用户名: 密码: 验证码:
基于散射系数矩阵法的超声兰姆波与典型缺陷交互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声Lamb波由于传播距离远、检测效率高且在检测时可对整个板厚上的缺陷均有较高的灵敏度等优点,成为无损检测和结构健康监测领域最有前景的应用技术之一。目前其技术瓶颈在于如何实现超声Lamb波对结构中缺陷的精密检测,此问题的解决依赖于对超声Lamb波与缺陷的交互作用的深入研宄。由于问题的复杂性,以往的研宄主要采用二维有限模型和实验的方法进行。
     本文采用三维有限元模型和基于阵列传感器的实验方法,利用散射系数矩阵表征超声导波与缺陷的交互作用,研宄了板中超声导波在不同缺陷处的散射特性以及利用散射系数矩阵进行缺陷种类识别和几何参数测量的方法。主要内容如下:
     (1)研宄了散射系数矩阵法表征声波与缺陷交互作用的理论基础。通过对超声Lamb波的入射场和散射场的分析,研宄了圆环波前与平面波前的近似条件,及各散射模态之间的相互关系。利用散射系数矩阵表征声波在缺陷处的模态转换和散射特性,将入射场与散射场联系起来。
     (2)建立了 SO模态和SHO模态与缺陷交互作用的三维有限元模型,并针对圆孔和槽形裂纹两种典型缺陷开展研宄。通过研宄激励单一模态Lamb波的双元激励法,设置吸收边界来消除边界回波等,建立了仿真模型。求解了SO模态和SHO模态与薄板中不同几何尺寸的平底圆孔和裂纹的交互作用时的多模态散射系数矩阵。并对散射系数矩阵的变化规律进行分析,提出了缺陷类型识别和几何尺寸测量的方法。分别实现了圆孔直径和深度以及裂纹扩展方向、裂纹长度和裂纹深度的测量。
     (3)组建了一套测量板中缺陷散射系数矩阵的仪器系统。研制了一种周向一致激励单一SO模态Lamb波的电磁声传感器,并对传感器的激励模态、频带、测量稳定性和周向一致性等参数进行了评估。基于此种传感器环形阵列,组建了一套实验测量板中缺陷散射系数矩阵的仪器系统。开发了一种Gaussian-chirp信号用于实验测量,此信号单次测量即可达到采用多次平均法测量的效果,且激励能量大,信噪比高,可有效减小环境噪声、温度变化等因素对测量的影响。
     (4)实验测量了 SO模态Lamb波在薄板中孔、裂纹和腐蚀坑三种缺陷处的散射系数矩阵。与仿真结果的对比显示两者吻合性很好,证明了仿真模型的正确性以及实验测量系统的可靠性。
     (5)研宄了利用超声Lamb波全聚焦算法实现薄板中缺陷检测的方法。通过分析超声Lamb波阵列检测中的参数选择的影响因素:模态激励方式、频散特性、波长变化和衰减特性。基于超声导波阵列传感器的TFM成像算法,利用周向一致激励单一模态Lamb波的传感器组成环形阵列,对包含缺陷的招板进行了成像研宄。
Lamb wave is one of the most popular technology in NDT (Non-destructive Testing)and SHM (Structure Health Monitoirng) for the reasons of long distance propagation,high inspecting efficiency and sensitive to all the defects along thickness. Currentlythe problem of Lamb wave technology is that it only can be used as a rough locationmethod and 'cant achieve the precise inspection. Solving this question depends on thestudy of interaction of Lamb wave with defects. However, the question is so complexthat most of the lectures using2D FE model and expeirmental method to study it.2D scatteirng of guided wave in different defects in plate was studied using3D FEmodel and EMAT array in experiment. Scattering parameter matrix was employed torepresent the interaction of guided wave with defects and measure the category andgeometrical parameters of defects. Main work is as following:
     1Theoretical basis of using scattering parameter matrix to represent the interaction ofguided wave with defect was studied. Approximating conditions of circular-crest toplane-crest Lamb wave and relationship between scattering modes were studied byanalyzing the incident and scatteirng field. Scattering parameter matrix was employedto present the mode conversion and scattering of acoustic wave at defects, thusincident and scatteirng field could be connected.
     23D FE model of SO mode interaction with defects was established and interaction ofguided wave with hole and crack was represented. FE model study included purityLamb wave generation using dual-elements method and absorbing boundary settingup. Scatteirng parameter matrixes were calculated when SO and SHO mode interactionwith plane-bottom hole and crack with different geometrical parameters. Defect kindsrecognition and geometrical parameters measurement method was established basedon the vairation of scattering parameter matrixes. The diameter and depth of hole andexpansion direction, length and depth of crack could be evaluated.
     3Expeirment system of measuring scattering parameter matirx was established andevaluated. A kind of EMAT for generating omini-directional purity SO Lamb wavewas developed. Its properties such as exciting mode, frequency bandwidth, stabilityand uniformity in all directions were evaluated. With this EMAT array experimentsystem of measuring scattering parameter matrix of defects was set up. A kind ofsignal named Gaussian-chirp was developed to execute the expeirment. This signalcan achieve the same result of multi-times averaging method just with once test. Itpossess high SNR(signal to noise ratio) and great energy, thus can reduce the effect ofmeasuring precision coming from ambient noise and temperature changing.
     4Scattering parameter matrixes of typical defects such as hole, crack and corrosion were measured expeirmentally. The experimental results have a good agreement withFE result, which proved that the FE model was correct and the experiment measuirngsystem was reliable.
     5TFM(Total Focus Method) imaging algorithm of Lamb wave for thin plateinspection was studied. The parameters for Lamb wave array inspection such as modeexciting method, dispersion, wavelength and attenuation, was presented. The TFMalgorithm and circular EMAT array was employed to inspect an aluminum plateincludes defects.
引文
[1] LAMB H. On waves in an elastic plate [J]. Proceedings of the Royal Societya-Mathematical Physical and Engineeirng Sciences,1917,93:114-28.
    [2] CHIMENTI D E. Guided waves in plates and their use in mateirals characterization [J].Applied Mechanics Reviews,1997,50:247-84.
    [3] WORLTON D C. Expeirmental confirmation of Lamb waves at megacycle frequencies [J].Jounral of Applied Physics1961,32(6):967-71.
    [4] 肖福运.关于兰姆波的理论、应用及存在的问题[J].科学研究论文集,1963,(00):240-52.
    [5] 金属薄板的兰姆波探伤[J].航空材料,1977,(01):27-34.
    [6] 孙相臣.祸喷发动机放气带的兰姆波探伤[J].航空工艺技术,1984,(06):25-26.
    [7] 徐维灏,陆原,李希英,张伟代,张广纯.铁磁性钢板电磁声兰姆波探伤技术的研究[J].钢铁研究总院学报,1988,(02):59-64.
    [8] 严仁博.点源和超声模形换能器激发的兰姆波[J].声学学报,1988,13(4):241-246.
    [9] 沈建中,张守玉,应崇福.兰姆波在自由端面上的反射[J].声学学报,1990,15(5):321-328.
    [10]邓明晰.兰姆波的非线性研究[J].声学学报,1996,21(4): 429-438.
    [11]邓明晰.兰姆波的非线性研究(II) [J].声学学报,1997,21:182-187.
    [12]SU Z Q, YE L, LU Y. Guided Lamb waves for identification of damage in compositestructures: A review [J]. Jounral of Sound and Vibration,2006,295(3-5):753-780.
    [13]ROSE J L. A baseline and vision of ultrasonic guided wave inspection potential [J]. Journalof Pressure Vessel Technology-Transactions of the Asme,2002,124(3):273-282.
    [14]GARCIA-RODRIGUEZ M, YANEZ Y, GARCIA-HERNANDEZ M J, et al Experimentalvelocity measurements of the low-order anti-symmetric Lamb wave generated-detected inmetallic plates using air-coupled concave array transducers [J]. Jounral of NondestructiveEvaluation,2011,30(2):50-58.
    [15]KESSLER S S, SPEARING S M, SOUTIS C. Damage detection in composite materialsusing Lamb wave methods [J]. Smart Mateirals&Structures,2002,11(2):269-278.
    [16]KINRA V K, IYER V R. Ultrasonic measurement of the thickness, phase-velocity, densityor attenuation of a thin-viscoelastic plate.1. the forward problem [J]. Ultrasonics,1995,33(2):95-109.
    [17]CASTAINGS M, HOSTEN B. Guided waves propagating in sandwich structures made ofanisotropic, viscoelastic, composite materials [J]. Jounral of the Acoustical Society ofAmerica,2003,113(5):2622-2634.
    [18]SIMONETTI F. Lamb wave propagation in elastic plates coated with viscoelastic mateirals[J]. Journal of the Acoustical Society of America,2004,115(5):2041-2053.
    [19]LOWE M J S. Matirx techniques for modeling ultrasonic-waves in multilayered media [J].IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,1995,42(4):525-542.
    [20]ARONE M, CERNIGLIA D, NIGRELLI V. Defect characterization in A1welded joints bynon-contact Lamb wave technique [J]. Jounral of Mateirals Processing Technology,2006,176(1-3):95-101.
    [21]SARGENT J P. Corrosion detection in welds and heat-affected zones using ultrasonic Lambwaves [J]. Insight,2006,48(3):160-167.
    [22]SARGENT J P. Corrosion detection in welded steel plates using Lamb waves [J]. Insight,2010,52(11):609-616.
    [23]CHANG Z S, MAL A. Scatteirng of Lamb waves from a rivet hole with edge cracks [J].Mechanics of Materials,1999,31(3):197-204.
    [24]GRONDEL S, DELEBARRE C, ASSAAD J, et al. Fatigue crack monitoring of rivetedaluminium strap joints by Lamb wave analysis and acoustic emission measurementtechniques [J]. Ndt&E International,2002,35(3):137-146.
    [25]PAVLOPOULOU S, SOUTIS C, MANSON G. Non-destructive inspection of adhesivelybonded patch repairs using Lamb waves [J]. Plastics Rubber and Composites,2012,41(2):61-68.
    [26]HELLER K, JACOBS L J, QU J. Characteirzation of adhesive bond properties using Lambwaves [J]. NDT&E Intenrational,2000,33(8):555-563.
    [27]LEE J R, TAKATSUBO J, TOYAMA N, et al. Health monitoring of complex curvedstructures using an ultrasonic wavefield propagation imaging system [J]. MeasurementScience&Technology,2007,18(12):3816-3824.
    [28]KIM S B, LEE C Q HONG J W, et al. Applications of an instantaneous damage detectiontechnique to plates with additional complexities [J]. Jounral of Nondestructive Evaluation,2010,29(3):189-205.
    [29]CHO H, MATSUO T, TAKETNOTO M. Long range inspection of wall reduction of tankutilizing zero-th order symmetric mode lamb wave-Performance demonstration of themethod proposed [J]. Mateirals Transactions,2007,48(6):1179-1183.
    [30]MAZEIKA L, KAZYS R, RAISUTIS R, et al. Ultrasonic guided wave tomography for theinspection of the fuel tanks floor [J]. International Jounral of Mateirals&ProductTechnology,2011,41(1-4):128-139.
    [31]VELICHKO A, WILCOX P D. Post-processing of guided wave array data for highresolution pipe inspection [J]. Journal of the Acoustical Society of America,2009,126(6):2973-2982.
    [32]ZHAO X L, GAO H D, ZHANG G F, et al. Active health monitoring of an aircraft wingwith embedded piezoelectric sensor/actuator network:1. Defect detection, localization andgrowth monitoring [J]. Smart Mateirals&Structures,2007,16(4):1208-1217.
    [33]DALTON R P, CAWLEY P, LOWE M J S. The potential of guided waves for monitoringlarge areas of metallic aircraft fuselage structure [J]. Jounral of Nondestructive Evaluation,2001,20(1):29-46.
    [34]LEE J R, SHIN H J, CHIA C C, et al. Long distance laser ultrasonic propagation imagingsystem for damage visualization [J]. Opt Lasers Eng,2011,49(12):1361-1371.
    [35]SONG W J, ROSE J L, WHITESEL H. An ultrasonic guided wave technique for damagetesting in a ship hull [J]. Mateirals Evaluation,2003,61(1):94-98.
    [36]CAWLEY P, ALLEYNE D. The use of Lamb waves for the long range inspection of largestructures [J]. Ultrasonics,1996,34(2-5):287-290.
    [37]WILCOX P D, LOWE M J S, CAWLEY P. Mode and transducer selection for long rangelamb wave inspection [J]. Journal of Intelligent Mateiral Systems and Structures,2001,12(8):553-565.
    [38]WILCOX P D, LOWE M, CAWLEY P. Omnidirectional guided wave inspection of largemetallic plate structures using an EMAT array [J]. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control,2005,52(4):653-665.
    [39]FLEMING M J. Far-ifeld super resolution imaging [D]. London: Impeiral College London,2008.
    [40]RAJAGOPAL P. Towards higher resolution guided wave inspection: scatteirng studies [D].London: Impeiral College London,2007.
    [41]CEGLA F B, ROHDE A, VELDT M. Analytical prediction and experimental measurementfor mode conversion and scatteirng of plate waves at non-symmetric circular blind holes inisotropic plates [J]. Wave Motion,2008,45(3):162-177.
    [42]ACHENBACH J D, ABLER L, LEWIS D K, et al. DIFFRACTION OFULTRASONIC-WAVES BY PENNY-SHAPED CRACKS IN METALS-THEORY ANDEXPERIMENT [J]. Journal of the Acoustical Society of America,1979,66(6):1848-1856.
    [43]WILCOX P D, VELICHKO A. Eiffcient frequency-domain ifnite element modeling oftwo-dimensional elastodynamic scattering [J]. Jounral of the Acoustical Society of America,2010,127(1):155-165.
    [44]WILCOX P. Modeling the excitation of Lamb and SH waves by point and line sources [C].Review of Progress in Quantitative Nondestructive Evaluation,2004,23:206-213.
    [45]VELICHKO A, WILCOX P D. Modeling the excitation of guided waves in generallyanisotropic multilayered media [J]. Jounral of the Acoustical Society of America,2007,121(1):60-69.
    [46]何存富,吴斌,王秀彦.固体中的超声波[M].北京:科学出版社.2004.
    [47]CASTAINGS M, HOSTEN B. Lamb and SH waves generated and detected by air-coupledultrasonic transducers in composite material plates [J]. NDT&E Intenrational,2001,34(4):249-258.
    [48]SAFAEINILI A, LOBKIS0I,CHIMENTI D E. Air-coupled ultrasonic estimation ofviscoelastic stiffnesses in plates [J]. IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control,1996,43(6):1171-80.
    [49]HOLLAND S D, TELES S V, CHIMENTI D E. Air-coupled, focused ultrasonic dispersionspectrum reconstruction in plates [J]. Journal of the Acoustical Society of America,2004,115(6):2866-2872.
    [50]HOSTEN B, BIATEAU C. Finite element simulation of the generation and detection byair-coupled transducers of guided waves in viscoelastic and anisotropic materials [J].Jounral of the Acoustical Society of America,2008,123(4):1963-1971.
    [51]KESSLER S S, SPEARING S M, ATALLA M J. In-situ damage detection of compositesstructures using Lamb wave methods. Proceedings of the Proceedings of the First Europeanworkshop on Structural Health Monitoring, Pairs, France, F10-12July,2002[C].
    [52]GIURGIUTIU V. Tuned lamb wave excitation and detection with piezoelectric wafer activesensors for structural health monitoirng [J]. Jounral of Intelligent Material Systems andStructures,2005,16(4):291-305.
    [53]CUC A, GIURGIUTIU V,JOSHI S, et al. Structural health monitoring with piezoelectricwafer active sensors for space applications [J]. The American Institute of Aeronautics andAstronautics,2007,45(12):2838-2850.
    [54]GIURGIUTIU V,LIN B, SANTONI-BOTTAI G, et al. Space application of piezoelectricwafer active sensors for structural health monitoirng [J]. Jounral of Intelligent MateiralSystems and Structures,2011,22(12):1359-1370.
    [55]YU L, SANTONI-BOTTAI G, XU B, et al. Piezoelectric wafer active sensors for in situultrasonic-guided wave SHM [J]. Fatigue Fracture Engeeirng Material Structures,2008,31(8):611-628.
    [56]GIURGIUTIU V. Piezoelectric wafer active sensors for structural health monitoring ofcomposite structures using tuned guided waves [J]. Jounral of Engineeirng Mateirals andTechnology-Transactions of the ASME,2011,133(4):1-6.
    [57]YU L, GIURGIUTIU V. In situ2-D piezoelectric wafer active sensors arrays for guidedwave damage detection [J]. Ultrasonics,2008,48(2):117-134.
    [58]HIRAO M, OGI H. EMA TS for science and industry: Noncontacting ultrasonicmeasurements [M]. Boston/Dordrecht/London: Kluwer Academic Publishers,2003.
    [59]THOMPSON R B. A model for the electromagnetic generation and detection of rayleighand lamb waves [J]. IEEE transactions on sonics and ultrasonics,1973,SU-20:340-346.
    [60]THOMPSON R B. A model for the electromagnetic generation of ultrasonic guided wavesin ferromagnetic metal polycrystals [J]. IEEE Transactions onSonics and Ultrasonics,1978,(25):7-15.
    [61]WILCOX P D, LOWE M J S, CAWLEY P. The excitation and detection of lamb waveswith planar coil electromagnetic acoustic transducers [J]. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control,2005,52(12):2370-83.
    [62]LEE J S, KIM Y Y, CHO S H. Beam-focused shear-horizontal wave generation in a plate bya circular magnetostrictive patch transducer employing a planar solenoid array [J]. SmartMateirals&Structures,2009,18(1):1-9.
    [63]YAN F, ROYER R L, ROSE J L. Ultrasonic guided wave imaging techniques in structuralhealth monitoirng [J]. Journal of Intelligent Mateiral Systems and Structures,2010,21(3):377-384.
    [64]WILCOX P D. Omni-directional guided wave transducer arrays for the rapid inspection oflarge areas of plate structures [J]. IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control,2003,50(6):699-709.
    [65]WILCOX P D. A rapid signal processing technique to remove the effect of dispersion fromguided wave signals [J]. IEEE Transactions on Ultrasonics Ferroelectrics and FrequencyControl,2003,50(4):419-427.
    [66]VELICHKO A, WILCOX P D. Guided wave arrays for high resolution inspection [J].Jounral of the Acoustical Society of America,2008,123(1):186-196.
    [67]MCKEON J C P, HINDERS M K. Parallel projection and crosshole Lamb wave contactscanning tomography [J]. Jounral of the Acoustical Society of America,1999,106(5):2568-2577.
    [68]JANSEN D P, HUTCHINS D A. Ultrasonic rayleigh and lamb wave tomography [J].Acustica,1993,79(2):117-127.
    [69]JANSEN D P, HUTCHINS D A, MOTTRAM J T. LAMB WAVE TOMOGRAPHY OFADVANCED COMPOSITE LAMINATES CONTAINING DAMAGE [J]. Ultrasonics,1994,32(2):83-89.
    [70]WRIGHT W, HUTCHINS D, JANSEN D, et al. Air-coupled lamb wave tomography [J],leee Transactions on Ultrasonics Ferroelectrics and Frequency Control,1997,44(1):53-59.
    [71]HUTCHINS D A, JANSEN D P, EDWARDS C. Lamb-wave tomography using noncontacttransduction [J]. Ultrasonics,1993,31(2):97-103.
    [72]JANSEN D P, HUTCHINS D A. Immersion tomography using rayleigh and lamb waves [J].Ultrasonics,1992,30(4):245-254.
    [73]MALYARENKO E V,HINDERS M K. Fan beam and double crosshole Lamb wavetomography for mapping lfaws in aging aircraft structures [J]. Journal of the AcousticalSociety of America,2000,108(4):1631-1639.
    [74]LEONARD K R, HINDERS M K. Lamb wave tomography of pipe-like structures [J].Ultrasonics,2005,43(7):574-583.
    [75]CHOI J S, KLINE R A. Multi-parameter Lamb wave tomography [J]. KSME InternationalJounral,2000,14(1):1-10.
    [76]HAY T R, ROYER R L, GAO H D, et al. A compairson of embedded sensor Lamb waveultrasonic tomography approaches for mateiral loss detection [J]. Smart Mateirals&Structures,2006,15(4):946-951.
    [77]ZHAO X,ROYER R L, OWENS S E, et al. Ultrasonic Lamb wave tomography instructural health monitoring [J]. Smart Mateirals&Structures,2011,20(10):1-10.
    [78]LEONARD K R, HINDERS M K. Multi-mode Lamb wave tomography with arrival timesorting [J]. Journal of the Acoustical Society of America,2005,117(4):2028-2038.
    [79]HO K S, BILLSON D R, HUTCHINS D A. Ultrasonic Lamb wave tomography usingscanned EMATs and wavelet processing [J]. Nondestructive Testing and Evaluation,2007,22(1):19-34.
    [80]WANDOWSKI T, MALINOWSKI P, OSTACHOWICZ W. Damage localisation in thinpanels using elastic wave propagation method [M]//CHU F, OUYANG H,SILBERSCHMIDT V, et al. Damage Assessment of Structures Viii. Stafa-Zurich; TransTech Publications Ltd.2009:87-93.
    [81]GANGADHARAN R, BHAT M R, MURTHY C R L, et al. A geodesic-based tirangulationtechnique for damage location in metallic and composite plates [J]. Smart Materials&Structures,2010,19(11):1-10.
    [82]TUA P S, QUEK S T, WANG Q. Detection of cracks in plates using piezo-actuated Lambwaves [J]. Smart Materials&Structures,2004,13(4):643-660.
    [83]MOLL J, SCHULTE R T, HARTMANN B, et al. Multi-site damage localization inanisotropic plate-like structures using an active guided wave structural health monitoirngsystem [J]. Smart Materials&Structures,2010,19(4):1-16.
    [84]CROXFORD A J, WILCOX P D, DRINKWATER B W. Guided wave SHM with adistirbuted sensor network [J]. Health Monitoirng of Structural and Biological Systems2008,2008,(6935)69350-E.
    [85]ROKHLIN S I. Lamb wave interaction with lap-shear adhesive joints-theory andexpeirment [J]. Journal of the Acoustical Society of America,1991,89(6):2758-2765.
    [86]ALLEYNE D N, CAWLEY P. The interaction of lamb waves with defects [J]. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control,1992,39(3):381-397.
    [87]CHO Y H, ROSE J L. A boundary element solution for a mode conversion study oil theedge reflection of Lamb waves [J]. Journal of the Acoustical Society of America,1996,99(4):2097-2109.
    [88]CHO Y H, HONGERHOLT D D, ROSE J L. Lamb wave scattering analysis for reflectorcharacteirzation [J]. IEEE Transactions on Ultrasonics Ferroelectrics and FrequencyControl,1997,44(1):44-52.
    [89]CHO K. Estimation of ultrasonic guided wave mode conversion in a plate with thicknessvairation [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2000,47(3):591-603.
    [90]MCKEON J C P, HINDERS M K. Lamb wave scatteirng from a through hole [J]. Journalof Sound and Vibration,1999,224(5):843-862.
    [91]LOWE M J S, CHALLIS R E, CHAN C W. The transmission of Lamb waves acrossadhesively bonded lap joints [J]. Journal of the Acoustical Society of America,2000,107(3):1333-1345.
    [92]WANG X M, YING C F. Scattering of Lamb waves by a circular cylinder [J]. Journal of theAcoustical Society of America,2001,110(4):1752-1763.
    [93]CASTAINGS M, LE CLEZIO E, HOSTEN B. Modal decomposition method for modelingthe interaction of Lamb waves with cracks [J]. Journal of the Acoustical Society of America,2002,112(6):2567-2582.
    [94]DILIGENT0,GRAHN T, BOSTROM A, et al. The low-frequency relfection andscattering of the S-0Lamb mode from a circular through-thickness hole in a plate: FiniteElement, analytical and expeirmental studies [J]. Journal of the Acoustical Society ofAmerica,2002,112(6):2589-2601.
    [95]LOWE M J S, CAWLEY P, KAO J Y, et al. The low frequency reflection characteristics ofthe fundamental antisymmetric Lamb wave alpha(O) from a rectangular notch in a plate [J].Journal of the Acoustical Society of America,2002,112(6):2612-2622.
    [96]LOWE M J S, DILIGENT O. Low-frequency reflection characteirstics of the s(0) Lambwave from a rectangular notch in a plate [J]. Journal of the Acoustical Society of America,2002,111(1):64-74.
    [97]DILIGENT0,LOWE M J S. Reflection of the s(0) Lamb mode from a lfat bottom circularhole [J]. Journal of the Acoustical Society of America,2005,118(5):2869-2879.
    [98]DI SCALEA F L, RIZZO P, MARZANI A. Propagation of ultrasonic guided waves inlap-shear adhesive joints: Case of incident a(0) Lamb wave [J]. Journal of the AcousticalSociety of America,2004,115(1):146-156.
    [99]SONG W J, ROSE J L, GALAN J M, et al. Ultrasonic guided wave scatteirng in a plateoverlap [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2005,52(5):892-903.
    [100]KAZYS R, MAZEIKA L, BARAUSKAS R, et al.3D analysis of interaction of Lambwaves with defects in loaded steel plates [J]. Ultrasonics,2006,(44)E1127-E1130.
    [101]RAJAGOPAL P, LOWE M J S. Short range scatteirng of the fundamental shear hoirzontalguided wave mode normally incident at a through-thickness crack in an isotropic plate [J].Journal of the Acoustical Society of America,2007,122(3):1527-1538.
    [102]RAJAGOPAL P, LOWE M J S. Scatteirng of the fundamental shear horizontal guided waveby a part-thickness crack in an isotropic plate [J]. Journal of the Acoustical Society ofAmerica,2008,124(5):2895-2904.
    [103]RAJAGOPAL P, LOWE M J S. Angular inlfuence on the scattering of fundamental shearhoirzontal guided waves by a through-thickness crack in an isotropic plate [J]. Journal ofthe Acoustical Society of America,2008,124(4):2021-2030.
    [104]NG C-T, VEIDT M. Scatteirng of the fundamental anti-symmetric Lamb wave atdelaminations in composite laminates [J]. Journal of the Acoustical Society of America,2011,129(3):1288-1296.
    [105]RATASSEPP M, LOWE M J S. SH(0) guided wave interaction with a crack aligned in thepropagation direction in a plate [M]+THOMPSON D0, CHIMENTI D E. Review ofProgress in Quantitative Nondestructive Evaluation, Vols28a and28b.2009:161-168.
    [106]ZHANG J, DRINKWATER B W, WILCOX P D. Defect characterization using anultrasonic array to measure the scatteirng coefficient matrix [J]. IEEE Transactions onUltrasonics Ferroelectrics and Frequency Control,2008,55(10):2254-2265.
    [107]MOREAU L, VELICHKO A, WILCOX P D. Efifcient methods to model the scattering ofguided waves in3D [M]//KUNDU T. Health Monitoirng of Structural and BiologicalSystems2010, Pts1and2. Bellingham; Spie-Int Soc Optical Engineering.2010.
    [108]VELICHKO A, WILCOX P D. A generalized approach for efifcient ifnite elementmodeling of elastodynamic scatteirng in two and three dimensions [J]. Journal of theAcoustical Society of America,2010,128(3):1004-1014.
    [109]VELICHKO A, WILCOX P D. Efifcient finite element modelling of elastodynamicscattering [M]//THOMPSON D0,CHIMENTI D E. Review of Progress in QuantitativeNondestructive Evaluation, Vols29a and29b. Melville; Amer Inst Physics.2010:57-64.
    [110]WILCOX P D, VELICHKO A. Efifcient Finite Element Modeling of Scattering for2D and3D Problems [M]//KUNDU T. Health Monitoirng of Structural and Biological Systems2010, Pts1and2. Bellingham; Spie-Int Soc Optical Engineeirng.2010.
    [111]WILCOX P D, VELICHKO A, DRINKWATER B W, et al. Scatteirng of plane guidedwaves obliquely incident on a straight feature with uniform cross-section [J]. Journal of theAcoustical Society of America,2010,128(5):2715-2725.
    [112]MOREAU L, CALEAP M, VELICHKO A, et al. Scattering of guided waves bythrough-thickness cavities with irregular shapes [J]. Wave Motion,2011,48(7):586-602.
    [113]MOREAU L, VELICHKO A, WILCOX P D. Accurate ifnite element modelling of guidedwave scattering from irregular defects [J]. NDT&E International,2012,45(1):46-54.
    [114]GRAFF K F. Wave Motion in Elastic Solids [M]+New Youk: Oxford University Press.1975.
    [115]GIURGIUTIU V. Structural Health Monitoirng with Piezoelectric Wafer Active Sensors
    [M]+Elsevier,2007.
    [116]SANTONI G. Fundamental studies in the Lamb wave interaction between piezoelectricwafer active sensor and host structure during structural health monitoirng [D]; University ofSouth Carolina,2010.
    [117]AULD B A. Acoustic Fields and Waves in Solids [J].1990.
    [118]MOREAU L, CASTAINGS M, HOSTEN B, et al. An orthogonality relation-basedtechnique for post-processing finite element predictions of waves scattering in solidwaveguides [J]. Journal of the Acoustical Society of America,2006,120(2):611-620.
    [119]GUNAWAN A, HIROSE S. Mode-exciting method for lamb wave-scattering analysis [J].Journal of the Acoustical Society of America,2004,115(3):996-1005.
    [120]LU Y, YE L, SU Z Q, et al. Quantitative assessment of through-thickness crack size basedon Lamb wave scatteirng in aluminium plates [J]. NDT&E International,2008,41(1):59-68.
    [121]BAI H, SHAH A H. Application of boundary element method for3D wave scattering incylinders [J]. International Journal of Computational Methods,2011,8(1):57-76.
    [122]BENMEDDOUR F, TREYSSEDE F, LAGUERRE L. Numerical modeling of guided waveinteraction with non-axisymmetric cracks in elastic cylinders [J]. International Journal ofSolids and Structures,2011,48(5):764-774.
    [123]MICHAELS J E, LEE S J, HALL J S, et al. Multi-mode and multi-frequency guided waveimaging via chirp excitations [M]+KUNDU T. Health Monitoirng of Structural andBiological Systems2011.2011.
    [124]DRINKWATER B W, WILCOX P D. Ultrasonic arrays for non-destructive evaluation: Areview [J]. Ndt&E International,2006,39(7):525-541.
    [125]HIGUTI R T, MARTINEZ-GRAULLERA0,MARTIN C J, et al. Damage characteirzationusing guided-wave linear arrays and image compounding techniques [J]. IEEE Transactionson Ultrasonics Ferroelectrics and Frequency Control,2010,57(9):1985-1995.
    [126]LEE J S, KIM H W, JEON B C, et al. Damage detection in a plate using beam-focusedshear-horizontal wave magnetostrictive patch transducers [J]. The American Institute ofAeronautics and Astronautics,2010,48(3):654-663.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700