用户名: 密码: 验证码:
水平光场三维显示机理及实现技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光场三维显示技术是近几年才被提出的一种新型三维显示方法。这种技术试图记录和重构三维物体上各个点元朝向各个方向发出的光线,与全息显示类似,因此它不仅可以真实再现三维场景的空间特性,而且能够正确表现不同物体的相互遮挡关系,是一种更符合人们观看习惯的三维显示技术,已经成为近年来的研究热点。
     本论文以全光函数为基础,围绕着光场重构这一问题进行展开,阐述了光场三维显示的基本原理,着重介绍了三套分别采用普通定向散射屏、柱面定向散射屏以及平面偏折型定向散射屏实现360度水平光场三维显示系统的基本结构、重建原理,并详细分析了这三套系统的三维显示空间以及单一视点观看图像。这为光场三维显示实验样机的成功构建和后续性能评价提供了重要的理论依据。
     我们搭建了基于数字微镜阵列(DMD)的彩色高速投影样机,开发了具有特定散射特性的定向散射屏,解决了光场数据采集以及计算、投影图像的快速生成、海量数据的高效压缩与高速传输以及光场扫描的图像同步控制等关键问题,成功地先后构建了基于普通定向散射屏的360度光场三维显示系统以及基于平面偏折型定向散射屏的悬浮式360度光场三维显示系统。实验系统既证明了利用高速投影机和同步旋转的定向散射屏来进行360度光场三维显示的可行性,又为进行光场三维显示性能评价的深入研究提供了有效平台。构建的悬浮式360度光场三维显示,首次成功地将显示的三维场景完全悬浮在屏幕上方的空气中,这为今后观察者用手探入显示区域与三维场景进行实时交互奠定了基础。
     随着三维显示相关研究的深入,评价再现三维图像的显示性能将会成为下一步研究的主要方向。基于构建的实验平台,分析了光场三维显示的空间再现能力,提出了空间分辨率以及角分辨率的计算方法,并从信息量的角度,提出并分析了光场显示所具有的光线复用特性。我们还提出了表示精确度的函数用于评价光场重建的精确程度,为进一步地评价三维显示图像质量提供了理论指导。另外,我们在现有实验平台的基础上对显示系统性能进行了一定的改进与提升。我们提出了基于LED亮度调制的真彩色光场三维显示方法并进行了实验验证,在显示二值图像数量相同的情况下,显著地提高了重建灰度的量级。基于目前的数据传输系统,我们还初步研究了基于手势的三维交互方法,并通过原理实验进行验证。
     最后,展望了光场三维显示的发展前景。基于现有实验系统的不足,从显示器件、屏幕器件、垂直自由视点、图像实时生成及海量数据传输、三维显示图像评价体系以及视觉感知的生理心理学等诸多方面进行了分析,为今后光场三维显示的研究和发展提供了方向。
Light field three-dimensional (3D) display technique, which was proposed several years ago, is one of the novel3D displays. This technique, similar to holographic display, tries to record and reconstruct the rays in different directions emitting from every point of3D objects. Therefore, it can not only reconstruct the spatial property of3D scenes really, but also represent the occlusion relation between different objects correctly. Since light field display conforms with the human vision, it has become one of the research hotspots in recent years.
     Based on the plenoptic function, the thesis involves the issue of light field reconstruction. After brief introduction of the principle of light field display, rotating directional diffuser, cylindrical directional diffuser and flat light field directional diffuser are utilized to develop360-degree light field display system respectively. The configuration and reconstruction method of these three types of3D displays are highlighted, and the3D display zone and image observed at one viewpoint are analyzed in detail. It provides theoretical references for establishment of light field3D display prototypes and subsequent performance evaluation.
     We developed the color high-frame-rate DMD-based projector, and designed the directional diffuser with featured diffusing characteristics. Then we solved the key problems including acquisition and computation of light field, rapid generation of projecting images, efficient compression and high-speed transmission of mass data, synchronization of scanning light field, and so on.360-degree light field3D display system based on rotating directional diffuser and flat light field directional diffuser were built successively. The experimental systems demonstrate the feasibility of the method which is utilizing high-frame-rate projector and synchronously rotating directional diffusing screen to achieve360-degree light field3D display, and provides an effective platform to further study the performance of light field3D display. The floating360-degree floating3D display made the whole displayed3D scenes floating over the flat light field directional diffuser in the air successfully for the first time. It establishes the foundation for the further study of real-time interaction with the reconstructed3D scenes.
     With the further development of3D display, the performance evaluation of displayed3D image is gradually becoming the direction of the next research. Based on the experimental platform, the spatial reconstruction ability was analyzed in detail, and computational method of the spatial resolution and angular resolution was presented. From the perspective of amount of information, the characteristic of ray multiplexing was proposed and analyzed. Besides, we presented the evaluation function of the accuracy of light field reconstruction, which provides theoretical guidance for further evaluation of displayed3D images. We also improved the proposed display system in some respects. The method of true-color light field3D display based on LED luminance modulation was presented. And the experimental result showed that the method could increase the gray scale significantly with the same number of projecting binary images. Based on the current data transmitting system, the method of gesture-based3D interaction was initially researched, and the experimental results verified this method.
     At last, we have discussed the development of light field3D display. Based on the existing deficiency of experimental system, we analyzed on many aspects, such as display device, screen device, vertical free viewpoint, real-time image generation and mass data transmission, evaluation system of3D image, physiology and psychology of visual cognition and so on. It shows us a research direction of future research and development.
引文
1. C.D. Wickens. Three-dimensional stereoscopic display implementation:Guidelines derived from human visual capabilities. John O. Merritt, Proceedings of SPIE,1990,1256:2-11.
    2. Holliman, N.S, Dodgson, N.A., Favalora, G.E., et al, Three-Dimensional Displays:A Review and Applications Analysis, Broadcasting, IEEE Transactions on, vol.57, no.2, pp.362,371, June 2011
    3. C. van Berkel and J.A. Clarke, Characterisation and Optimisation of 3D-LCD Module Design, Proc.SPIE 3012(1997), pp.179-186.
    4. http://www.business-sites.philips.com/3dsolutions/home/index.page.
    5. H.-J. Im, B.-J. Lee, H.-K. Hong, and H.-H. Shin, Auto-stereoscopic 60 view 3D using slanted lenticular lens arrays, J. Inf. Display, vol.8, no.4, pp.23-26,2007.
    6. Y. Takaki, T. Dairiki,72-directional display having VGA resolution for high-appearance image generation, SPIE 6055 (2005).
    7. Y. Takaki. A Novel 3D Display Using an Array of LCD Panels. SPIE -IS&T Electronic Imaging, SPIE 5003 (2003).
    8. Y. Takaki. Thin-type Natural Three-dimensional Display with 72 Directional Image. SPIE 5664 (2005), pp.56-63.
    9. N. A. Dodgson, Analysis of the viewing zone of the Cambridge autostereoscopic display, Appl. Opt.: Optical Technology & Biomedical Opt, vol.35, no.10, pp.1705-1710,1996.
    10. N. A. Dodgson, Analysis of the viewing zone of multi-view autostereoscopic displays, in Proc. SPIE Stereoscopic Displays and Virtual Reality Systems IX,2002, vol.4660, pp.254-265.
    11. Y. Takaki, Super multi-view display with 128 viewpoints and viewpoint formation, in Proc. SPIE Stereoscopic Displays Appl. XX,2009, vol.7237.
    12. Y. Takaki, and N. Nago, Multi-projection of lenticular displays to construct a 256-view super multi-view display, Opt. Express 18(9),8824-8835 (2010).
    13. N. Nago, Y. Shinozaki and Y. Takaki, SMV256:super multiview display with 256 viewpoints using multiple projections of lenticular displays, Proc. SPIE 7524, Stereoscopic Displays and Applications XXI, 75241S (February 17,2010)
    14. Y. Takaki, K. Tanaka, and J. Nakamura, Super multi-view display with a lower resolution flat-panel display, Opt. Express 19,4129-4139 (2011).
    15. C. Slinger, C. Cameron, and M. Stanley, Computer-generated holography as a generic display technology, Computer,38(8),46-53,2005.
    16. Densmore, L. Alexander, M. Ellis, and R. Anderson. Landsliding and the evolution of normal-fault-bounded mountains, Journal of Geophysical Research:Solid Earth 103.B7 (1998):15203-15219.
    17. http://www.zebraimaging.com/products/print-a-hologram
    18. S. Tay, P.A.Blanche, et al, An updatable holographic three-dimensional display, NATURE,2008(451): 694-698
    19. P. A. Blanche, A. Bablumian, et al, Holographic three-dimensional telepresence using large-area photorefractive polymer, Nature,2010(468),80-83.
    20. Q. Smithwick, D. Smalley, et al, Progress in holographic video displays based on guided-wave acousto-optic devices, Proceedings of SPIE, Practical Holography XXII:Materials and Applications, 2008(6912):69120H-1-10
    21. F. Yaras, H. Kang, and L. Onural, Circular holographic video display system, Opt. Express 2011(19): 9147-9156
    22. Y. Takaki and N. Okada, Hologram generation by horizontal scanning of a high-speed spatial light modulator, Appl. Opt.2009(48):3255-3260
    23. Y. Takaki, M. Yokouchi, and Naoya Okada, Improvement of grayscale representation of the horizontally scanning holographic display, Opt. Express 2010(18),24926-24936
    24. Y. Takaki and J. Nakamura, Zone plate method for electronic holographic display using resolution redistribution technique, Opt. Express 2011(19):14707-14719
    25. K. Wakunami and M. Yamaguchi, Calculation for computer generated hologram using ray-sampling plane, Opt. Express 2011(19):9086-9101
    26. R. Muffoletto, J. Tyler, and J. Tohline, Shifted Fresnel diffraction for computational holography, Opt. Express 2007(15):5631-5640
    27. H. Nishi, K. Matsushima, and S. Nakahara, Rendering of specular surfaces in polygon-based computer-generated holograms, Appl. Opt.2011(50):H245-H252
    28. T. Shimobaba, H. Nakayama, and et al, Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display, Opt. Express 2010(18):19504-19509
    29. J. Weng, T. Shimobaba, and et al, Fast recurrence algorithm for computer-generated-hologram, in Digital Holography and Three-Dimensional Imaging, OS A,2011:DTuC21.
    30. N. Shaked and J. Rosen, Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections, Appl. Opt.2008(47):D21-D27
    31. H. Sakata and Y. Sakamoto, Fast Calculation Method for Computer Generated Hologram Using Three-Dimensional Affine Transformation in Real Space, in Digital Holography and Three-Dimensional Imaging, OSA,2009:DWB8.
    32. Y. Pan, X. Xu, and et al, Fast CGH computation using S-LUT on GPU, Opt. Express 2009(17): 18543-18555
    33. Y. Liu, J. Dong, and et al, Fraunhofer computer-generated hologram for diffused 3D scene in Fresnel region, Opt. Lett.2011(36):2128-2130
    34. Favalora, G.E., Volumetric 3D Displays and Application Infrastructure, Computer-IEEE,2005,38 (8):37-44.
    35. E. Luzy, C. Dupuis. Procede pour obtenir des projections en relief. French Patent 461600,1914
    36. C. Fuchtbauer. Excitation of mercury spectral lines. Z. Phys.,1920 (21):635-638
    37. R. W. Wood. Controlled orbital transfer of electrons in optically excited mercury atoms. Proc. R. Soc. London,1924 (106):679-694
    38. E. Downing, A three-color, solid-state, three-dimensional display, Science,273, pp.1185-1189,1996.
    39. M. Leung, N. Ives, Genghmun. Three-Dimensional real-image volumetric display system and method. Pub. No.:5,745,197. Pub. Date:Apr.28,1998.
    40. A. Sullivan. DepthCube solid-state 3D volumetric display. Proc. of SPIE-IS&T Electronic Imaging, SPIE 5291 (2004), pp.279-284.
    41. D. Bahr, K. Langhans, M. Gerken, and et al., FELIX A volumetric 3D laser display, SPIE 2650(1996), 265-273.
    42. D. Bahr, K. Langhans, D. Bezecny, and et al., FELIX:a volumetric 3D imaging technique, SPIE 3101 (1997)P202-210.
    43. K. Langhans, D. Bezecny, D. Homann, and et al, New portable FELIX 3D display, SPIE 3296 (1998), p204-216
    44. K. Langhans, D. Bahr, D. Bezecny, and et al. FELIX 3D Display:An Interactive Tool for Volumetric Imaging. Proceedings of SPIE 4660 (2002), pp.176-190.
    45. G. Favalora, J. Napoli, D. Hall, et al.100 Million-voxel volumetric display. Proc. of SPIE 4712 (2002), pp.300-312.
    46. W, Chun, J. Napoli, O. S. Cossairt, et al. Spatial 3D Infrastructure:Display-Independent Software Framework, High-Speed Rendering Electronics, and Several New Displays. SPIE 5664(2005),302-312.
    47.林远芳,刘向东,刘旭.基于二维旋转屏的体三维显示系统像素属性分析.光子学报,2004,33(4):476-480.
    48.林远芳,刘旭,刘向东.利用旋转发光屏再现三维图像原理及偏差分析.光电工程,2004,31(5):64-67.
    49.林远芳,张晓洁,徐韡.体显示中点阵扫描模式对体像素方位的影响.浙江大学学报(工学版),2005,39(8):1273-1276.
    50.林远芳,刘旭,刘向东.基于旋转二维发光二极管阵列的体三维显示系统.光子学报,2003,23(10):1158-1162.
    51. X. Xie, X. Liu, and Y. Lin. Three-Dimensional Volumetric Display System Based on a Rotating Two-Dimensional LED Array, SID 2008 International Symposium Digest, pp.1610-1613.
    52. H. Li, J. Wu, X. Liu, C. Yan, and Z. Zheng, Color Volumetric 3D Display System based on a Rotating LED Screen,9th International Meeting on Information Display, Oct.12-16,2009, Seoul, Korea.
    53. X. Xie, X. Liu, and Y. Lin. The investigation of data voxelization for a three-dimensional volumetric display system. Journal of Optics A:Pure and Applied Optics,2009,11(4)
    54. J. Wu, X. Liu, C. Yan, X. Xia and H. Li, The analysis of colour uniformity for a volumetric display based on a rotating LED array, Journal of Optics,2011,13,055501.
    55.陆海霞,郑文庭,陈为.彩色体三维显示系统上基于GPU的实时均匀体素化算法.计算机辅助设计与图形学学报,2010,22(3):373-381.
    56.李莉,李玉峰,沈春林,等.基于数字微镜的旋转体三维显示装置研究.仪器仪表学报,2008,29(1):67-72.
    57. W. Song, Q. Zhu, T. Huang, and et al. Volumetric Display System Using Multiple Mini-Projectors, SID Symposium Digest of Technical Papers.,2013,44(1):318-321.
    58. Q. Feng, H. Tao, T. Liu, and et al. Single-DMD based solid-state volumetric true 3D display, Audio Language and Image Processing (ICALIP),2010 International Conference on. IEEE,2010:552-556.
    59. J.-H. Park, K. Hong, and B. Lee, Recent progress in three-dimensional information processing based on integral imaging, Appl. Opt., vol.48, no.34, pp. H77-H94, Dec.2009.
    60. H. Takahashi, H. Fujinami, and K. Yamada, Wide-viewing-angle three-dimensional display system using HOE lens array, in Proc. SPIE Stereoscopic Displays Virtual Reality Syst. XIII, Bellingham, WA,2006, vol.6055, pp.453-461.
    61. J. Kim, S.-W. Min, and B. Lee, Viewing region maximization of an integral floating display through location adjustment of viewing region maximization viewing region maximization of an integral floating display through location adjustment of viewing window, Opt. Express,15, pp.13 023-13 034,2007.
    62. Y. Kim, J.-H. Park, H. Choi, and et al, Depth-enhanced three-dimensional integral imaging by use of multi-layered display devices, Appl. Opt., vol.45, pp.4334-4343,2006.
    63. J. Arai, F. Okano, M. Kawakita, and et al, Integral Three-Dimensional Television Using a 33-Megapixel Imaging System, J. Display Technol.6,422-430 (2010)
    64. T. BALOGH, Method and apparatus for displaying 3D images, U.S. Patent Appl.20030156077, EP 1 285304, May 19,2000.
    65. T. Balogh, T. Forgacs, T. Agocs, et al, A Large Scale Interactive Holographic Display. IEEE VR2006 Conference, March 25-29, Alexandria, Virginia, USA.
    66. T. Balogh, The HoloVizio System,SPIE 6055 (2006),60550U.
    67. T. Balogh, P. T. Kovacs. Real-time 3d light field transmission, SPIE Photonics Europe. International Society for Optics and Photonics,2010:772406-7.
    68. A. Jones, I. McDowall, H. Yamada, and et al, Rendering for an interactive 360° light field display, ACM SIGGRAPH 2007 emerging technologies, August 05-09,2007, San Diego, California.
    69. A. Jones, M. Lang, G. Fyffe, et al, Achieving Eye Contact in a One-to-Many 3D Video Teleconferencing System, ACM Transactions on Graphics,28(3), Proceedings of ACM SIGGRAPH 2009.
    70. J. Jurik, A. Jones, M. Bolas, and et al. Prototyping a light field display involving direct observation of a video projector array, Computer Vision and Pattern Recognition Workshops (CVPRW),2011 IEEE Computer Society Conference on. IEEE,2011:15-20.
    71. G. Wetzstein, D. Lanman, W. Heidrich, R. Raskar. Layered 3D:Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays. Proc. of SIGGRAPH 2011 (ACM Transactions on Graphics 30,4),2011.
    72. D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, R. Raskar. Polarization Fields:Dynamic Light Field Display using Multi-Layer LCDs. Proc. of SIGGRAPH Asia 2011 (ACM Transactions on Graphics 30, 6),2011.
    73. G. Wetzstein, D. Lanman, M. Hirsch, R. Raskar. Tensor Displays:Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting. Proc. of SIGGRAPH 2012 (ACM Transactions on Graphics 31,4),2012.
    74. A. Gershun, The Light Field, Moscow,1936. Translated by P. Moon and G. Timoshenko in Journal of Mathematics and Physics, Vol. ⅩⅧ, MIT,1939, pp.51-151.
    75. E.H. Adelson, J.R. Bergen, The plenoptic function and the elements of early vision. Computational models of visual processing,1991,1(2).
    76. http://en.wikipedia.org/wiki/Light_field
    77. M. Levoy, and P. Hanrahan, Light field rendering. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM,1996,31-42.
    78. SJ. Gortler, R. Grzeszczuk, R. Szeliski, et al. The lumigraph, Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM,1996:43-54.
    79.刘旭李海峰,现代投影显示技术,杭州:浙江大学出版社,2009.
    80. http://focus.ti.com/download/dlpdmd/25061976-b.pdf
    81. http://focus.ti.com/pdfs/dlpdmd/D3000 TRM.pdf
    82. http://www.ti.com.cn/tool/cn/dlpd4x00kit
    83. R. W. Gerchberg and W. O. Saxton, Phase determination for image and diffraction plane pictures in the electron microscope, Optik 34,275-284 (1971).
    84. R. W. Gerchberg and W. O. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik 35,227-246 (1972).
    85. Juan Liu and Ben-yuan Gu, Laser Beam Shaping with Polarization-Selective Diffractive Phase Elements, Appl. Opt.39,3089-3092 (2000)
    86. Myung Soo Kim and Clark C. Guest, Simulated annealing algorithm for binary phase only filters in pattern classification, Appl. Opt.29,1203-1208 (1990)
    87. G. Yang, L. Wang, B. Dong, and B. Gu, On the amplitude-phase retrieval problem in an optical system involved nonunitary transformation, Optik 75,68-74 (1987).
    88. B. Gu, G. Yang, and B. Dong, General theory for performing an optical transform, Appl. Opt.25,3197-3206(1986)
    89. Drew A. Pommet, M. G. Moharam, and Eric B. Grann, Limits of scalar diffraction theory for diffractive phase elements, J. Opt. Soc. Am. A 11,1827-1834 (1994)
    90. Lichtenberg, Bernd, and Neal C. Gallagher Jr. Numerical modeling of diffractive devices using the finite element method. Optical Engineering 33.11 (1994):3518-3526.
    91. D.W Prather, M.S. Mirotznik, and J.N. Mait. Boundary integral methods applied to the analysis of diffractive optical elements, JOSA A 14.1 (1997):34-43.
    92. Andrewartha, J. R., G. H. Derrick, and R. C. McPhedran. A general modal theory for reflection gratings. Journal of Modern Optics 28.11 (1981):1501-1516.
    93. M. G. Moharam, and T. K. Gaylord. Rigorous coupled-wave analysis of planar-grating diffraction. JOSA 71.7 (1981):811-818.
    94. Campbell, Gene, and Raymond K. Kostuk. Effective-medium theory of sinusoidally modulated volume holograms. JOSAA 12.5 (1995):1113-1117.
    95. Yee, Kane S. Numerical solution of initial boundary value problems involving Maxwell's equations. IEEE Trans. Antennas Propag 14.3 (1966):302-307.
    96.姚莉.数字半调技术及其评价方法研究,计算机工程与应用,2010,46(3).
    97. B. E. Bayer, An optimum method for two-level rendition of continuous-tone pictures, in Proceedings of the IEEE International Conference on Communication (Institute of Electrical and Electronics Engineers, New York,1973):26-11-26-15.
    98. R.W. Floyd, L. Steinberg, An adaptive algorithm for spatial grey scale. Proceedings of the Society of Information Display 17 (1976):75-77.
    99. http://china.xilinx.com/products/boards-and-kits/EK-V6-ML605-G.htm
    100. H. Meyr, H.Rosdolsky, T. Huang, Optimum Run Length Codes, Communications, IEEE Transactions on, 22,6(1974):826-835.
    101. De Coulon F, Kunt M. An alternative to run-length coding for black-and-white facsimile, Proc. IEEE Int. Zurich Seminar Digital Commun. C.1974,4:1-4.
    102. Kunt M, Johnsen O. Block coding of graphics:A tutorial review, Proceedings of the IEEE,1980,68(7): 770-786.
    103. R.N. Ascher, G. Nagy, A means for achieving a high degree of compaction on scan-digitized printed text, IEEE Trans. Comput,23 (1974):1174-1179
    104. Kundu M K, Chaudhuri B B, Majumder D D. A generalised digital contour coding scheme, Computer vision, graphics, and image processing,1985,30(3):269-278.
    105. http://www.microsoft.com/zh-cn/kinectforwindows/default.aspx

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700