用户名: 密码: 验证码:
分孔径同时偏振成像光学系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偏振成像仪可以识别常规手段难以探测的目标,降低杂乱背景的影响,在复杂的辐射环境中检测出有用的信息,增强目标探测与识别能力。本文研究,设计和研制出用于目标探测和识别的分孔径同时偏振成像系统,该系统可望用作侦查飞机、卫星、导引头等载荷。本文开展了如下工作:
     第一章阐明本文的研究课题、研究意义等,介绍了偏振成像光学系统的应用领域和国内外研究近况,概述本文研究内容。
     第二章介绍光的偏振特性及其定量描述方法,给出偏振成像系统模型和成像原理,比较分析现有偏振成像方法。根据实际应用需求,提出了无中继的分孔径同时偏振成像系统,该系统由共孔径镜头组和四个偏心分孔径子系统组成,具有结构紧凑、完全Stokes矢量同时成像等特点。
     第三章提出用光学传递矩阵(OTM),评价偏振成像光学系统成像质量和分析其偏振测量误差的方法,推导和举例分析了OTM、偏振测量误差与系统参数间关系。OTM不仅可以表示每个偏振通道的成像质量,还可以描述不同偏振通道之间的串扰。
     第四章根据信噪比等要求和近轴成像理论,确定光学系统的视场角、工作波段焦距和孔径等基本参数。给出二组、三组两种分孔径偏心成像系统的结构形式和近轴成像特性。运用赛德耳初级像差和空间光线传递公式,导出并分析此类偏心分孔径光学系统的初级像差公式、PW表达式与像差特性。
     第五章基于导出的PW关系式,给出其初始结构参数的计算方法和结果。给出两种分孔径偏心成像光学系统的优化设计结果和成像质量评价,表明设计得到的成像系统成像质量好、满足性能指标要求。给出光学系统的公差优化分配结果,基于误差传递公式和导出的偏振测量误差公式,分析和给出系统偏振测量允差与偏振元件制造、装调误差之间的关系。
     第六章报导分孔径偏振成像镜头的研制及结果。介绍了镜头光机结构设计、装调方法与结果,测量了其焦距和光学传递函数等基本性能参数。基于偏振成像镜头,构建了同时、完全Stokes偏振成像样机,利用非偏振光、线偏振光、椭圆偏振光目标和自然景物目标,试验其偏振成像性能。通过图像处理,获取了目标完全Stokes矢量图、偏振度图及偏振角度图,取得了与理论预期相符的成像试验结果。
     第七章总结全文工作,概括创新点及不足,提出下一步工作建议。
Polarization imagers are able to identify the target that may be difficult toconventional ones. They can reduce the influence of stray background and complexenvironment and enhance capability of target detection and recognition. Thedissertation researches a new type of simultaneous polarization imaging optical systemwith divided aperture, and its prototype is designed and manufactured, which isexpected to be used as airborne and spaceborne payload. The main contributions aresummarized as follows:
     The issue and significance of the dissertation is put forward in the first chapter.The application fields and research progress of polarization imaging systems arebriefly summarized. The main contents of dissertation are outlined.
     In second chapter, polarization characteristics of light and its quantitativecharacterization method is introduced. Modeling and imaging principle of generalpolarization imaging system are described. Existing polarization imaging methods arecompared and analyzed. According to requirements for practical usage, anaperture-divided simultaneous polarization imaging system without relay lens isproposed, which is consists of an aperture shared lens group and four aperture-dividedlens groups. It is capable of simultaneous complete Stokes vector imaging withcompact configuration.
     In third chapter, an optical transfer matrix (OTM) method is proposed to eveluatethe imaging quality in polarization imaging system and to analyze its polarizationmeasurement errors. The relationship of their OTM and polarization measurementerrors to their parameters is derived and analyzed with examples. OTM can describe not only imaging quality of each polarization channels but also the crosstalk betweendifferent channels.
     In fourth chapter, the basic parameters, including field angle of view, workingwavelength band, effective focal length, and relative aperture of the optical system tobe developed, are determined from its signal-to-noise ratio requirements and paraxialimaging theory. Two layouts of such aperture-divided imaging systems, consisting oftwo groups of lenses and three groups of lenses respectively, are suggested, and theirparaxial imaging properties are analyzed. Based on primary aberration of on-axis lensand transfer relations of skew rays, their primary aberration formula andcharacteristics and corresponding PW representation are derived and analyzed.
     In fifth chapter, method and result for determination of their initial structuralparameters is given based on the derived PW representations. Optimization design andimaging quality of both types of aperture-divided decenterd imaging systems arereported. It is shown that the designed lenses and their imaging quality meet therequired performance. Their tollerance is analyzed and its allocation optimized. Therelationship of polarization measurement tolerance to manufacture, assembly andalignment tolerances of polarization components is derived and analyzed from errortransfer formula and the derived polarization measurement error formulas.
     In sixth chapter, the manufacture process and result of aperture-dividedpolarization imaging optical system is reported. The optomechanical structure isdesigned. After alignment, the focal length and the OTF are measured. Thesimultaneous complete Stokes polarization imaging prototype is builted with thedeveloped lens and a CCD detector. Imaging experiments for unpolarized, linearlypolarized, elliptically polarized targets and natural objects is accomplished,respectively, in order to validate its polarization imaging performance. CompleteStokes vector, polarization degree and polarization angle images of these targets areachieved through processing the obtained four-channel images. Imaging experimentalresults are consistent with our design and theoretical expectations.
     In the last chapter, the main work and the innovative points of this dissertation aresummarized, and the further work is prospected.
引文
[1]孙晓兵,洪津,乔延利.大气散射辐射偏振特性测量研究[J].量子电子学报.2005,22(1):111-115
    [2]汪震,乔延利,洪津,等.利用热红外偏振成像技术识别伪装目标[J].红外与激光工程.2007,36(6):853-856
    [3]张朝阳,程海峰,陈朝辉,等.偏振遥感在伪装目标识别上的应用及对抗措施[J].强激光与粒子束.2008,20(4):553-556
    [4] Cao X, Roy G, Roy N, et al. Comparison of the relationships between lidar integratedbackscattered light and accumulated depolarization ratios for linear and circularpolarization for water droplets, fog oil, and dust[J]. APPLIED OPTICS.2009,48(21):4130-4141
    [5] St hli O, M tzler C, Murk A, et al. sky measurements with the imaging polarimeterspira at91GHz[C]. Microwave Radiometry and Remote Sensing of the Environment(MicroRad):2010,181-186
    [6] Beeler C J, Rappaport S A, Joss P C, et al. Hyperspectral Imaging Polarimeter (HIP)Observations of Ice Clouds Data and Modeling[C]. Aerospace Conference Proceedings:2000,373-385
    [7] Dahlberg A R, Pust N J, Shaw J A. All-Sky Imaging Polarimeter Measurements ofVisible and NIR Skylight at Mauna Loa, Hawaii[C]. Proc. of SPIE Polarization Scienceand Remote Sensing IV:2009,746101-746107
    [8] Lawrence G M, Thomas G E, Kohnert R A, et al. An ultraviolet imaging polarimeterfor observing polar mesospheric clouds[C]. Proc. of SPIE Vol.2266:1994,232-241
    [9] Horváth G, Hegedüs R, Barta A, et al. Imaging polarimetry of the fogbowpolarization characteristics of white rainbows measured in the high Arctic[J]. APPLIEDOPTICS.2011,50(28): F64-F71
    [10] Barta A, Horvath G, Bernath B, et al. Imaging polarimetry of the rainbow[J].APPLIED OPTICS.2003,42(3):399-405
    [11] Hegedüs R, Barta A, Bernáth B, et al. Imaging polarimetry of forest canopies:howthe azimuth direction of the sun, occluded by vegetation, can be assessed from thepolarization pattern of the sunlit foliage[J]. APPLIED OPTICS.,46(23):6019-6024
    [12] Mcneill S, Pairman D. Obtaining Three-dimensional Information From Forests usingPolarimetric Interferometry[J]
    [13] Li Y, Wang S. Underwater Object Detection Technology Based on PolarizationImage Fusion[C]. Proc. of SPIE Vol.7658:2010,76581J-76585J
    [14] Chang P C Y, Flitton J C, Hopcraft K, et al. Improving Visibility Depth in PassiveUnderwater Imaging by Use of Polarization[J]. APPLIED OPTICS.2003,42(15):2794-2803
    [15] Yaroslavsky A N, Neel V, Anderson R R. Demarcation of Nonmelanoma SkinCancer Margins in Thick Excisions Using Multispectral Polarized Light Imaging[J].Journal of Investigative Dermatology.2003,121(2):259-266
    [16] Shao X, Zheng W, Huang Z. Near-infrared autofluorescence polarization imaging forcolonic cancer detection[J]. Journal of Biomedical Optics.2009,9(3):587-592
    [17] Zhou B, Virginia Tech A, Xuan J, et al. Polarization Imaging for Breast CancerDiagnosis Using Texture Analysis and SVM[C]. Life Science Systems and ApplicationsWorkshop: Bethesda, MD2007,217-220
    [18] Zeng N, Jiang X, Gao Q, et al. Linear polarization difference imaging and itspotential applications[J]. APPLIED OPTICS.2009,48(35):6734-6739
    [19] Cognet L, Harms G S, Blab G A, et al. Simultaneous dual-color and dual-polarizationimaging of single molecules[J]. APPLIED PHYSICS LETTERS.,77(24):4052-4054
    [20] Wu P J, Walsh J T. Stokes polarimetry imaging of rat‐tail tissue in a turbid mediumusing incident circularly polarized light[J]. Lasers in Surgery and Medicine.2005,37(5):396-406
    [21] Tyo J S, L D, Goldstein, et al. Review of passive imaging polarimetry for remotesensing applications[J]. APPLIED OPTICS.2006,45(22):5453-5469
    [22] Kurosaki H, Koshiishi H, Suzuki T, et al. Development of tunable imagingspectro-polarimeter for remote sensing[J]. Advances in Space Research.2003,32(11):2141-2146
    [23] Pellicori S F, Russell E E, Watts L A. Pioneer Imaging Photopolarimeter OpticalSystem[J]. APPLIED OPTICS.1973,12(6):1246-1258
    [24] Greaves J S, Holland W S, Jenness T, et al. A submillimetre imaging polarimeer atthe James Clerk Maxwell Telescope[J]. Monthly Notices of the Royal AstronomicalSociety.2003,340(2):353-361
    [25] Ueta T, Murakawa K, Meixner M. Hubble Space Telescope NICMOS ImagingPolarimetry of Proto-Planetary Nebulae. II. Macromorphology of the Dust Shell Structurevia Polarized Light[J]. The Astronomical Journal.,133(4):1345-1360
    [26] Walker J G, Chang P C Y, Hopcraft K I. Visibility depth improvement in activepolarization imaging in scattering media[J]. APPLIED OPTICS.2000,39(27):4933-4941
    [27] Taylor J S, Wolff L B. Partial Polarization Signature Results from the Field Testingof the SHallow water Real-time IMaging Polarimeter (SHRIMP)[C]. OCEANS,2001.MTS/IEEE Conference and Exhibition:2001,107-116
    [28] Taylor J S, Wolff L B. Underwater Partial Polarization Signatures from the ShallowWater Real-time Imaging Polarimeter (SHRIMP)[C]. Proc. SPIE5089:2003,296-311
    [29] Gartley M, Erbach P, Pezzaniti L. Pose Estimation of Unresolved Targets usingPolarimetric Imaging[C]. Proc. of SPIE Vol.7672:767201-767204
    [30] Langloisa M, Dohlenb K, Augereauc J C, et al. High contrast Imaging with IRDISnear infrared polarimeter[C]. Proc. of SPIE Vol.7735:2010,77351U-77352U
    [31] Roelfsema R, Schmid H M, Pragt J, et al. The ZIMPOL high contrast imagingpolarimeter for SPHERE design, manufacturing and testing[C]. Proc. of SPIE Vol.7735:2010,77351B-77354B
    [32] Connor B, Carrie I, Craig R, et al. Discriminative Imaging Using A LWIRPolarimeter[C]. Proc. of SPIE Vol.7113:2008,71130K-71131K
    [33] Chun C S L, Sadjadib F A. Target Recognition Study Using Polarimetric LaserRadar[C]. Proceedings of SPIE Vol.5426:2004,274-284
    [34] El-Saba A, Bezuayehu T. Fusion of Stokes vector imagery using simple logicaloperators application to the problem of surface land mine detection[C]. Proc. of SPIE Vol.6972Polarization: Measurement, Analysis, and Remote Sensing VIII:2008,69720Q-69721Q
    [35] El-Saba A. Improved subsurface land mine recognition using high-boost fusionbetween passive Stokes vector imagery[C]. Proc. of SPIE Vol.7672Polarization:Measurement, Analysis, and Remote Sensing IX:2010,76720S-76721S
    [36] Cremer F, de Jong W, Schutte K. Infrared polarization measurements and modelingapplied to surface-laid antipersonnel landmines[J]. Optical Engeneering.2002,41(5):1021-1032
    [37] Jm B, Cj C, Ml K, et al. Enhancement of confocal microscopy images usingMueller-matrix polarimetry[J]. Journal of Microscopy.2009,235(1):84-93
    [38] Giakos G C, Fraiwan L, Patnekar N, et al. Sensitive Optical Polarimetric ImagingTechnique for Surface Defects Detection of Aircraft Turbine Engines[J]. IEEETransactions on Instrumentation and Measurement.2004,53(1):216-222
    [39] Boher P, Leroux T, Collomb-Patton V, et al. Imaging polarization forcharacterization of polarization based stereoscopic3D displays[C]. Proc. of SPIE-IS&TElectronic Imaging, SPIE Vol.7524:2010,75241K
    [40] Miyazaki D, Ikeuchi K. Shape Estimation of Transparent Objects by Using InversePolarization Ray Tracing[J]. IEEE Transactions on pattern analysis and machineintelligence.2007,29(11):2018-2030
    [41] Ferraton M, Stolz C, Mériaudeau F. Optimization of a polarization imaging systemfor3D measurements of transparent objects[J]. OPTICS EXPRESS.2009,17(23):21077-21082
    [42] Huang K, Chang C, Wu W. A polarization image method for lens decentrationmeasurement[C]. IEEE Instrumentation and Measurement Technology Conference:2010,1567-1570
    [43] Kiire T, Nakadate S, Shibuya M, et al. Three-dimensional displacement measurementfor diffuse object using phase-shifting digital holography with polarization imagingcamera[J]. APPLIED OPTICS.2011,50(34): H189-H192
    [44] Max Born,杨葭荪译.光学原理[M].科学出版社,1981
    [45] Goldstein D. Polarized Light[M]. Marcel Dekker, Inc.,2003
    [46] Halajian J D, Hallock H B. Computerized polarimetric terrain mapping system[P].US3864513.1975
    [47] Garlick G F J, Steigmann G A, Williamlamb E. Differential optical polarizationdetectors [P]. US3992571.1976
    [48] Stenflo J, Povel H. Astronomical polarimeter with2D detector arrays[J]. APPLIEDOPTICS.1985,24(22):3893-3898
    [49] Rautela B S, Joshi G C, Pandey J C. ARIES imaging polarimeter[J]. AstronomicalSociety of India.2004,32(3):159-167
    [50] Oliva E. Wedged double Wollaston a device for single shot polarimetricmeasurements[J]. Astronomy and Astrophysics Supplement Series.1997,3(123):589-592
    [51] Rust D M. Integrated dual imaging detector[P]. US5438414.1995
    [52] Oka K. Compact complete imaging polarimeter using birefringent wedge prisms[J].OPTICS EXPRESS.2003,11(13):1510-1519
    [53] Ahmad J E, Takakura Y. Error analysis for rotating active Stokes–Mueller imagingpolarimeters[J]. OPTICS LETTERS.2006,31(19):2858-2860
    [54] Wo niak W A, Kurzynowski P, Drobczyński S. Adjustment method of an imagingStokes polarimeter based on liquid crystal variable retarders[J]. APPLIED OPTICS.2011,50(2):203-212
    [55] Drobczyński S, Kurzynowski P, Wo niak W A. Performance analysis of imagingStokes polarimeter based on liquid crystal modulators[C]. Proc. of SPIE Vol.7746:2010,77461F
    [56] Mudge J, Virgen M. Near-infrared simultaneous Stokes imaging polarimeterintegration, field acquisitions, and instrument error estimation[C]. Proc. of SPIE Vol.8160:2011,81600B-81601B
    [57] Loe R S, Duggin M J. Hyperspectral Imaging Polarimeter Design and Calibration[C].Proceedings of SPIE Vol.4481:2002,195-205
    [58] Peterson J Q, Jensen G L, Greenman M, et al. Calibration of the hyper-spectralimaging polarimeter[C]. Part of the SPIE Conference on Polarization: Measurement,Analysis, and Remote Sensinq II:1999,296-307
    [59]曹念文,张玉钧.水下目标自然光偏振成像的研究[J].量子电子学报.1999,16(2):110-115
    [60]曹念文,刘文清,张玉钧,等.偏振成像清晰度与成像距离关系的讨论[J].光学学报.2000,20(8):1145-1147
    [61]杨伟锋,洪津,乔延利,等.无人机载偏振CCD相机光机系统设计[J].光学技术.2008,34(3):469-472
    [62]张朝阳,程海峰,陈朝辉,等.伪装遮障的光学与红外偏振成像[J].红外与激光工程.2009,38(3):423-426
    [63] Zhang C, Wu H, Li J. Fourier transform hyperspectral imaging polarimeter forremote sensing[J]. Optical Engineering.2011,50(6):66201
    [64]王新,王学勤,孙金祚.基于偏振成像和图像融合的目标识别技术[J].激光与红外.2007,37(7):676-678
    [65]陶海鹏,陈强,王志明.解偏振度的测量及偏振成像探测识别[J].激光与红外.2011,41(2):132-135
    [66]张颖,赵慧洁,程宣,等.基于LCVR调谐的全偏振多谱段成像系统[J].光谱学与光谱分析.2011,31(5):1375-1378
    [67]张绪国,江月松,路小梅.激光遥感偏振成像系统光学元件调整及误差分析[J].光学学报.2008,28(6):1191-1196
    [68]路小梅,江月松,饶文辉.激光雷达偏振成像遥感的望远镜系统偏振分析[J].光学学报.2007,27(10):1171-1174
    [69]陈伟力,王霞,金伟其,等.采用中波红外偏振成像的目标探测实验[J].红外与激光工程.2011,40(1):7-11
    [1] Goldstein D. Polarized Light[M]. Marcel Dekker, Inc.,2003
    [2] Max Born,杨葭荪译.光学原理[M].科学出版社,1981
    [3]廖延彪.偏振光学[M].科学出版社,2003
    [4] Tyo J S, L D, Goldstein, et al. Review of passive imaging polarimetry for remotesensing applications[J]. APPLIED OPTICS.2006,45(22):5453-5469
    [5] Pak H K, Law B M.2D imaging ellipsometric microscope[J]. Rev. Sci. Instrum.1995,10(66):4973-4976
    [6] Law B M, Pak H K. Ellipsometric imaging of surface drops[J]. J. Opt. Soc. Am. A.1996,13(2):379-384
    [7] Eaglehole D. Performance of a microscopic imaging ellipsometer[J]. Rev.SCI.lnstrum.1988,59(12):2557-2559
    [8]赵永强,潘泉,程咏梅.成像偏振光谱遥感及应用[M].国防工业出版社
    [9] Shao H, He Y, Li W, et al. Polarization-degree imaging contrast in turbid media aquantitative study[J]. APPLIED OPTICS.2006,18(45):4491-4496
    [10] Azzam R M A. Photopolarimeter using two modulated optical rotators[J]. OPTICSLETTERS.1977,1(5):181-183
    [11] Stenflo J, Povel H. Astronomical polarimeter with2D detector arrays[J]. APPLIEDOPTICS.1985,24(22):3893-3898
    [12] Laude-Boulesteix B, De Martino A, Villon B D, et al. Mueller polarimetric imagingsystem with liquid crystals[J]. APPLIED OPTICS.2004,14(43):2824-2832
    [13] Halajian J D, Hallock H B. Computerized polarimetric terrain mapping system[P].US3864513.1975
    [14] Llull P, Myhre G, Pau S. Lens array Stokes imaging polarimeter[J]. Meas. Sci.Technol.2011,22(6):65901
    [15]贾甲,史瑞,朱楠,等.一种实时小型偏振成像装置[P]. CN101806959B.2009.
    [16] Pellicori S F, Russell E E, Watts L A. Pioneer Imaging Photopolarimeter OpticalSystem[J]. APPLIED OPTICS.1973,12(6):1246-1258
    [17] Garlick G F J, Steigmann G A, Williamlamb E. Differential optical polarizationdetectors [P]. US3992571.1976
    [18] Barter J D, Lee P H Y, Thompson H R, et al. Stokes Parameter Imaging of ScatteringSurfaces[C]. Proc. SPIE Vol.3121:1997,319-325
    [19] Lara D, Dainty C. Double-pass axially resolved confocal Mueller matrix imagingpolarimetry[J]. OPTICS LETTERS.2005,21(30):2879-2881
    [20] Pezzaniti J L, Chenault D, Roche M, et al. Four Camera Complete Stokes ImagingPolarimeter[C]. Proc. of SPIE Vol.6972:2008,69720J
    [21] Rautela B S, Joshi G C, Pandey J C. ARIES imaging polarimeter[J]. AstronomicalSociety of India.2004,32(3):159-167
    [22] Hanesa S A, Voelzb D G. Design and construction of a4channel527nm imagingpolarimeter[C]. Proc. SPIE Vol.3870:1999,100-111
    [23] Fujitaa K, Nishidaa M, Itoha Y, et al. Development of simultaneous imagingpolarimeter[J]. Proc. of SPIE.2006(6269)
    [24] De Leon E, Brandt R, Phenis A, et al. Initial results of a Simultaneous StokesImaging Polarimeter[C]. Proc. of SPIE Vol.6682:2007,668215-668219
    [25] Pezzaniti J L, Chenault D B. A Division of Aperture MWIR Imaging Polarimeter[J].Proc. of SPIE.2005(58880V)
    [26] Rust D M. Integrated dual imaging detector[P]. US5438414.1995
    [27] Meier J T, Jones M W. Diffractive optical element for Stokes vector measurementwith a focal plane array[C]. Proc. SPIE Vol.3754:1999,169-177
    [28] Zhao X, Bermak A, Boussaid F, et al. Liquid-crystal micropolarimeter array for fullStokes polarization imaging in visible spectrum[J]. OPTICS EXPRESS.2010,17(18):17776-17787
    [29] Nordin G P, Meier J T, Deguzman P C, et al. Micropolarizer array for infraredimaging polarimetry[J]. J. Opt. Soc. Am. A.1999,5(16):1168-1174
    [30] Chun C S L, Fleming D L, Torok E J. Polarization-sensitive thermal imaging [C].Proc. SPIE Vol.2234:1994,275-286
    [31] Boger J K, Tyo J S, Kumar R, et al. Modeling precision and accuracy of a LWIRmicrogrid array imaging polarimeter [C]. Proc. of SPIE58880U:2005,1-12
    [32] Craighead C K H A. Liquid-crystal micropolarizer array for polarization differenceimaging[J]. APPLIED OPTICS.2002,7(41):1291-1296
    [33] Tyo J S. Hybrid division of aperture division of a focal-plane polarimeter forreal-time polarization imagery without an instantaneous field-of-view error[J]. OPTICSLETTERS.2006,20(31):2984-2986
    [34] Gori F. Measuring Stokes parameters by means of a polarization grating[J]. OPTICSLETTERS.1999,9(24):584-586
    [35] Escuti M J, Oh C, Sánchez C, et al. Simplified Spectropolarimetry Using ReactiveMesogen Polarization Gratings[C]. Proc. of SPIE Vol.6302:2006,630207
    [36] Oka K. Compact complete imaging polarimeter using birefringent wedge prisms[J].OPTICS EXPRESS.2003,11(13):1510-1519
    [37] Michael W. Kudenov M J E E. White-light channeled imaging polarimeter usingbroadband polarization gratings[J]. APPLIED OPTICS.2011,50(15):2283-2293
    [38] Luo H, Oka K, Hagen N, et al. Modeling and optimization for a prismatic snapshotimaging polarimeter[J]. APPLIED OPTICS.2006,45(33):8400-8409
    [39] IMAGING POLARIMETRY[P]. US2007030551A1.2007
    [40] Luo H, Oka K, Dehoog E, et al. Compact and miniature snapshot imagingpolarimeter[J]. APPLIED OPTICS.2008,47(24):4413-4417
    [41] Oka K, Saito N. Snapshot complete imaging polarimeter using Savart plates[C].Proc. of SPIE Vol.6295:2006,629507-629508
    [42] Oka K, Suda R, Ohnuki M. Snapshot Imaging Polarimeter for Polychromatic LightUsing Savart Plates and Diffractive Lenses[C]. Frontiers in Optics:2009
    [43] Dehoog E, Luo H, Oka K, et al. Snapshot polarimeter fundus camera[J]. APPLIEDOPTICS.2009,48(9):1663-1667
    [1]王之江.光学设计理论基础[M].科学出版社,1985
    [2] Jr. James P. McGuire, Chipman R A. Diffraction image formation in optical systemswith polarization aberrations. I Formulation and example[J]. J. Opt. Soc. Am. A.,7(9):1614-1626
    [3] Tyo J S, L D, Goldstein, et al. Review of passive imaging polarimetry for remotesensing applications[J]. APPLIED OPTICS.2006,45(22):5453-5469
    [4] Mcguire J P, Chipman R A. Polarization aberrations.1. Rotationally symmetric opticalsystems[J]. APPLIED OPTICS.,33(22):5080-5100
    [5] Goldstein D. Polarized Light[M]. Marcel Dekker, Inc.,2003
    [6] Taylor J R. An Introduction to Error Analysis-The study of uncertainties in physicalmeasurements[M]. University Science Books Sausalito,1997
    [1]邓仁亮.光学制导技术[M].国防工业出版社,1992
    [2]薛鸣球.仪器光学[M].中国科学院西安精密光学机械研究所(内部资料)
    [3]宋正方.应用大气光学基础[M].气象出版社,1990
    [4]王之江.光学设计理论基础[M].科学出版社,1985
    [5]张以谟.应用光学[M].机械工业出版社,1982
    [6]王之江.实用光学技术手册[M].机械工业出版社,2006
    [1]电影镜头设计组.电影摄影物镜光学设计[M].中国工业出版社,1971
    [2]王之江.实用光学技术手册[M].机械工业出版社,2006
    [1]王之江.实用光学技术手册[M].机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700