用户名: 密码: 验证码:
基于激光拉曼散射线成像测量发动机缸内摩尔分数和温度
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代内燃机燃烧技术的核心学术问题就是要解决燃烧全历程的混合问题、燃烧室内充量流态、组分(燃料、空气和再循环废气)的浓度和温度分布对着火和燃烧影响和控制等问题。在微观上利用先进的燃烧诊断方法,搞清所谓工质的不均匀程度及充量组分浓度和温度的分布规律,这必将极大的促进内燃机燃烧理论的发展,加快新一代内燃机产业化进程。
     基于激光的自发拉曼散射(SRS)技术可完成内燃机缸内局部空间区域(点或线)上多种气体物质的测量,可获得N_2、O_2、H_2O、CO_2和碳氢化合物等的摩尔分数和温度信息,并具有纳秒和毫米级时空分辨能力及发动机循环分辨能力。
     本文首先开发了一套利用激发自发拉曼线成像技术测量气体摩尔分数和温度的光学诊断系统。它主要包括Nd:YAG激光器、成像光谱仪、ICCD、激光脉冲展宽器、激光扩束器和激光缩束器、样品池、线光源收集器、Notch滤光片、能量计等。本文使用激光器输出能量为400mJ、波长为532nm、脉宽半高宽为7ns、发散角为0.8mrad、光斑直径为8mm和频率为10Hz。虽然激光能量与气体的自发拉曼散射强度成正比,但直接使用高能脉冲激光会造成损坏石英窗口玻璃、气体裂解和点燃可燃气体,无法测量到弱的拉曼信号。
     本文自制了一套具有两个环腔的激光脉冲展宽器,它可以将7ns的激光脉冲半高宽展宽到35ns以上,有效地避免了上述现象的发生。它主要由分束镜和反射镜组成。基本原理是,当脉冲激光进入到每个环腔时,都有一部分被反射输出脉冲激光和一部分透射激光脉冲,透射部分在环腔中循环,每次循环又有部分反射脉冲激光输出和部分透射进腔内。需要更多的这样的环腔才能将一个输出脉冲激光由单腔所产生的多个小的脉冲激光最终合并成一个被展宽的、峰值功率被降低的一个脉冲激光。经过光路的模拟和优化计算,分束镜的分束比选取50%,两个腔的延迟时间比为1:2,这样每个环腔的各个镜面之间的绝对距离就被确定了,为2.1m和4.2m。根据实际实验平台的搭建情况,从激光器激光出口到激发区的距离可以量测出,如进行发动机缸内测量时,这个距离约为9.5m长。
     由于存在激光发散角,激光扩束器被安装到激光器的出口,将9m左右的外部光路变为平行光,经过聚焦镜后再由激光缩束器将激发激光光束变为需要的直径尺寸(如1.5mm)。设计了一个线光源收集器,它由一套消色差透镜组组成。可以将线状激发区上长66mm的光源缩小10倍变为长6.6mm的实像,输出到光谱仪狭缝中,与CCD的最大成像高度6.6mm相对应,实现了线成像测量。
     利用ICCD中的DDGTM数字延迟发生器和信号发生器或发动机上止点信号完成了激光器和ICCD之间的时序同步。
     利用这套光学诊断系统测量了气体样池中的一元和多元标准混合气体在标准混合气配比下、不同压力下的拉曼光谱,获得了O_2、CO_2相对于N_2的相对响应因子分别是1.47和1.29。实现了在一根长66mm×直径1.5mm激发线上,同步获取了10个小区域(6.6mm)上的物质的自发拉曼光谱。当在气体绝对压力为0.5MPa、实际配比摩尔分数0.05的CO_2摩尔分数时,从物质光谱峰强上获取的浓度信息或摩尔分数具有平均85%的检测精度,对于实际配比0.07摩尔分数的O_2为90%。
     为了完成发动机缸内的充量摩尔分数和温度的测量,开发了一套可实现火花点火(SI)和可控自燃(CAI)两种燃烧模式下工作的单缸光学发动机光学诊断实验平台。它主要包括,配备有无凸轮全可变配气机构的单缸光学发动机及其电控系统、激光自发拉曼光谱光学诊断平台。
     单缸光学发动机是在一台单缸金属汽油机上改造而成的。改造部分包括,带有冷却水套的加长缸体、加长缸套、带有可视化直径为70mm石英窗口的加长活塞、安装在原缸体上的45°反射镜和带有激光出入射窗口的穿激光环垫等。在光学发动机缸盖上加装有电液控制全可变配气机构,可以实现进排气门升程和相位的柔性调节。
     光学发动机的电控系统主要由Intel80c196kc单片机开发系统、配气机构驱动控制电路、喷油电路、点火电路、曲轴角标器、气门升程传感器、缸压传感器、转速传感器、氧传感器和过量空气系数λ分析仪等组成。从单片机中发出一个基于发动机上止点的信号,作为激光器和ICCD的外触发信号,实现发动机工作循环与激光拉曼光学测量系统的时序同步。可以在任何固定的曲轴转角下,激发缸内充量的拉曼散射,同步获得一条激发线上10个相等区域上主要物质的摩尔分数和温度信息。
     光学发动机在SI点火和具有60°负气阀重叠角的CAI燃烧方式下,在压缩上止点前7°CA,在距火花塞电极正下方7mm处的一根长66mm,直径约1.5mm激发线上,同步采集到了10个长6.6mm×直径1.5mm空间区域上的缸内主要物质的激光自发振动拉曼光谱。测得的缸内所有物质,如,H_2O(660nm)、CH(628.6nm,燃料)、N_2(斯托克斯,607.2nm)、O_2(580nm)、CH3(576.5nm,燃料)、CO_2(v1峰,574.4nm)、CO_2(2v2峰,571nm)、CC(557.7nm燃料)和N_2(反斯托克斯,457nm)等。在CAI方式下,各空间区域上的摩尔分数分布变化明显,由于缸内EGR量的显著增加,CO_2的两个峰的峰型显著,通过各区域上拉曼光强计算出的摩尔分数有一定的不均匀性,具有分层燃烧特征。通过N_2得到的缸内各区域上的温度以及各区域上的摩尔分数一维分布与三维仿真计算结果对比具有较好的一致性。
     实验研究表明,所开发的基于激光自发拉曼线成像技术测量缸内主要物质摩尔分数和温度的光学诊断系统,具有定量的检测能力。如需更精确的定量测量还需对整个系统的许多环节进行改进和完善。
The key issue of modern internal combustion engine is to solve the problems ofcombustible mixture preparation process and the effect of the concentration andtemperature distribution of the in-cylinder charge flow state and the in-cylinder component(fuel, air and burnt exhaust gas) on the ignition and combustion in the internal combustionengines. By using the combustion diagnostic technology, the inhomogeneous degree ofcharge and the concentration and temperature distribution of the in-cylinder component canbe measured on the microcosmic in an internal combustion engine. This will surelypromote the development of engine combustion theory and the industrialization process ofa new generation of internal combustion engine.
     The technique is based on laser spontaneous Raman scattering which can realize thein-cylinder major species measurement, such as the concentration and temperaturedistribution of N_2、O_2、H_2O、CO_2、unburnt HC etc, and has the distinguish ability to thetemporal in nanosecond level and to spatial in millimeter level and to a single engineworking cycle.
     In this paper, an optical diagnostic system based on line imaging of spontaneousRaman scattered light has been developed. It mainly consists of Nd: YAG lasers, imagingspectrometer, ICCD, laser pulse stretcher, a laser beam expander, and a laser beamcontracting, the gases sample cell, the collector of the line light source, Notch filters,energy meter. In this study, the laser output energy is400mJ, the wavelength is532nm,pulse width of FWHM is7ns, the divergence angle is0.8mrad, the spot diameter is8mmand the frequency is10Hz. Although the gas spontaneous Raman scattering intensity isproportional to the intensity of the laser energy, using directly the higher energy outputfrom a pulsed laser which may damage to the quartz glass window and cause gasbreakdown in the measurement volume, even ignite the combustible gases, can notmeasure the weak Raman signal successfully.
     In this study, in order to avoid effectively the occurrence of these phenomena, a laserpulse stretcher including two ring cavities which were composed mainly by the beamsplitter mirrors and reflecting mirrors has been developed, it can extend the value of thelaser FWHM from7ns to more than35ns. The basic principle of the laser pulse stretcher isthat when the pulsed laser entered each ring cavity, it produced a part of reflecting outputpulse laser and a part of the transmission pulse laser, the part of the transmission pulselaser remain cycled in the ring cavity, and each loop will continue to produced a portion ofthe reflecting output pulse laser and part of transmission pulse laser which remain stayed inthe ring cavity. Many such ring cavities are needed to merge these small pulse lasers whichwas formed by single ring cavity into an extended and peak power was reduced ideal apulsed laser. The beam splitter ratio of50%and the ring cavity of the delay time ratio of 1:2were selected by calculating through simulation and optimization of the optical path,thus, the absolute distance of each mirrors in each ring cavity were determined of2.1mand4.2m. According to the actual experimental platform structures, the distance betweenthe laser and stimulate area can be measured, in this study, in order to measure the enginein-cylinder components, so the distance is about9.5meters.
     Due to the existence of the laser divergence angle, a laser beam expander which cantransform the external light path into a parallel light was mounted to the outlet of the laser,the parallel light turned into the desired diameter size laser (such as1.5mm) by passing thebeam contracting and the focusing mirror.
     As the maximum image height of CCD is6.6mm, a line source collector which wascomposed by a group of achromatic lens was designed, the length of66mm light source inthe linear excitation region turned into a real image of the length6.6mm through the linesource collector, then output to the slit of the spectrometer, realized the line imagingmeasurement.
     By using the DDGTMdigital delay generator in the ICCD and a signal generator orTDC signal from the experiment engine, the timing synchronization between the laser andthe ICCD was realized.
     The Raman spectroscopy of the mixed gases in the gases sample cell was measured indifferent pressures by using the optical diagnostic system, it can concluded that obtainedthe O_2and CO_2response factor relative to nitrogen N_2is1.47and1.29and the spontaneousRaman spectroscopy of10small areas (6.6mm) species on a66mm length×1.5mmdiameter stimulate line were acquired simultaneously. The concentration information andmole fraction were acquired with85%of the detection accuracy from the species spectralpeak intensity under the condition of the absolute gas pressure is0.5MPa, CO_2molefraction is0.05, having an average of the actual ratio of0.07mole fraction O_2was90%.
     In order to complete the measurement of the charge concentration and temperature inthe engine cylinder, a single cylinder optical engine and optical diagnostic experimentplatform which can realize the spark ignition (SI) combustion mode and controlled autoignition (CAI) combustion mode was developed, It mainly consists a single cylinderoptical engine with a fully variable valve train by electrohydraulic control, its ECUelectronic control system, laser spontaneous Raman spectroscopy optical diagnosticplatform.
     The single-cylinder optical engine was converted through refitting a single metalgasoline cylinder. The refitting includes a elongated cylinder with cooling water jacket, alengthened cylinder liner, a lengthened piston which has a diameter of70mm quartzwindow, a45°mirror which was mounted on the original cylinder, and a laser ring gasketwith the laser entrance windows in it.
     By mounting the electro-hydraulic control fully variable valve mechanism on theoptical engine cylinder head, the flexible adjustment of the intake and exhaust valve lift and phase can be achieved.
     The optical engine electronic control system mainly consist of the microcontroller ofIntel80c196kc, valves control circuit, fuel injection circuit and ignition circuit,optical-electricity encoder, valve lift sensor, cylinder pressure sensor, speed sensor, oxygensensor, and λ (excess air coefficient) analyzer.
     The signal which was given by the microcontroller was used to trigger the laser andICCD, so it can realize that the engine operation synchronize with the Raman measuringoptical system and the concentration and temperature information of components which inthe laser excitation line in the cylinder can be obtained at any fixed crank angle.
     Under the SI ignition and CAI combustion mode with60°of negative valve overlapangle, the laser spontaneous Raman spectroscopy of the species which in a length of66mm,a diameter of about1.5mm laser excitation line below7mm of the spark plug was acquiredbefore7°of the compression top dead center. All species in cylinder were measured by theoptical diagnosed system, such as, the position H2O(660nm)、CH(628nm,fuel)、N_2(Stokes,607.2nm)、O_2(580nm)、CH3(576.5nm,fuel)、CO_2(v1peak,574.4nm)、CO_2(2v2peak,571nm)、CC(557.7nm,fuel)and N_2(anti-Stokes,457nm). The twopeaks of CO_2were significantly well because the effect of the EGR. The mole fraction ofthe measurement areas which were calculated by the Raman light intensity was uneven.The one-dimensional(1-D)distribution result of temperature calculated by the N_2andmole fraction from Raman spectrum data have a better consistency with thethree-dimensional (3-D)numerical simulations from STAR-CD software.
     The study shown that the optical diagnostic system based on laser spontaneous Ramanline imaging technique has a semi-quantitative detection capability to measure theconcentration and temperature of the cylinder species. It is essential to improve and refinesome aspects of the system for the more precise measurements.
引文
[1] http://www.askci.com/news/201206/29/16210_63.html
    [2] BP世界能源统计年鉴,http://www.bp.com/statisticalreview
    [3]张文木。全球视野中的中国国家安全战略上卷[M]。济南:山东人民出版社,2008:95
    [4]苏万华,赵华,王建昕。均质压燃低温燃烧发动机理论与技术[M]。北京:科学出版社,2010
    [5] CO2Emissions From Fuel Combustion Highlights,2011edition, International Energy Agency
    [6] David F. Merrion. Heavy-Duty Diesel Emission Regulations-Past, Present, and Future[C]. SAE Paper2003-01-0040,2003
    [7] Karl Koeck. Requirements for Fuel Consumption Measurement for Emissions RegulationsUS07/10and forEuro4/5Design Criteria and Layout of the Fuel Measurement Systems[C]. SAE Paper2007-01-0059,2007
    [8] Michael P. Walsh Global Trends in Diesel Emissions Regulation-A2001Update[C]. SAE Paper2001-01-0183,2001
    [9] http://en.wikipedia.org/wiki/Euro_5
    [10] Kamimoto T, Bae M. High Combustion Temperature for the Reduction of Particulate in Diesel Engines [C].SAE Paper880423,1988.
    [11]周龙宝,刘巽俊,高宗英.内燃机学[M].北京:机械工业出版社,1999:20.
    [12] Honda. Honda FCX Clarity-Fuel cell comparison. Honda. Retrieved2009-01-02.
    [13] Kitamura, T., Ito, T., Senda, J., and Fujimoto, H. Mechanism of Smokeless Diesel Combustion withOxygenated Fuels Based on the Dependence of Equivalence Ratio and Temperature on Soot ParticleFormation[J]. Int. J. Engine Research,2002,3(4):223-248.
    [14] Norbert Mueller, Steffen Strauss, Stefan Tumback, Guo-Chang Goh and Ansgar Christ. Next GenerationEngine Start/Stop Systems:“Free-Wheeling”[C]. SAE Paper2011-01-0712,2011
    [15] Xianjing Li, Liguang Li, Yongzheng Sun, Zongjie Hu and Jun Deng, Optimization of Control Strategy forEngine Start-stop in a Plug-in Series Hybrid Electric Vehicle[C]. SAE Paper2010-01-2214,2010
    [16] John Bishop, Ashok Nedungadi,Gregory Ostrowski,Bapiraju Surampudi,Paul Armiroli and ErtugrulTaspinar,An Engine Start/Stop System for Improved Fuel Economy[C]. SAE Paper2007-01-1777,2007
    [17] Hanada, K., Kaizuka, M., Imai, T., Ishikawa, S., et al. Development of a Hybrid System for the V6MidsizeSedan[C]. SAE Paper2005-01-0274,2005.
    [18] Rebbert, M., Kreusen, G., Lauer, S. A New Cylinder Deactivation by FEV and MAHLE[C]. SAE Paper2008-01-1354,2008
    [19] B. Vinodh, Technoloogy for Cylinder Deactivation[C]. SAE Paper2005-01-0077,2005
    [20] Noguchi, K., et al. Development of V6Engine with Variable Cylinder Management: Global PowertrainCongress2004.
    [21] Chammas Rody El and Clodic Denis. Combined Cycle for Hybrid Vehicles [C]. SAE Paper2005-01-1171,2005.
    [22] Nelson, C.R. Exhaust energy Recovery, Presentation at DEER Conference, August24,2006.
    [23] Gerhard Regner, Ho Teng and Chris Cowland. A quantum leap for heavy-duty truck engine efficiency: Hybirdpower system of diesel and WHR-ORC engines, Presentation at the12th Diesel Engine-efficiency andEmissions Research Conference, Detroit, Michigan, August2008.
    [24] Najt P M, Foster D E. Compression-ignited homogenous charge combustion. SAE830264,1983.
    [25] R H Thring, Homogeneous charge compression ignition (HCCI) engines. SAE892068,1989.
    [26] Aaron Oakley, Hua Zhao and Nicos Ladommatos, Experiment studies on controlled auto-ignition (CAI)combustion of gasoline in a4-stroke engine, SAE2001-01-1030,2001.
    [27] Aaron Oakley, Hua Zhao and Nicos Ladommatos, Dilution effects on the controlled auto-ignition (CAI)combustion of hydrocarbon and alcohol fuels, Brunel University, SAE2001-01-3606,2001.
    [28] Haraldsson G, Hyvonen J, Tunestal P, et al. HCCI closed-loop combustion control using fast thermalmanagement. SAE2004-01-0943,2004.
    [29] Yang J, Kenney T, Robustness and performance near the boundary of HCCI operating regime of asingle-cylinder OKP engine. SAE2006-01-1082,2006.
    [30] Christensen M, Hultqvist A, Johansson B. Demonstrating the multi fuel capability of a homogeneous chargecompression ignition engine with variable compression ratio. SAE1999-01-3679,1999.
    [31] Haraldsson G, Hyvonen J, Tunestal P, et al. HCCI combustion phasing in a multi-cylinder engine usingvariable compression ratio. SAE2002-02-2858,2002.
    [32] Hiraya, K., Hasegawa, K., Urushihara, T., Liyama, A., and Itoh, T., A study on gasoline fueled compressionignition engine—A trial of operation region expansion. SAE2002-01-0416,2002.
    [33] Jari Hyvonen, Goran Haraldsson and Bengt Johansson, Supercharging HCCI to extend the operating range in amulti-cylinder VCR-HCCI engine, SAE2003-01-3214,2003.
    [34] Xingcai Lu, Yitao Shen, Yinbao Zhang, Xiaoxin Zhou, Libin Ji, Zheng Yang, Zhen Huang. Controlledthree-stage heat release of stratified charge compression ignition (SCCI) combustion with a two-stage primaryreference fuel supply. Fuel90(2011)2026–2038.
    [35] Lavy J, Dabadie J C, Angelberger C, et al. Innovative ultra-low NOX controlled auto-ignition combustionprocess for gasoline engines; the4-SPACE project. SAE2000-01-1873,2000.
    [36] Law D, et al. Controlled combustion in an IC-engine with a fully variable valve train. SAE2000-01-0251.
    [37] Li J, Zhao H, Ladommatos N. Research and development of controlled auto-ignition (CAI) combustion in afour-stroke multi-cylinder gasoline engine. SAE2001-01-3608.
    [38] Koopmans L., Denbratt I. A four stroke camless engine operated in homogeneous charge compression ignitionmode with a commercial gasoline. SAE2001-01-3610,2001.
    [39] Kahaaina N, Simon A J, Caton P A, et al, Use of dynamic valving to achieve residual-affected combustion.SAE2001-01-0549,2001.
    [40] Fuerhaper A, Piock W F, Fraidl G K. CAI-controlled auto ignition-the best solution for the fuelconsumption-versus emission trade-off. SAE2003-01-0754,2003.
    [41] Mingfa Yao, Zhaolei Zheng, Haifeng Liu. Progress and recent trends in.homogeneous charge compressionignition (HCCI) engines. Progress in Energy and Combustion Science35(2009)398-437.
    [42] H. Zhao, Z. Peng, J. Williams, N. Ladommatos, Understanding the effects of recycled burnt gases on thecontrolled autoignition (CAI) combustion in four-stroke gasoline engines. SAE2001-01-3607,2001.
    [43]陈韬。汽油机低温高效燃烧中缸内温度-废气率耦合控制研究[D]。天津:天津大学,2010。
    [44] Vincent Knop, Benoist Thirouard and Jérome Chérel. Influence of the Local Mixture Characteristics on theCombustion Process in a CAI Engine. SAE2008-01-1671
    [45] Setchell, R. E.. Raman spectroscopy measurements within a internal combustion engine.18thAnnual RockyMountain Spectroscopy Conference. Unversity of Denver. Aug.1976.
    [46] Johnston, S. C. Robinson. C. W., Rorke W. S.. Smith, J. R., and Witze, P. O., Application of laser diagnostics toan injected engine. SAE Paper790092, Detroit, Mich., Feb.1979.
    [47] Setchell, R. E.. Local turbulence properties in flames from time averaged Raman spectroscopy measurement.AIAA paper790087. New Orleans, La, Jan.1979.
    [48] Haifeng Liu Peng Zhang, Zheming Li, Jing Luo, Zunqing Zheng, Mingfa Yao.Effects of temperatureinhomogeneities on the HCCI combustion in an optical engine. Applied Thermal Engineering31(2011)2549-2555.
    [49] Haifeng Liu, Zhaolei Zheng, Mingfa Yaoa, Peng Zhang, Zunqing Zheng, Bangquan He, Yongli Qi. Influenceof temperature and mixture stratification on HCCI combustion using chemiluminescence images and CFDanalysis. Applied Thermal Engineering33-34(2012)135-143.
    [50] ZHANG YingJia, HUANG ZuoHua, WANG JinHua&XU ShengLi. Shock tube study on auto-ignitioncharacteristics of kerosene/air Mixtures. Engineering Thermophysics May2011Vol.56No.13:1399-1406.
    [51] Zhi Wang, Xu He, Jian-Xin Wang, Shijin Shuai, Fan Xu, Dongbo Yang. Combustion visualization andexperimental study on spark induced compression ignition (SICI) in gasoline HCCI engines. EnergyConversion and Management51(2010)908–917.
    [52] Krasselt, J. M., Foster,D.E.,Investigations into the Effects of Thermal and Compositional Stratification onHCCI Combustion-Part I:Metal Engine Results,SAE2009-01-1105,2009.
    [53] Steve N.Rogak.Effect of Fuel on the Morphology and Microstructure of Diesel Engine Soot. SAE2009-01-1906,2006.
    [54] Hemdal S,Denbratt I,Dahlander P,et al.Stratified cold start sprays of gasoline-ethanol blends[J].SAEPaper,2009-01-1496,2009.
    [55]鄂亚佳,许敏,曾纬,等.基于平面激光Mie散射技术的乙醇喷雾特性研究[J].内燃机工程,2011,32(2):63-67,2011.
    [56] E Yajia, XU Min, ZENG Wei, et al. Ethanol spray characteristic research based on laser-sheet Miescattering[J]. Chinese Internal Combustion Engine,2011,32(2):63-67.(in Chinese)
    [57] Crua C, Shoba T, Heikal M. High-speed imaging of the initial stage diesel sprays formation and primarybreakup[J]. SAE Papers,2010-01-2247,2010.
    [58] Hultqvist A., Magnus C., Johansson B., Franke A., Richter M. and Aldén M.. A Study of theHomogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging. SAE Paper1999-01-3680.
    [59] R. Augusta, D. E. Foster and J. B. Ghandhi, J. Eng and P. M. Najt. Chemiluminescence Measurementsof Homogeneous Charge Compression Ignition (HCCI) Combustion. SAE Paper2006-01-1520,2006.
    [60] Remboski D.J,Plee S.L, Martin J.K. An optical sensor for spark-ignition engine combustion analysis andcontrol [J].SAE890159,1989.
    [61]杨嘉林.车用汽发动机燃烧系统的开发[M].北京:机械工业出版社,2009.
    [62]高青.缸内燃烧光电测量的可视化技术[J].吉林大学学报(工学版),2002,32(1):12-16.
    [63]高青,金英爱,孙志军,孙济美.内燃机爆震燃烧探测及其临界爆震判析[J].燃烧科学与技术,2002,8(4):281-283.
    [64] T. Berg, V. Beushausen, O. Thiele, and H. Voges,“Fibre optics spark plug sensor for the optimisation ofengine combustion processes,” Motortech. Z.67,2–6(2006).
    [65] Michael Cundy, Torsten Schucht, Olaf Thiele, and Volker Sick. High-speed laser-induced fluorescence andspark plug absorption sensor diagnostics for mixing and combustion studies in engines. Applied Optics, Vol.48, Issue4, pp. B94-B104(2009).
    [66] Hua Zhao,Nicos Ladommatos. Engine combustion instrumentation and diagnostics. Society of AutomotiveEngineers, Inc. Warrendale, Pa.2001.
    [67] Uyehara, O.A., Myers, P.S., Watson, K.M., and Wilson, L.A.. Flame-Temperature Measurement in InternalCombustion Engines. Trans. ASME,1946, Vol.68,p.17.
    [68] Kawamura, K., Saito, A., Yaegashi, T., and Iwashita, Y. Measurement of Flame Temperature Distribution inEngines by Using a Two-Colour High Speed Shutter TV Camera System. SAE Paper890320.
    [69] Christopher F. Powell (Primary Contact), Jin Wang, Stephen. CiattiLight-Duty Diesel Spray Research UsingX-Ray Radiography. Advanced Combustion Engine R&D FY2004Progress Report.
    [70] Christopher F. Powell (Primary Contact), Seong-Kyun Cheong, Sreenath Gupta, Essam El-Hannouny, JinWang. X-Ray Studies of Heavy-Duty Injector Spray Characteristics. Advanced Combustion Engine R&D FY2004Progress Report.
    [71] Alan L. Kastengren, Christopher F. Powell,Yujie Wang, Kyoung-Su Im, and Jin Wang. X-Ray RadiographyMeasurements of Diesel Spray Structure at Engine-Like Ambient Density. ILASS Americas,21st AnnualConference on Liquid Atomization and Spray Systems, Orlando, FL, May2008.
    [72] P.O.,A Critical Comparion of Hot-Wire Anemometry and Laser Doppler Anemometry for IC EngineApplications. SAE Paper No.800132,1980.
    [73] Khalight,B. and Huebler,M.S. A Transient Water Analogue of a Dual-Intake-Valve Engine for Intake FlowVisualisation and Full-Field Velocity Measurements. SAE Paper No.880519,1988.
    [74] Shack,D.H. and Reynolds,W.C. Application of Particle Tracking Velocimetry to the Cyclic Variability of thePre-Combustion Field in a Motored Axisymmetric Engine. SAE Paper No.910474,1991.
    [75] Neuber,H.,Spiegel,L.,and Ganser,J. Particle Tracking Velocimetry—A Powerful Tool to Shape the In-CylinderFlow of Modern Multi-Valve Engine Concepts. SAE Paper No.950102,1995.
    [76]范宝春,叶经方。瞬态流场参数测量[M]。哈尔滨:哈尔滨工业大学出版社,2007.10.
    [77] Reuss,D.L.,Adrain,R.J.,Landreth,C.C.,French,D.T.,and Fansler,T.D. Instantaneous Planar Measurements ofVelocity and Large-Scale Vorticity and Strain Rate in an Engine Using Paricle-Image Velocimetry. SAE890616.
    [78] Reuss,D.L,Bardsley,M.E.A.,Felton,P.G.,Adrain,R.J.,and Landreth,C.C..Velocity, Velocity and Strain-RateAhead of a Flame Measured in an Engine Using Particle Image Velocimetry. SAE paper No,900053,1990.
    [79] Reuss,D.L,Kuo,T.,Khalighi,B.,Haworth,D.,and Rosalik,M. Particle Image Velocimetry Measurements in aHigh-Swirl Engine Used for Evaluation of Computational Fluid Dynamics Calculations. SAE952380,1995.
    [80] Nino,E.,Gajdeczko,B.F.,and Felton, P.G..Two-Colour Particle Image Velocimetry in an Engine withCombustion.SAE parper No.930872,1993.
    [81] Y Li, H Zhao and T Ma. Flow and Mixture Optimization for a Fuel Stratification Engine Using PIV and PLIFTechniques. Second International Conference on Optical and Laser Diagnostics (ICOLAD2005),45(2006)59–68.
    [82] C.M Fajardo, J.D. Smith, V. Sick. PIV, high-speed PLIF and chemiluminescence imaging for near-spark-pluginvestigations in IC engines. Second International Conference on Optical and Laser Diagnostics (ICOLAD2005),45(2006)19–26
    [83]汪亮。燃烧实验诊断学[M].北京:国防工业出版社,2005.05.
    [84] Morse,A.P., J.H.,and Yianneskis, M. The Influence of Swirl on the Flow Characteristics of a ReciprocatingPiston-Cylinder Assembly. J. Fluids Engng, Vol.194, pp.291-299.
    [85] Arcoumanis, C., Bicen, A.F., and Whitelaw, J.H. Squish and Swirl-Squish Interaction in Motored ModelEngines. J. Fluids Engng, Vol.105, pp.105-112.
    [86] Wigley, G. and Hawkins, M.G.. Three Dimensional Velocity Measurement by Laser Anemometry in a DieselEngine Under Steady Flow Conditions. SAE Paper No.780060,1978.
    [87] Bicen, A.F., Vafidis, C., and Whitelaw, J.H.. Steady and Unsteady Airflow through the Intake Valve of aReciprocating Engine. J. Fluids Engng, Vol.107, pp.413,1978.
    [88] Tindal, M.J., Cheung, R.S., and Yianneskis, M. Velocity Characteristics of Steady Flows Through Engine InletPorts and Cylinders. SAE Paper No.880383,1988.
    [89] Coghe,A., Brunello, G., and Tassi, E.. Effects of Intake Ports on the In-Cylinder Air Motion Under SteadyFlow Conditions. SAE Paper No.790094,1979.
    [90] Rask, R.B.. Laser Dopper Anemometer Measurement in an Internal Combustion Engine. SAE Paper No.880384,1988.
    [91] Suen. K.O., Tindal, M.J., Yianneskis, M., and Paul,G.R.. The Development of Swirl in the Cylinder of a DirectInjection Diesel Engine,. Proc.2ndInt. Conf. On Laser Anemometry-Advances and Applications.
    [92] Bsdy, X. and Floch, A. Investigation of the In-Cylinder Tunbling Motion in a Multi-Valve Engine: Effect of thePistion Shape. SAE Paper No.971643,1997.
    [93] Fansler, T.D. and French, D.. Cycle-Resolved Laser Velocimetry Measurements in a Reentrant-Bowl-in-PistonEngine. SAE Paper No.880377,1988.
    [94] Lai, M.-C., Zhao, F.-Q., Amer, A.A., and Chue, T.-H.. An Experimental and Analytical Investigation of theSpray Structure from Automotive Port Injectors. SAE Paper No.941873,1994.
    [95] Kelly-Zion, P.L., DeYoung, C.A., Peters, J.E., and White, R.A.. In-Cylind Fuel Drop Size and WallImpingement Measurement. SAE Paper No.952480,1995,1995.
    [96] Vannobel, F., Dememthon, J.B., and Robart, D.. Phase Doppler Anemometry Measurements on a GasolineSpray inside the Inlet Port and Downstrem of the Induction Valve: Steady Flow Conditions. Proc.6thInternational Symposium on Laser Techniques and Applications in Fluid Mechanics, Ed. By Heitor,1996.
    [97] Levy, N., Amara, S., Champoussin, J.-C.. Simulation of a Diesel Jet Assumed Fully Atomised at the NozzleExit. SAE Paper981067,1998.
    [98] Schunemann, E., Fedrow, S., and Leipertz, A..Droplet Size and Velocity Measurements for theCharacterisation of a DI-Diesel Spray Impinging on a Flat Wall. SAE Paper982545,1998.
    [99] Chraplyvy, A.R., Nonintrusive Measurement of Vapour Concentrations Inside Sprays. Applied Optics, Vol.20,No.15, pp.2620-2624,1981.
    [100] Winklhofer, E., Fraidl., G.K., and Plimon, A.. Monitoring of Gasoline Fuel Distribution in Research Engine.Proc. Instn. Mech. Engrs. Vol.206, pp.107-115,1992.
    [101] Skippon, S., Nattrass, S., Kitching, J., Hardiman,L., and Miller, H.. Effects of Fuel Composition onIn-Cylinder Air/Fuel Ratio During Fuelling Transients in an SI Engine, Measured using Differential InfraredAbsorption. SAE Paper961204,1996.
    [102] Suzuki, M., Nishida, K., and Hiroyasu, H.. Trajectory and Dispersion of Vapour and Drop Clouds inEvaporating Diesel Spray Injected into Model Combustion Chamber. COMMODIA94, pp.199-204,1994.
    [103]白书战,Hua Zhao,李国祥.基于激光诱导磷光测试技术的发动机缸内燃烧温度测试[J].红外激光工程,2012,40(3):617-621.
    [104] www.oplanchina.com, www.dpiv.com
    [105] Krasselt,J.M.,Foster,D.E.,Investigations into the Effects of Thermal and Compositional Stratification on HCCICombustion-Part I:Metal Engine Results,SAE2009-01-1105,2009.
    [106] SteveN.Rogak.Effect of Fuel on the Morphology and Microstructure of Diesel Engine Soot. SAE2009-01-1906,2009.
    [107] Kim T, Ghandhi B J. Quantitative2-D fuel vapor concentration measurements in an evaporating diesel sprayusing the exciplex fl uorescence method [R]. SAE Paper,2001-01-3495,2001.
    [108] Baritaud, T.A. and Green, R. A2-D Flame Visualisation Technique Applied to the IC Engine. SAE Paper No.860025,1986.
    [109] Kenneth K K. Recent Advanced Spray Combust: Spray Atom Drop Burning Phenom [M]. Pennsylvania,USA:AAIA,1996
    [110] Le Gal P, Farrugia N, Greenhalgh D A. Laser sheet dropsizing of dense sprays [J]. Opt Laser Technol,31(1):75-83,1999.
    [111] Marcus Schmid, Max Kaiser, Peter Koch, Michael Wensing and Alfred Leipertz. Optical Investigations onPartially Premixed Diesel Combustion for Different Operating Parameters.2008-01-0041,2008.
    [112] Johnston, S.C. Precombustion Fuel/Air Distribution in a Stratified Charge Engine Using Laser RamanSpectroscopy. SAE Paper No.790433,1979.
    [113] Smith J.R. Temperature and Density Measurements in an Engine by Pulsed Raman Spectroscopy. SAE PaperNo.800137,1980.
    [114] Paul Miles and Matt Dilligan. Quantitative In-Cylinder Fluid Composition Measurements Using BroadbandSpontaneous Raman Scattering. SAE Paper No.960828,1996.
    [115] P. C. Miles and P. C. Hinze. Characteriization of the Mixing of Fresh Charge with Combustion ResidualsUsing Laser Raman Scattering with Broadband Detection. SAE Paper No.981428,1998.
    [116] Peter C. Hinze and Paul C. Miles. Quantitative Measurements of Residual and Fresh Charge Mixing in aModern SI Engine Using Spontaneous Raman Scattering. SAE Paper No.1999-01-1106,1999.
    [117] Paul C. Miles. Raman line imaging for spatially and temporally resolved mole fraction measurements ininternal combustion engines. APPLIED OPTICS y Vol.38, No.9,1999.
    [118] S. Mori, O. Lang and W. Salber, S. Pischinger and C. Bücker. Type Analysis of EGR-Strategies for ControlledAuto Ignition (CAI) by Using Numerical Simulations and Optical Measurements. SAE Paper No.2006-01-0630,2006.
    [119] H Zhao and S Zhang. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignitioncombustion engine. IOP PUBLISHING Meas. Sci. Technol.19(2008)015409(10pp),2008.
    [120] Per-Erik Bengtsson&Joakim Bood. Raman scattering Lecture prepared for course in laserbased combustiondiagnostics,2005.
    [121] Smith J.R. Temperature and Density Measurements in an Engine by Pulsed Raman Spectroscopy. SAE PaperNo.800137,1980.
    [122] Zur Loye, A. and Santavicca, D.A. Temperature and Concentration Measurements in an Internal CombustionEngine Using Laser Raman Spectroscopy. AIAA18thThermophysics Conf. Paper AIAA-83-1551,1983.
    [123] Green, R.M. and Smith, J.R. An Experimental Study of Engine Knock. Sandia National Laboratory Report,SAND84-8630.
    [124] Smith, J.R. et al. An Experimental and Modelling Study of Engine Knock. Proc. Of20thSymposium(International) on Combustion. The Combustion Institute, pp.91-100,1984.
    [125] Sawersyn, J.P., Sochet L., Desenne, D., Crunelle-Cras, M., Grase, F., and Bridoux, M. A Stuty of SpatialDistribution of Molecular Species in an Engine by Pulsed Multichannel Raman Spectroscopy. Proc. Of21thSymposium (International) on Combustion. The Combustion Institute, pp.491-496,1986.
    [126] Heinze, T. and Schmidt, T. Fuel Air Ratios in a Spray, Determined Between Injection and Autoignition byPulsed Spontaneous Raman Spectroscopy. SAE Paper No.892102,1989.
    [127] G. Grünefeld and V. Beushausen,P. Andresen,W. Hentschel. A Major Origin of Cyclic Energy ConversionVariations in SI Engines: Cycle-by-Cycle Variations of the Equivalence Ratio and Residual Gas of the InitialCharge. SAE Paper No.941880,1994.
    [128] G. Grünefeld and V. Beushausen,P. Andresen,W. Hentschel.Spatially ResolvedRamanScattering forMulti-Species and Temperature Analysis in Technically Applied Combustion System:Spray Flame andFour-cylinder In-Line Engine. Applied Physics B: Laser and Optics58,333-342,1994.
    [129] G. Grünefeld, V. Beushausen,P. Andresen,W. Hentschel and Manz, W. In Cylinder Measurements andAnalysis on Fundamental Cold Start and Warm Up Phenomena of SI Engines. SAE Paper No.952394,1995.
    [130] H Zhao and S Zhang. Spontaneous raman scattering for simultaneous measurements of in-cylinderspecies.Third International Conference on Optical and Laser Diagnostics.Journal of Physics: ConferenceSeries85(2007)012006doi:10.1088/1742-6596/85/1/012006.
    [131] H Zhao and S Zhang.Quantitative measurements of in-cylinder gas composition in a controlled auto-ignitioncombustion engine. IOP PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY Meas. Sci.Technol.19(2008)015409(10pp).
    [132] Ulf Aronsson, Clément Chartier, ivind Andersson, Rolf Egnell, Johan Sj holm, Mattias Richter and MarcusAldén. Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of aHeavy Duty Diesel Engine Using Raman Spectroscopy.SAE Paper No.2009-01-1357,2009.
    [133] A. Stenhouse, D. R. Williams, J. B. Cole, and M. D. Swords.CARS measurements in an internal combustionengine. APPLIED OPTICS, Vol.18, No.22,1979.
    [134] Bood, J., Bengtsson, P., Mauss, F., Burgdorf, K., and Denbratt, I. Knock in Spark Ignition Engines:End-GasTemperature Measurements Using Rotational CARS and Detailed Kinetic Calculation of the AutoignitionProcess. SAE Paper No.971669,1997.
    [135] Markus C. Weikl, Frank Beyrau, and Alfred Leipertz. Simultaneous temperature and exhaust-gasrecirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotationalcoherent anti-Stokes Raman spectroscopy. APPLIED OPTICS, Vol.45, No.15,2006.
    [136] LOTIS LII. INSTRUCTION MANUAL FOR Nd:YAG LASER SYSTEM LS-2137U[M].Republic of Belarus.
    [137]杨智杰。光柵投射式雷射超音波之实验与应用[D]。台湾:国立成功大学,2005。
    [138]肖华兴。Q开关Nd:YAG激光器的脉冲展宽。编译自:IEEE J. Quant Electron.1980, Vol. QE16, No.7, P.790~794.
    [139]包成玉,常栋梁等。分光镜法激光脉冲展宽器的研究。清华大学学报(自然科学版),1998,11(38),108~110。
    [140] Sastri P. N.. Lean Premixed Flame Structure in Intense Turbulence:Rayleigh/Raman/Lif Measurement andModeling[D].The Faculty of the Graduate School of Vanderbilit University,2003.
    [141] Part C. Specific Experimental Environments and Techniques,:20Combustion Diagnostics[M].1241~1315,2006.
    [142] Adrian Schneider, John Mantzaras, Rolf Bombach, Sabine Schenker, Niclas Tylli, Peter Jansohn. Laserinduced fluorescence of formaldehyde and Raman measurements of major species during partial catalyticoxidation of methane with large H2O and CO2dilution at pressures up to10bar[J].Proceedings of theCombustion Institute31(2007)1973–1981.
    [143] Jun Kojima and Quang-Viet Nguyen. Measurement and simulation of spontaneous Raman scattering inhigh-pressure fuel-rich H2–air flames. INSTITUTE OF PHYSICS PUBLISHING, Meas. Sci. Technol.15(2004)565–580.
    [144] B.Chehroudi, R. Cohn, Dtalley, A. Badakhshan. Raman Sacttering Measurement in the Initial Region of Sub-and Supercritical Jets.AIAA2000-3392,2000.
    [145] Miguel P. H.. Design and Development of a Motored Optically Accessible Engine[D]. United States: TheUniversity of Texas at EL Paso,2005.
    [146] Scott W. M.. Understanding Diesel Combustion throught the Use of High Speed Moving Pictures in Colour.SAE Paper690002,1969.
    [147] Felton P.G., Mantzaras J., Bomse D.S. and Woodin R. L.. Initial Two-Dimensional Laser Induced FluorescenceMeasurements of OH Radicals in an Internal Combustion Engine. SAE Paper881633,1988.
    [148] Withrow L. and Rassweiler G. M.. Motion Pictures of Engine Flames Correlated with Pressure Cards.SAETrans., Vol.43,pp.185-204,1983.
    [149] Johnston S.C. Precombustion Fule/Air Distribution in a Stratified Charge Engine Using Laser RamanSpectroscopy. SAE Paper790433,1979.
    [150] Spicher U.,Kroger H. and Ganser J. Detection of Knocking Combustion Using Simultaneously High-SpeedSchlieren Cinematography and Multi Optical Fibre Technique. SAE Paper912312,1991.
    [151] Dec J. Zur Loye A. O. and Siebers D.S. Soot Distribution in a DI Diesel Engine Using2-D Laser InducedIncandescence Imaging. SAE Paper910224,1991.
    [152] Bates S.. A Transparent Engine for Flow and Combustion Visualisation Studies. SAE Paper880520,1988.
    [153] Bowditch F. W.. A New Tool for Combustion Research—A Quartz Piston Engine. SAE Trans., Vol.,69, pp.17-23,1961.
    [154]王云开。无凸轮轴配气机构开发及在可控自燃发动机上的应用研究[D].吉林:吉林大学,2011.
    [155]李华。基于废气再循环策略的均质压燃模式试验与仿真研究[D].吉林:吉林大学,2012.
    [156]程鹏。内燃机数据采集分析系统的研究[D].吉林:吉林大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700