]. Phys. Plasmas2007,14(5):053109.
    [81]张嘉焱,舒挺,袁成卫.高功率微波空间功率合成的初步研究[J].强激光与粒子束,2007,19(6):915.
    [82] Qiang Zhang, Chengwei Yuan and Lie Liu. Design of a dual-band power combiningarchitecture for high-power microwave applications [J]. Laser Part. Beams2010,28(3):377.
    [83] Guolin Li, Ting Shu, Jun Zhang, et al. Generation of gigawatt level beat waves [J]. Appl. Phys.Lett.2010,96(23):234102.
    [84]陈鑫,余川,潘文武等.基于抛物面天线阵的空间功率合成技术[J].强激光与粒子束,2010,22(10):2407.
    [85] Qiang Zhang, Chengwei Yuan and Lie Liu. T-junction waveguide-based combining highpower microwave beams [J]. Phys. Plasmas2011,18(8):083110.
    [86]王邦继,刘庆想,张政权等.机械相控阵列天线的电机控制系统设计[J].强激光与粒子束,2011,23(11):3123.
    [87]周磊,刘庆想,李相强等.用于阵列天线连续跟踪的步进电机控制器IP核设计[J].强激光与粒子束,2011,23(11):3099.
    [88]石成才,刘大刚,蒙林.互耦相对论返波管等同锁相和功率放大的粒子模拟[J].强激光与粒子束,2012,24(1):129.
    [89] Y. Kang. Fast rf ferrite phase shifter for high power applications [C]//Proceedings of19thInternational Linac Conference, Monterey, CA.2000:1012.
    [90]汪海洋,李家胤.一种高功率微波介质相移器的设计[C]//全国第五届高功率微波学术研讨会论文集,广东,珠海,2002:637.
    [91] B. Foster, I. Gonin, T. Khabiboulline, et al. High power phase shifter [C]//Proceedings ofParticle Accelerator Conference, Konxville, Tennessee,2005:3123.
    [92]刘庆想,葛名立,袁成卫等.一种新型高功率微波相移器[J].强激光与粒子束,2005,17(4):569.
    [93] D. Price, H. Sze and D. Fittinghoff. Phase and frequency locking of a cavity vircator drivenby a relativistic magnetron [J]. J. Appl. Phys.1989,65(12):5185.
    [94] H. Sze, D. Price, B. Harteneck, et al. A master oscillator driven phase locked vircator array [J].J. Appl. Phys.1990,68(7):3073.
    [95] David Price and Henry M. Sze. Phase stability analysis of the magnetron driven vircatorexperiment [J]. IEEE Trans. Plasmas Sci.1990,18(3):580.
    [96] S. C. Chen, G. Bekefi and R. J. Tekmin. Injection locking of a long pulse relativisticmagnetron [J]. Proc. SPIE1991,1407:67.
    [97] H. Sze, D. Price and B. Harteneck. Phase locking of two strongly coupled vircators [J]. J.Appl. Phys.1990,67(5):2278.
    [98] J. S. Levine, J. Benford, B. Harteneck, et al. Initial operation of a compact phase lockedmodule of relativistic magnetrons [J]. Proc. SPIE1990,1226:44.
    [99] J. S. Levine, J. Benford, R. Courtney, et al. Operational characteristics of a phase lockedmodule of relativistic magnetrons [J]. Proc. SPIE1991,1407:74.
    [100] Henry Sze, R. R. Smith, James N. Benford, et al. Phase locking of strongly coupledrelativistic magnetrons [J]. IEEE T. Eelectromagn. C.1992,34(3):235.
    [101] J. S. Levine, N. Aiello, J. Benford, et al. Design and operation of a module of phase lockedrelativistic magnetrons [J]. J. Appl. Phys.1991,70(5):2838.
    [102] J. S. Levine, J. Benford, H. Sze, et al. Strongly coupled relativistic magnetrons for phaselocked arrays [J]. Proc. SPIE1989,1061:144.
    [103] Renzhen Xiao, Changhua Chen, Wei Song, et al. RF phase control in a high power highefficiency klystron like relativistic backward wave oscillator [J]. J. Appl. Phys.2011,110(1):013301.
    [104] Wei Song, Jun Sun, Hao Shao, et al. Inducing phase locking of multiple oscillators beyond theAdler’s condition [J]. J. Appl. Phys.2012,111(2):023302.
    [105] Yan Teng, Wei Song, Jun Sun, et al. Phase locking of high power relativistic backward waveoscillator using priming effect [J]. J. Appl. Phys.2012,111(4):043303.
    [106] Jennifer M. Butler and Charles B. Wharton. Twin traveling wave tube amplifiers driven by arelativistic backward wave oscillator [J]. IEEE Trans. Plasmas Sci.1996,24(3):884.
    [107]黄华,金晓,常安碧等.高功率微波空间功率合成的初步实验研究[C]//第八届高功率微波会议,2011.
    [108] M. Friedman and V. Serlin. Present and future developments of high power relativisticklystron amplifiers [J]. Proc. SPIE1992,1629:2.
    [109] V. Serlin and M. Friedman. Development and optimization of the relativistic klystronamplifier [J]. IEEE Trans. Plasmas Sci.1994,22(5):692.
    [110] M. Friedman. Emission of intense microwave radiation from an automodulated relativisticelectron beam [J]. Appl. Phys. Lett.1975,26(7):366.
    [111] M. Friedman, V. Serlin, A. Drobot, et al. Propagation of intense relativistic electron beamsthrough drift tubes with perturbed walls [J]. Phys. Rev. Lett.1983,50(24):1922.
    [112] M. Friedman and V. Serlin. Self-modulation of an intense relativistic electron beam [J]. J.Appl. Phys.1984,58(9):2459.
    [113] M. Friedman and V. Serlin. Behavior of high voltage gaps in the presence of large spacecharge fields [J]. J. Appl. Phys.1985,58(4):1460.
    [114] M. Friedman, J. Krall, Y. Y. Lau, et al. Externally modulated intense relativistic electronbeams [J]. J. Appl. Phys.1988,64(7):3353.
    [115] Y. Y. Lau, J. Krall, M. Friedman, et al. Nonlinear space charge waves on an intenserelativistic electron beam [J]. IEEE Trans. Plasmas Sci.1988,16(2):249.
    [116] Y. Y. Lau, M. Friedman, J. Krall, et al. Relativistic klystron amplifiers driven by modulatedintense relativistic electron beams [J]. IEEE Trans. Plasmas Sci.1990,18(3):553.
    [117] V. Serlin, M. Friedman, Y. Y. Lau, et al. Relativistic klystron amplifiers II–High frequencyoperation [J]. Proc. SPIE1991,1407:8.
    [118] Dwight G. Rickel, Bruce E. Carlsten, Michael V. Fazio, et al. Development of a long pulse1.3GHz relativistic klystron amplifier [J]. IEEE Trans. Plasmas Sci.1992,20(3):373.
    [119] B. E. Carlsten, R. J. Faehl, M. V. Fazil, et al. Intense space charge beam physics relevant torelativistic klystron amplifiers [J]. IEEE Trans. Plasmas Sci.1994,22(5):719.
    [120] Jerrold S. Levine and Bruce D. Harteneck. Repetitively pulsed relativistic klystron amplifier[J]. Appl. Phys. Lett.1994,24(17):2133.
    [121] M. Friedman, V. Serlin, M. Lampe, et al. Present progress and future research in therelativistic klystron amplifier program at the Naval Research Laboratory [J]. Proc. SPIE1994,2154:2.
    [122] M. Friedman, V. Serlin, M. Lampe, et al. Intense electron beam modulation by inductivelyloaded wide gaps for relativistic klystron amplifiers [J]. Phys. Rev. Lett.1995,74(2):322.
    [123] M. Friedman, R. Fernsler, S. Slinker, et al. Efficient conversion of the energy of intenserelativistic electron beams into rf waves [J]. Phys. Rev. Lett.1995,75(6):1214.
    [124] J. Krall, M. Friedman, Y. Y. Lau, et al. Relativistic klystron amplifiers IV–Simulationstudies of a coaxial geometry RKA [J]. Proc. SPIE1991,1407:23.
    [125] M. Friedman and V. Serlin. Generation of a large diameter intense relativistic electron beamfor the triaxial relativistic klystron amplifier [J]. Rev. Sci. Instrum.1995,66(6):3488.
    [126] M. Friedman. Propagation of an intense relativistic electron beam in an annular channel [J]. J.Appl. Phys.1996,80(3):1263.
    [127] V. Serlin and M. Friedman. High frequency operation of the relativistic klystron amplifier [J].Proc. SPIE1992,1629:8.
    [128] J. Krall, M. Friedman, Y. Y. Lau, et al. Simulation studies of a klystron like amplifieroperating in the10-100GW regime [J]. IEEE T. Eelectromagn. C.1992,34(3):222.
    [129] M. Friedman, J. Pasour and D. Smithe. Modulating electron beams for an X band relativisticklystron amplifier [J]. Appl. Phys. Lett.1997,71(25):3724.
    [130] John Pasour, David Smithe and Moshe Friedman. The triaxial klystron [J]. AIP Conf. Proc.1999,474:373.
    [131] John Pasour, David Smithe and Larry Ludeking. X-band triaxial klystron [J]. AIP Conf. Proc.2003,691:141.
    [132]黄华. L波段相对论速调管放大器设计的理论分析与实验研究[D].绵阳:中国工程物理研究院,2001.
    [133]黄华. S波段长脉冲相对论速调管放大器的理论与实验研究[D].绵阳:中国工程物理研究院,2006.
    [134]黄华,范植开,孟凡宝等. S波段长脉冲相对论速调管放大器的实验研究[J].强激光与粒子束,2006,18(6):990.
    [135]黄华,罗雄,雷禄容等.长脉冲相对论速调管放大器杂频振荡的分析与抑制[J].电子学报,2010,38(7):1473.
    [136]陈昭福,常安碧,黄华等. S波段多注相对论速调管放大器的数值模拟[J].强激光与粒子束,2012,24(3):743.
    [137]刘振帮,黄华,金晓等. X波段三重轴相对论速调管放大器的设计[J]. Acta Phys. Sin.2011,60(12):128402.
    [138]李正红,金晓,孟凡宝等.高增益S波段相对论速调管的3D研究[J]. SCIENTIA SINICA2010,40(6):753.
    [139] Song Wei, Liu Guozhi, Lin Yuzheng, et al. Simulation studies of a relativistic klystron withstrong input power [J]. IEEE Trans. Plasmas Sci.2008,36(3):682.
    [140]张泽海,舒挺,张军等. L波段相对论速调管的3维粒子模拟[J].强激光与粒子束,2010,22(3):613.
    [141] Xianchen Bai, Jianhua Yang and Jiande Zhang. Design and3D simulation of a two-cavitywide gap relativistic klystron amplifier with high power injection [J]. Phys. Plasmas2012,19(8):083106.
    [142]白现臣,张建德,杨建华等.大间隙C波段三轴速调管束流调制模拟研究[J].强激光与粒子束,2010,22(3):600.
    [143] Zumin Qi, Jun Zhang, Huihuang Zhong, et al. An improved small signal theory of the triaxialklystron amplifier in the dispersion relation and beam coupling coefficient [J]. IEEE Trans.Plasmas Sci.2012,40(1):41.
    [144] Zhenxing Jin, Jun Zhang, Jianhua Yang, et al. A repetitive S-band long pulse relativisticbackward wave oscillator [J]. Rev. Sci. Instrum.2011,82(8):084704.
    [145] M. Lampe, R. F. Hubbard, M. Friedman, et al. Inductively loaded wide gap designs forrelativistic klystrons [J]. Proc. SPIE1994,2154:49.
    [146] R. F. Hubbard, M. Lampe, M. Friedman, V. Serlin, et al. Simulation of beam gap interactionsand microwave extraction in the NRL relativistic klystron amplifier [J]. Proc. SPIE1994,2154:61.
    [147]王文祥.微波工程技术[M].国防工业出版社,北京,2009.
    [148]谢家麟,赵永翔.速调管群聚理论[M].科学出版社,北京,1966.
    [149]丁耀根.大功率速调管的理论与计算模拟[M].国防工业出版社,北京,2008.
    [150] Sven O. Wallander. Large signal analytical study of bunching in klystrons [J]. IEEE T.Electron Dev.1968,15(8):595.
    [151]顾茂章,张克潜.微波技术[M].清华大学出版社,北京,1989.
    [152]袁成卫,钟辉煌,刘庆想等.同轴波导内金属支撑杆的散射特性研究[J].强激光与粒子束,2005,17(7):1055.
    [153] Xingjun Ge, Huihuang Zhong, Baoliang Qian, et al. Asymmetric-mode competition in arelativistic backward wave oscillator with a coaxial slow-wave structure [J]. Appl. Phys. Lett.2010,97(24):241501.
    [154]张家生,刘扬.相位检测方法研究[J].仪器仪表学报,2003,24(2):307.
    [155]魏群.螺线管磁场分布特征[J].长春工业大学学报,2003,24(3):68.
    [156]丁耀根.大功率速调管的设计制造和应用[M].国防工业出版社,北京,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700