用户名: 密码: 验证码:
混凝土箱梁和空心高墩温度场及温度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土结构的导热性能差,其表面与外界发生辐射、对流等热交换的作用下,表面温度迅速上升或者降低,但结构的内部温度仍处于原来状态;再者,当出现寒潮时,混凝土表面温度突然降低,而混凝土内部会保持原来温度,导致混凝土内外温差很大,在混凝土结构中形成较大的温度梯度。这种温差会产生温度变形,当结构受到内、外约束阻碍时,将会产生相当大的温度应力。这种温度应力和变形直接影响到混凝土结构的安全性、耐久性和适用性。本文以铁道部重点科技课题——艰险困难山区高速铁路桥梁关键技术研究中的第5个子课题为研究背景,主要工作如下:
     根据传热学、天文学、太阳能物理学的理论,全面考虑混凝土结构与外界之间的热交换边界,建立桥梁结构日照温度场分析理论模型。采用APDL参数化建立箱梁空间有限元温度场分析模型进行计算,并对其准确性进行评价。分析了初始条件的定义对混凝土内部克服初始温度场,达到热稳态波动时间的影响。
     设计、制作幸福源水库实桥12#桥墩高度中部截面高度1米的1:1节段模型和不同壁板厚度的桥墩模型,进行模型试验。用APDL参数化建立桥墩有限元温度场分析模型,分析了桥墩方位角度、导热系数、大气透明度和壁板厚度对桥墩温度场分布的影响。通过将实际测试结果与模型试验结果、有限元计算结果相对比分析,最终得到混凝土空心桥墩沿壁厚的温差曲线模式。
     针对混凝土箱梁,通过改变壁板的厚度对其温度场进行计算,提出了顶板和腹板厚度越大(顶板≥50cm,腹板≥40cm)时,温差曲线才趋于稳定。而我国铁路规范在定义温差曲线的时候是当顶板、腹板壁厚≥26cm时,指数系数a'值就稳定在10。
     针对公路混凝土箱梁,通过对比计算混凝土铺装层、50mm沥青混凝土铺装层和100mm沥青混凝土铺装层这三种情况下,顶板表面点的温度大小,提出了50mm沥青混凝土铺装层反而使得箱梁的竖向温度梯度不利,建议50mm沥青混凝土铺装的T1值取为27。提出了公路混凝土箱梁上有铺装层时,其竖向温度场的简化半解析算法。
     通过分析截面形状和尺寸、截面倒角对温度应力的影响发现,我国现行的铁路桥涵设计规范(TB10002.3-2005)在计算横向应力时,是假设箱梁壁板厚度相等的,也忽略了倒角的影响,这样使得温度应力计算结果将偏小,偏于不安全。基于ANSYS二次开发的三大语言APDL、UIDL和UPF,开发出与ANSYS风格一致的针对大跨预应力混凝土箱梁温度场及其效应计算的可视化模块。总结了现目前温度应力计算中,热弹性模量的取值方法。
Due to the poor thermal conductivity, the surface temperature of concretestructures will be rapidly increased or decreased by the surrounding ambienttemperature, solar radiations and other actions while the internal temperature remainsthe same; furthermore, the surface temperature will suddenly reduce in case of coldwaves wile the internal temperature remains the same, leading to large temperaturedifference between inside and outside the concrete, the formation of a large temperaturegradient in concrete structures and that different parts of concrete structures are atdifferent temperatures. Such temperature differences will result in temperaturedeformation; when the structure is impeded by internal and external constraints, it willgenerate significant thermal stress. The temperature stress and deformation have a directimpact on the safety, durability and applicability of concrete structures. Therefore, withthe research background of the fifth sub-topic of the technology topic in the Ministry ofRailways–Study on key technology in high-speed railway bridges in mountainous, inthis paper, the following works were completed successful.
     According to the theory of heat transfer, astronomy and solar physics, theoreticalcalculation model was established for sunshine temperature field of bridge structure,with a comprehensive consideration of the heat exchange between the concrete structureand the outside boundary. The finite element analysis models of temperature field forbox girder were established and calculated by APDL. The time required to reachthermal steady state of fluctuation was analyzed on the basis of initial temperature.
     1:1model of1m high middle section of12#pier of Xingfuyuan Bridge and thepier models with different wall thickness were designed and made for model test. Someimpact on the pier temperature field distribution factors are analyzed through theestablishment of the pier finite element temperature field analysis model by APDL, suchas azimuth angle, thermal conductivity, and transparency of the atmosphere and wallthickness. By comparision of the three results (test results on site, model test results,theoretical analysis results), the temperature difference curves along the wall thicknessof hollow concrete piers were summed up.
     For concrete box girder, the temperature field was calculated as changing thethickness of the panel. It was found that The thicker of the tops and webs(roof≥50cm,webs≥40cm), the more stable temperature difference curve would be obtained. However, it was defined that the exponential coefficient would stable at10when thethickness of the roof (or web) was not less than26cm in china's railway norms.
     For highway concrete box girder,the calculation and comparison of the threemodels (box without pavement,50mm asphalt concrete pavement,100mm asphaltconcrete pavement)was completed. The point that the box girder with50mm asphaltconcrete pavement affect the structure adversely in vertical temperature gradient, wassummed up. The recommended valueT1was27when50mm asphalt concretepavement. Subsequently, the simplified and semi-analytical algorithm of temperaturefield for box with different pavement is obtained.
     By analyzing the effects of section shape and dimension and section chamfer ontemperature stress, we found that when calculating transverse stress, China’s existingrailway bridge design specifications (TB10002.3-2005) assumed equal thickness of boxgirder wall and plate and also ignored the effects of chamfer, thus making thetemperature stress calculation results smaller and unsafe.
     Visualization modules for calculation of temperature field and its effect ofprestressed concrete box girder with long-span, were developed by the three languagefor secondary development named APDL, UIDL and UPF, with the style consistent withthe ANSYS. The value of thermal elastic modulus for temperature stress at present wassummarized.
引文
[1] Anon. Bridge Temperatures[J]. Transport&Road Research Laboratory (Great Britain), TRRLReport,1978(442): p.96.
    [2] ANSYS, Inc ANSYS Advanced Analysis Technigues Guide, Release5.4.1997.
    [3] Batla F.A., Reisnour P.R., Pathak D.V. Deformations And Stresses In Flanged ConcreteStructures Due To Temperature Differentials[C]. Phoenix, AZ,USA,1985.
    [4] Barr P.J., Stanton J.F., Eberhard M.O. Effects of temperature variations on precast, prestressedconcrete bridge girders[J]. Journal of Bridge Engineering,2005.10(2): p.186-194.
    [5] Black W., Moss D.S., Emerson M. Bridge Temperatures Derived From Measurement OfMovement[J].Transport&Road Research Laboratory (Great Britain),TRRL Report,1976(748): p.35.
    [6] Branco P.A., Mendes P.A. Thermal actions for concrete bridge design. Journal of StructureEngineering, ASCE,1993,119(8):2313-2331.
    [7] Chang S.P., Im C.K. Thermal behaviour of composite box-girder bridges[J]. Proceedings of theInstitution of Civil Engineers, Structures and Buildings,2000.140(2): p.117-126.
    [8] Chen C.S., Yan D.H., Cheng H.Q., Tu G.Y., Liu L.T. Analysis of temperature influence onlong-span prestress concrete cable-stayed bridge construction control[J]. Gongku JiaotongKeji/Journal of Highway and Transportation Research and Development,2002.19(6): p.84.
    [8] Chen H.X., Liu W.W. Research on the temperature distribution of steel-concrete composite beamspecimen[J]. Zhongguo Tiedao Kexue/China Railway Science,2005.26(1): p.42-47.
    [9] Chen H.X., Liu W.W., Liu F.Z. Numerical calculation of steel-concrete composite beamspecimen in its temperature dropping and rising process[J]. Zhongnan Daxue Xuebao (ZiranKexue Ban)/Journal of Central South University (Science and Technology),2005.36(2): p.335-339.
    [10] Clark, J. H. Evaluation of thermal stresses in a concrete box girder bridge, Proc. Instn Civ.Engrs, Part2,1989,87(9):415-428.
    [11] Dilger W.H., Loptson S.A. Temperature monitoring of the Confederation Bridge[C].Sherbrooke,Can,1997.
    [12] Dilger, W. H., Ghali, A., Chan, M., Cheung, M. S. and Maes, M. A. Temperature Stresses inComposite Box Girder Bridges, Journal of Structural Engineering, ASCE, Vol109, No.6,June,1983pp.1460-1478.
    [13] Dilger, W. H., Ghali, A., Temperature induced Stresses in composite Box Girder Bridges,Depart of Supply and Services, Ottawa, Ontario, Canada, Oct,1980.
    [14] D. S. Prakash Rao. Temperature distribution and strsses in concrete bridges. ACI Jounmal,1986.
    [15] Elbadry, M. M., Thermal response of Concrete Box-Girder Bridges, thesis presented to the University of Calgary, at Calgary, Alberta, Cananda, in1982, in partial fulfillment of therequirements for the degree of Master of science in Engineering.
    [16] Emanuel, J. H., and Hulsey, J. L., Temperature Distribution in composite Bridges, Journal ofthe Structural Division, ASCE, Vol.104. ST1, Jan,1987, pp.65-78.
    [17] Emerson, M. Bridge temperatures estimated from the shade temperature. Laboratory Report696, Transportation Road Research Laboratory, Crowthore,1976:2-32.
    [18] Emerson, M. Thermal movements of concrete bridges: field measurements and methods ofprediction. Supplementary Report747, Transportation Road Research Laboratory, Crowthore,1982:5-10.
    [19] Fil V.A., Isakov S.A., Pashchenko V.V., Malanin V.P. Standardizing transducersoftensoresistor sensors with temperature effect error correction[J]. Radiotekhnika,1995(10): p.32-34.
    [20] Fu Y., DeWolf J.T. Effect of differential temperature on a curved post-tensioned concretebridge[J]. Advances in Structural Engineering,2004.7(5): p.385-397.
    [21] Garrett R.J. DISTRIBUTION OF TEMPERATURE IN BRIDGES[J]. Hong Kong Engineer,1985.13(5): p.35-38.
    [22] Gilliland J.A., Dilger W.H. Monitoring concrete temperature during construction of theconfederation bridge[J]. Canadian Journal of Civil Engineering,1997.24(6): p.941-950.
    [23] Green T., Yazdani N., Spainhour L., Cai C.S. Intermediate diaphragm and temperature effectson concrete bridge performance[J]. Transportation Research Record,2002(1814): p.83-90.
    [24] Guo J. Analysis of unsteady temperature gradient and thermal stress field for concrete girderof cable-stayed bridge[J]. Zhongguo Gonglu Xuebao/China Journal of Highway andTransport,2005.18(2): p.65-68.
    [25] Guo Q.W., Fang Z., Pei B.Z., Deng H., Liu G.D. Temperature effect analysis of concretecable-stayed bridge[J]. Zhongguo Gonglu Xuebao/China Journal of Highway and Transport,2002.15(2): p.48.
    [26] Ho D., Ma Y.P., Cornish L.S., Currie L.G. Temperature Measurements1n Castle Peak/TexacoRoad Flyover[J]. Hong Kong Engineer,1984.12(9): p.29-33.
    [27] Hoffman P.C., Ciesielski S.K. Experimental study of the transient temperature distributions inconcrete[C]. Denver, CO, USA,1992.
    [28] Hue F., Serrano G., Bolano J.A. Oresund Bridge. Temperature and cracking control of thedeck slab concrete at early ages[J]. Automation in Construction,2000.9(5): p.437-445.
    [29] Kuehn T.H, Ramsey J.W, Threlkeid J.L. Thermal environmental engineering,3rded. UpperSaddle River, N.J.: Prentice Hall,1998.
    [30] Lachemi M., Aitcin P.C. Influence of ambient and fresh concrete temperatures on themaximum temperature and thermal gradient in a high-performance concrete structure[J]. ACIMaterials Journal,1997.94(2): p.102-110.
    [31] Liu X. Computation Of Temperature Stresses For Prestressed Concrete Box Girders[J]. TumuGongcheng Xuebao/China Civil Engineering Journal,1986.19(1): p.44-54.
    [32] Lopez-Anido R., Dutta P., Bouzon J., Morton S., Shahrooz B., Harik I. Fatigue evaluation ofFRP-concrete bridge deck on steel girders at high temperature[J]. InternationalSAMPE Symposium and Exhibition (Proceedings),1999.44(pt2): p.1666-1675.
    [33] Lloyd G.M., Wang M.L., Wang X., Love J. Recommendations for Intelligent BridgeMonitoring Systems: Architecture and Temperature-Compensated Bootstrap Analysis[C]. SanDiego, CA,United States,2003.
    [34] Mae’s, M. A., Effects of Environmental and Material Characteristics on the Behavior ofConcrete Structures, thesis, presented to the University of Calgary, at Calgary, Alberta.
    [35] Mamdouth M. Elbadry and Amin Ghali, Temperture Variations in Concrete Bridges, Journalof Structural Engineering, ASCE, Vol.109, No.10, OCT,1983, pp.2355-2374.
    [36] Mak S.L., Torii K. Strength development of high strength concretes with and without silicafume under the influence of high hydration temperatures[J]. Cement and Concrete Research,1995.25(8): p.1791-1802.
    [37] Moony S., Roeder C.W. Temperature-dependent bridge movements[J]. Journal of StructuralEngineering,1992.118(4): p.1090-1105.
    [38] Moorty, S., C. W. Roeder. Temperature-denpendent bridge movements. Jomal of StructuralEngineering,1992.
    [39] Myers J.J., Carrasquillo R.L. Influence of radiation temperature on durability and mechanicalproperty performance of prestressed and precast high-performance concrete beams[C]. Tampa,FL,2000.
    [40] Nam S.K. Seasonal And Diurnal Behavior Of Concrete Box-Girder Bridges [J].TransportationResearch Record,1984: p.50-56.
    [41] Norenberg J.R., Scherz J.P. Differential Temperature Cycles For Optimum Detection OfDelamination1n Concrete Highways Using Infrared Thermography[C]. Salt LakeCity, UT, USA,1983.
    [42] Pisani M.A. Non-linear strain distributions due to temperature effects in compactcross-sections[J]. Engineering Structures,2004.26(10): p.1349-1363.
    [43] Priestly, M. J. N., Design of Concrete Bridges for Temperature Gradients, American ConcreteInsititute Journal, May,1978, pp.209-217.
    [44] Priestly, M. J. N., Effects of Tranbers Temperature Gradients on Bridges, CentralLaboraTories, New Zealand Ministry of works, Repor No.394, OCT,1971.
    [45] Ran H J, Thomas R, Mavris D. A Comprehensive Global Model of Broadband Direct SolarRadiation for Solar Cell Simulation, in45thAIAA Aerospace Sciences Meeting and Exhibit.2007, American Institute of American and Astronautics: Reno, Nevada.
    [46] Roller J.J., Russell H.G., Bruce R.N., Hassett B. Effect of curing temperatures on highstrength concrete bridge girders[J]. PCI Journal,2003.48(2): p.72-79.
    [47] Saetta A, Scotta R, Vitaliani R. Stress analysis of concrete structures subjected to variablethermal loads, Journal of Structure Engineering, ASCE,1995,121(3):446-457.
    [48] Tang Z., Li Z., Xu D. Study on the temperature sensibility of carbon fiber reinforced concrete(CFRC) road material[J]. Wuhan Gongye Daxue Xuebao/Journal of Wuhan University ofTechnology,2001.23(3): p.5-7.
    [49] Testani C., Bartuli C., Sarasini F., Valente T. Tension-tension fatigue behavior of aunidirectional titanium-matrix composite (SCS-6/SP-700) at elevated temperatureComportamento meccanico in prove di fatica a caldo di compositi metallici a matrice di legaSP-700rinforzata confibre di Carburo di silicio tipo SCS-6[J]. Metallurgia Italiana,2005.97(7-8): p.31-36.
    [50] Vurpillot S., Benouaich D., Clement D., Inaudi D. Vertical deflection of a pre-stressedconcrete bridge obtained using deformation sensors and inclinometer measurements[J].ACIStructural Journal,1998.95(5): p.518-526.
    [51] Walraven J., Shkoukani H. Creep and relaxation of concrete subjected to imposed thermaldeformationsKriechen and Relaxation des Betons bei Temperatur-Zwangbeanspruchung[J].Beton-and Stahlbetonbau,1993.88(1): p.10-15.
    [52] Wojcik G.S., Plawsky J.L., Fitzjarrald D.R. The utility of a bimolecular expression to describethe heat generation and temperatures in curing Class HP concrete[J].Cement and ConcreteResearch,2001.31(12): p.1847-1858.
    [53] Wyche P.J. Effects Of Cyclic Temperature Loads On Concrete Bridges [C]. Melbourne, Aust,1982.
    [54] Yazdani N., Shahawy O.E., Issa M.A. Influence of temperature on precast bridge girders[C].Boston, MA, USA,1995.
    [55] Yu T.Q., Miao X.S., Xiong J.M., Jiang H., Lee H. Orthotropic damage model for concrete atdifferent temperature. Engineering Fracture Mechanics,1989.32(5): p.775-786.
    [56] Zhang X., Zhang Z., Ding Y., Zhan H. Research on temperature field of concrete Box girdersof Yellow River Bridge in Dengkou[J]. Wuhan Ligong Daxue Xuebao (Jiaotong Kexue YuGongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science andEngineering),2005.29(3): p.392-395.
    [57] Zuk W. Thermal and Shrinkage Stresses in Composite Beams[J]. ACI. Journal,1961,58(3):327-340.
    [58]蔡润梁.大体积混凝土温度裂缝控制技术研究与实践[D]:[硕士学位论文].武汉:武汉理工大学结构工程专业,2003.
    [59]陈忠全,邓先瑞.太阳辐射与热能[M].北京:高等教育出版社,1989.
    [60]方先金.中国大气透明度系数研究[J].南京气象学院学报,1985,8(3),293-305.
    [61]范立础.预应力混凝土连续梁桥[M].北京:人民交通出版社,1988.
    [62]方立志.计算钢筋混凝土桥梁日照温度应力时弹性模量取值问题的试验研究[J].桥梁建设,1986. NO.10.
    [63]冯涛.大体积混凝土桥墩基础的温度裂缝控制[D]:[硕士学位论文].成都:西南交通大学建筑与土木工程专业,2002.
    [64] F.凯尔别克著,刘兴法等译.太阳辐射对桥梁结构的影响[M].中国铁道主办社,1981.
    [65]葛忠全.大体积混凝土温度裂缝控制[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学交通运输工程专业,2003.
    [66]龚曙光,谢桂兰. ANSYS操作命令与参数化编程[M].北京:机械工业出版社.2004.4.
    [67]国家技术监督局、建设部联合发布.民用建筑热工设计规范(GB50176-93).第一版.北京:中国建筑工业出版社,1999,89-112.
    [68]韩重庆.大面积预应力混凝土梁板结构不设温度缝研究[D]:[硕士学位论文].南京:东南大学结构工程专业,2001.
    [69]胡匡璋,江新元.柔性墩温度应力的研究[M].上海:上海铁道学院出版社,1984.
    [70]黄列夫.羊里大桥高墩关键技术问题研究[J].湖南水利水电:2003.6.
    [71]贾琳.太阳辐射作用下混凝土箱梁的温度分布及温度应力研究[D].东南大学硕士学位论文,2001.5:2-45.
    [72]景天然,严作人.水泥混凝土路面温度状况的研究[J].同济大学学报,1980,8(3):88-98..
    [73]孔详谦,王传溥.有限单元法在传热学中的应用[M]北京:科学出版社.1981.07.
    [74]李申生.太阳能物理学[M].北京:首都师范大学出版社,1996.
    [75]李文化.考虑温度作用的大体积混凝土结构损伤识别[D]:[硕士学位论文].南京:东南大学防灾减灾工程及防护工程专业,2004.
    [76]李小可.大体积混凝土温度控制的有限元分析「D]:[硕士学位论文].贵阳:贵州工业大学水工结构工程专业,2001.
    [77]李艺云.钢筋混凝土高层建筑结构温度变形及温度内力研究[D]:[硕士学位论文].昆明:昆明理工大学计算力学专业,2001.
    [78]李立峰,邵旭东,程翔云.混凝土箱形梁桥的温度梯度研究[J].中南公路工程,2001.04.
    [79]李向阳.预应力混凝土梁的蒸养及温差控制[J].铁道建筑,2003(09).
    [80]梁向伟.现浇钢筋混凝土框架结构温度应力分析研究[D]:[硕士学位论文].杭州:浙江大学结构工程专业,2000.
    [81]林建萍.异形截面混凝土箱梁温度效应分析[D]:[硕士学位论文].上海:同济大学结构工程专业,2003.
    [82]刘军,肖长礼,巴卫强.水磨湾特大桥连续刚构施工控制的温度影响[J].中外公路,2005(03).
    [83]刘荣辉,钱国平,郑建龙.周期性气候条件下沥青里面温度场计算方法研究[J].长沙交通学院学报,2002,18(2):71-75.
    [84]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991.
    [85]刘兴法.预应力混凝土箱梁温度应力计算方法[J].土木工程学报,1986(1).
    [86]刘西军.大体积混凝土温度场应力仿真分析[D].浙江大学博士学位论文.2005.5.
    [87]陆鹏.大面积混凝土梁板结构中板的温度应力及配筋设计研究[D]:[硕士学位论文].南京:东南大学结构工程专业,2001.
    [88]吕琦,陈尧隆,王功等.寒潮对碾压混凝土重力坝的影响分析[J].西北水力发电.2006.9.Vol.22. No.3:37-40.
    [89]美国预应力混凝土学会,预应力后张法学会.预制节段箱梁桥的设计与施工手册.
    [90]欧洲混凝土委员会. CEB-FIP MC90.混凝土结构模式规范.1989.
    [91]潘家铮.水工建筑物的温度控制[M].北京:水利电力出版社.1990.11.
    [92]彭立海,阎士勤,张春生,翟建.大体积混凝土温控与防裂[M].郑州:黄河水利出版社.2005.
    [93]彭友松.混凝土桥梁结构日照温度效应理论及应用研究[D]:[博士学位论文].成都:西南交通大学桥梁与隧道工程专业,2007.
    [94]彭卫,邢鸿燕,柯善刚.PC连续箱梁桥裂缝控制研究[J].浙江工业大学学报,2003(01).
    [95]强士中.桥梁工程「M]:下册.北京:高等教育出版社,2004..
    [96]日本道路协会.日本道路桥梁设计标准.东京:日本道路协会.1978.
    [97]阮静,万水,叶见曙,程霞.混凝土箱梁温度场有限元分析[J].公路,2001(09).
    [98]申家国,张传安.大体积混凝土连续梁施工温度分析与控制措施[J].西部探矿工程,2002(1).
    [99]苏红岭,陈向军.铁河特大桥大体积混凝土的温度裂缝控制[J].西部探矿工程,2002(1).
    [100]孙菊芳.有限元法及其应用[M].北京:北京航空航天大学出版社.1990.
    [101] Saeed Moaveni..有限元-ANSYS理论与应用[M].欧阳宇,王崧等译.北京:电子工业出版社.2003.
    [102]唐国栋,季文玉,卢文良.预应力混凝土箱形梁水化热试验分析[J].铁道建筑,2004(02).
    [103]腾家俊.混凝土桥梁温度分析计算方法(上)[J].东北公路:1983,17(3):25-28.
    [104]腾家俊.混凝土桥梁温度分析计算方法(下)[J].东北公路:1983,17(3):25-28.
    [105]田敬学.大体积混凝土地下结构温度应力场研究[D]:[博士学位论文].上海:同济大学结构工程专业,2002.
    [106]铁道第三勘查设计院.铁路桥涵设计基本规范(TB10002.1-2005)[S].北京:中华人民共和国铁道出版社.2005.
    [107]铁道第三勘查设计院.铁路桥涵设计规范(JBJ2-85)[S].北京:中华人民共和国铁道出版社.1986.
    [108]万在龙.混凝土结构早期温度和收缩变形的理论分析和数值模拟[D]:[硕士学位论文].上海:同济大学结构工程专业,2001.
    [109]汪剑.大跨预应力混凝土连续梁桥施工控制研究及温度效应分析[D]:[硕士学位论文].长沙:湖南大学桥梁与隧道工程专业,2003.
    [110]王江红.朱沥沟大桥施工裂缝控制[J].中国科技信息,2005(12).
    [111]王解军,李全林,卢向华.混凝土箱梁桥施工控制的温度效应[J].公路,2003(01).
    [112]王林,项贻强,汪劲丰,王建江.各国规范关于混凝土箱梁桥温度应力计算的分析与比较[J].公路,2004(06).
    [113]王润富,陈国荣.温度场和温度应力[M].北京:科学出版社,2005.
    [114]王成,邵敏.有限元单元法基本原理和数值方法[M].北京:清华大学出版社.1997.
    [115]王林.大跨径预应力混凝土桥梁温度、徐变效应的分析研究[D]:[硕士学位论文].杭州:浙江大学桥梁与隧道工程专业,2005.
    [116]王潇洲.混凝土结构温度收缩裂缝控制的应用研究[D]:[硕士学位论文].广州:华南理工大学建筑与土木工程专业,2000.
    [117]王振波.混凝土温度损伤模型研究[D]:[博士学位论文].南京:河海大学水工结构专业,2001.
    [118]王超.基于神经网络的大体积混凝土温度预测与控制[D]:[硕士学位论文].合肥:合肥工业大学水工结构专业,2001.
    [119]王海军.大体积混凝土随机温度场仿真[D]:[硕士学位论文].天津:天津大学水工结构工程专业,2002.
    [120]王来林.温度与收缩徐变对大跨度混凝土连续梁桥施工控制的影响研究[D]:[硕士学位论文].兰州:兰州铁道学院桥梁与隧道工程专业,2002.
    [121]魏光坪.单室预应力混凝土箱梁温度场及温度应力研究[J].西南交通大学学报,1989,24(4):90-97.
    [122]吴相豪,吴中如.混凝土热力学参数反分析模型[J].水利水电.2001(2):20-21.
    [123]文永奎,陈政清,杨孟刚.铁路混凝土箱梁的水化热温升及裂缝控制[[J].铁道标准设计,2001(07).
    [124]谢先坤.大体积混凝土结构三维温度场、应力场有限元仿真计算及裂缝成因机理分析[D]
    [硕士学位论文].南京:河海大学水工结构工程专业,2001.
    [125]谢强.一种结构健康监测的传感器优化布置算法[J].福州大学学报(自然科学版),2005(S1).
    [126]熊红霞.钢管混凝土拱桥收缩徐变与温度应力的数值模拟分析[D]:[硕士学位论文].武汉:武汉理工大学桥梁与隧道工程专业,2004.
    [127]许晓锋,陈斌.混凝土箱型梁桥的温度和应力分布[J].世界桥梁,1994.02.
    [128]叶见曙,贾琳,钱培舒.混凝土箱梁温度分布观测与研究[J].东南大学学报(自然科学版),2002(05).
    [129]叶见曙,阮静,钱培舒,贾琳.混凝土箱梁的水化热温度分析[J].桥梁建设,2000(04).
    [130]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [131]杨孟刚,文永奎,陈政清.混凝土箱梁的水化热温度监测及裂缝控制[Jl.长沙铁道学院学报,2001.03.
    [132]杨雄伟,吴文明.大跨度预应力混凝土箱形梁桥悬臂施工中温度变形控制[J].森林工程,2003(05).
    [133]杨勇,王灿,朱新实.既有桥梁结构混凝土现存应力测量与分析[J].同济大学学报(自然科学版),1999(02).
    [134]姚激.混凝土结构温度裂缝分析与计算机仿真模拟[D]:[硕士学位论文].昆明:昆明理工大学结构工程专业,2002.
    [135]尹如君,花付南,吕西方,赖永星.高墩大跨T构桥桥墩的有限元分析[J].郑州工业大学学报,1999(03).
    [136]英国桥梁规范(BS-5400)Specification for Loads.1978.
    [137]余雄.柔性墩温度场场形及影响因素的分析[J].江汉大学学报.1998.12. Vol.15No.6,P86-89.
    [138]张朝晖,范群波,贵大勇等. ANSYS8.0热分析教程与实例解析[M].北京:中国铁道出版社.2005.5.
    [139]张国庆,田泽民,金太学,夏岩昆,程绍轩.混凝土箱梁的温度场[J].东北公路,1999(03).
    [140]张宇鑫.大体积混凝土温度应力仿真分析与反分析[D].[大连理工大学博士学位论文].2002.6.
    [141]张元海,李乔.桥梁结构日照温差二次力及温度应力计算方法研究[J].中国公路学报:2004.06. Vol.17No.1.
    [142]张子明, V. K. Garga.寒潮时大体积混凝土的温度应力[J].河海大学学报.1994.11. Vol.22. No.6:94-97.
    [143]张子明,王嘉航,姜冬菊,宋智通.气温骤降时大体积混凝土的温度应力计算[J].河海大学学报(自然科学版).2003.6. Vol.31, No.1:11-15.
    [144]张剑.大体积混凝土温度场热学参数的随机反演方法研究[D]:[硕士学位论文].南京:河海大学工程力学专业,2003.
    [145]张门哲.大跨预应力混凝土斜拉桥施工控制及索塔温度效应分析[D]:[硕士学位论文].长沙:湖南大学桥梁与隧道工程专业,2004.
    [146]张小川.桥梁大体积混凝土温控与防裂[D]:[硕士学位论文].四川:西南交通大学.2006.6.
    [147]张艳梅.箱梁温度应力的计算分析[J].交通世界,2004(09).
    [148]张永福,孟庆贺,徐耀东.许沟特大桥大体积混凝土的温度控制[J].河南交通科技,2000(06).
    [149]赵国利.桥梁承台大体积混凝土施工中的温度测控及防裂技术[J].铁道工程学报,2005(02).
    [150]中交公路规划设计院.公路桥涵设计通用规范(JTG D60-2004)[S].北京:人民交通出版社,2004.
    [151]周晓琴,李华强,刘杰等. ANSYS三维热分析及应用[J].武汉交通科技大学学报.1999.2Vol23, No.1:9-13.
    [152]周显文.混凝土桥梁裂缝的几点原因[J].科技资讯,2005(24).
    [153]周德云,林元培.斜拉桥温度影响分析方法[J].华东公路:1990年第四期.
    [154]周峰.异型截面混凝土箱梁的温度场分析与截面优化研究[D]:[硕士学位论文].上海:同济大学结构工程专业,2003.
    [155]周光伟.大跨预应力混凝土连续刚构桥施工控制研究及温度效应分析[D]:[硕士学位论文].长沙:湖南大学桥梁与隧道工程专业,2003.
    [156]周红军.温度对混凝土徐变影响的数值模型[D]:[硕士学位论文].南京:河海大学固体力学专业,2004.
    [157]邹亚兰.新《桥规》纵向自约温度应力计算方法的探讨[J].桥梁建设,1990.1, p.47-56.
    [158]中华人民共和国水利电力部.《水工混凝土试验规程》SD105-82.北京:水利电力出版社,1983年.
    [159]中华人民共和国国家标准GB-50176-93.民用建筑热工设计规范[S].北京:中国建筑工业出版社,1993.
    [160]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999.
    [161]朱伯芳.水工混凝土结构的温度应力与温度控制[M].北京:水利电力出版社.1976.
    [162]祝效华,余志详. ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700