用户名: 密码: 验证码:
内蒙古乌梁素海水质动态数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊富营养化是当今国际上重大的水环境问题之一,已给湖泊水环境以及湖泊流域人们的生产生活造成了十分严重的危害。湖泊水环境是一个受多种不确定性因素限制、参数众多、机理十分复杂的系统,加之,湖泊水动力学方程的非线性性质,很难得出理论分析解。随着数值计算方法和数值模式的快速发展,计算机性能的不断提高,数值模拟在水环境科学中得到越来越广泛的研究和应用,已成为研究湖泊、河流、水库、港口等不同水域流场与水质的重要手段之一。
     本文以地处寒旱区的内蒙古乌梁素海为研究对象,针对其水浅、草多、藻多、同时又是河套灌区污水承泄体的特殊情况,首先选用灰色―随机风险率方法对入湖水质浓度风险性进行了分析和计算;其次应用地质统计学理论和ArcGIS软件的地统计分析模块对不同水质参数的时空分布特征及变化规律做了分析研究;最后,在深入理解乌梁素海污染成因及污染机理的基础上,选用EFDC模型和CE-QUAL-ICM模型联合模拟了乌梁素海流场和水质变化过程,得出了以下主要结论:
     ⑴针对湖泊水环境受随机和灰色双重不确定性因素的影响,将灰色-随机风险率理论引入到湖泊水质分析中,对乌梁素海入湖断面有机污染超标风险率和各水质浓度超标的灰色概率区间进行了计算,并绘制了水质参数超过不同浓度值的风险率曲线。结果表明:乌梁素海入湖水质断面遭受着严重的富营养化污染和有机污染;灰色-随机风险率方法能够直观地反映出在不同水质浓度控制标准下,水质参数污染强度和污染历时的变异过程,对控制乌梁素海入湖水质浓度并合理制定富营养化治理措施具有一定的参考价值。
     ⑵为揭示不同水质参数在乌梁素海的时空分布特征及变化规律,应用地质统计学理论和ArcGIS软件的地统计模块对乌梁素海水质参数进行了kriging空间插值。结果表明:受水生植物不同生长阶段、非冰冻期和冰冻期等因素的影响,乌梁素海水质参数呈现出不同的时空变异特征;乌梁素海湖区水体受富营养化污染、有机污染、盐化污染都十分严重。
     ⑶针对乌梁素海生态系统中水体富营养化的现状和特征,选用EFDC模型和CE-QUAL-ICM模型联合模拟乌梁素海流场和水质。CE-QUAL-ICM模型以浮游植物生长动力学为主线,不仅考虑了不同形态营养盐的循环转化过程,还考虑了蓝藻、硅藻和绿藻的生长动力、新陈代谢、被捕食、沉降等过程,并且模拟了以上两方面的循环转换过程。
     ⑷应用所建水动力富营养化模型,模拟乌梁素海水动力及水质变化情况,误差分析表明模拟结果与实测值拟合较好,误差基本在30%以内。模型不仅考虑了风速、蒸发、辐射等气象因素,更为重要的是考虑了水生植物的分布情况以及它们的密度、高度、直径等形态指标,结果表明:考虑水生植物分布的水质浓度模拟值与实测值变化趋势基本一致,未考虑水生植物分布的模拟值未能较好地反映实测值的变化趋势,可见,湖泊水生植物的分布情况对水质指标影响较大。
     ⑸为进一步确定乌梁素海污染的主要原因,本文应用已建富营养化模型,锁定其它条件,改变模型边界条件(入湖水质浓度)进行模拟计算,结果表明:入湖水质浓度按Ⅴ类标准控制后,其模拟值较实际情况波动小,稳定性好;除溶解氧外,入湖水质浓度按Ⅴ类标准控制后的模拟值均小于实际情况模拟值,且后期模拟结果显示水质浓度降幅较大;富营养化主控因子氮磷浓度在整个模拟时段内降幅均较大,可见,入湖污染物质浓度的变化对湖区内污染物质浓度的变化影响显著,且模拟后期更为明显。因此,控制乌梁素海入湖污染负荷对治理和改善乌梁素海水质具有重要的意义。
As one of the main global water environmental problems, Lake Eutrophication has been caused serious negative effects for biodiversity, wetland utilization, and human activities. Lake water environment is a well known complex system which is varied with so many related factors with complicated biological and chemical reaction mechanisms that usually deed to be getting better understanding through numerical modeling. There would hardly be able to obtain analytical solutions for the numerical models due to uncertainty parameters and nonlinear differential expressions. However, the latest development of IT technology could help to get numerical solutions for the water environment related models.
     Grey-Stochastic risk method was employed for environment risk analysis in Lake Wulangsuhai, which is located in a cold-dry region in Inner Mongolia. The lake has an average depth of about 1.5m with wide range species of aquatic plants and algae. It also acts as the receiver of agricultural drainage and sewage water collected from all over Hetao Irrigation District. Coupled Environmental Fluid Dynamics Code (EFDC) and CE-QUAL-ICM model were applied to analyze the concentration distribution and degradation processes of eutrophic contaminants, during which Geology statistics and ArcGIS were used to analyze the temporal and spatial distribution characteristics and variations of the parameters. The results could be concluded as:
     (1) Grey-Stochastic risk method could be used to get more accurate explanations on environment risk analysis for Lake Wulangsuhai as the lake water environment is influenced by both random and gray variables. The results shown that the area dear to the inlet is the heaviest polluted area in terms of both eutrophication and organic pollution. This method can better simulate the variation processes of eutrophication and sensitivity of the parameters under different concentrations of contaminants.
     (2) In order to get better understanding on the characteristics of parameters’temporal and spatial distribution and variation, geology statistics and ArcGIS were used to interpolate data based on the observed data. The results suggested that the parameters shown different variation characteristics within different growing periods of aquatic plants especially when the water body was covered by ice.
     (3) Water flow field and transport processes were simulated by using coupled EFDC and CE-QUAL-ICM. The use of CE-QUAL-ICM could involve the effects of phytoplankton such as its growing dynamics, metabolism, preyed, and receipted processes. It could also consider the effects of circulation and conversation processes between the species of nutrient salts.
     (4) Hydrodynamic eutrophication model was built and the errors were less than 30% between the modeled and observed data. It should be mentioned that the model involved the effects of as many as affected factors like meteorological factors (wind speed, evaporation, radiation) and aquatic plants factors (spatial distribution, density, height, diameter).
     (5) The major factors of eutrophication were modeled by means of only varying the inlet concentrations of eutrophic elements. The results shown that the water quality within the lake varied significantly with the change of the inlet concentrations of eutrophic elements. It implies that the degradation capability of the lake is far from the input load of eutrophic contaminants.
引文
1董志勇.环境水力学[M].北京:科学出版社,2006:1.
    2王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998:1.
    3张振克,王苏民,吴瑞金等.中国湖泊水资源问题与优化调控战略[J].自然资源学报,2001,16(1):16~21.
    4国家环境保护总局科技标准司.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001:3.
    5王树基.我国西北干旱区近四十年水土资源开发利用问题[J].干旱区地理学集刊,1989,31~35.
    6李亚威,韩天成.内蒙古湖泊水资源及主要环境问题[J].内蒙古环境保护,2000,12(2):17~21.
    7金相灿,稻森悠平,朴俊大.湖泊和湿地水环境生态修复技术与管理指南[M].北京:科学出版社,2007:40~75.
    8李炜,环境水力学进展[M].武汉:武汉水利电力大学出版社, 1999.
    9 Dillon P. J, Rigler F.H. The phosphorus-chlorophyll relationship in lakes Limnol Oceanogr, 1974, 19(5): 767~773.
    10 Vollenweider R A.Input-output models with special reference to the phosphorus loading concept in limnology[J].Schweizerische Zeitschrift fur Hydrologie, 1975, 37: 53~83.
    11 Dillon P J, Rigler F H·A simple method for predicting the capacity of a lake for development based on lake trophic status[J].J FishRes Board Ca, 1975, 32(9): 1519~1531.
    12金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M].北京:中国环境科学出版社, 1990.614.
    13金相灿,刘树坤,章宗涉,等.中国湖泊环境(I)[M].北京:中国海洋出版社,1995.580.
    14 Kauppila Tomm, iMoisioTeppo, Salonen Veli-Pekka A diatom-based inference model for autumn epilimnetic total phosphorus concentration and its application to a presently eutrophic boreal lake. Journal of Paleolimnology, 2002, 27(2): 261~273.
    15 Chapra S C.Comment on“An empirical method of estimating the retention of phosphorus in lakes”by Kirchner W B and Dillon P J [J].Water Researches Res, 1977, 2(6):1033~1034.
    16 Reckhow K H.Empirical lake models for phosphorus: development, application, limitations and uncertainty[A].In Scavia D,Robertson, A.(eds.), Perspectives on lake ecosystem modeling[C]. Michigan:Ann Arbor Science Publisher,1979.193~221.
    17 Vollenweider R. A. Advances in defining critical loading levels for phosphorus in lake eutrophication Men Ist Ital Idrobiol,1976, 33(2): 53~83.
    18 KirchnerW.B, Dillon P. J.An empiricalmethod of estimating the retention of phosphorus in lakes Water Resour.Res, 1975, 11(3): 1181~1182.
    19 SnodgrassW. J., Klapwijk A. Model for lake~bay exchange flow. J Great Lakes Res, 1984 11(5): 43~52.
    20 Malmaeus J.M.,Hakanson L A dynamic model to predict suspended particulate matter in lakes.Ecological Modelling 2003, 167(3): 247~262.
    21 Malmaeus J.M.,Hakanson L. Development of a lake eutrophication model Ecological Modelling 2004, 171 (1):35~63.
    22 Schelshe C. L. Assessment of nutrient effects and nutrient limitation in Lake Okeechobee.Wat Res, 1989, 25(6):1119~1130.
    23 Maceina M. J, Soballe D. M. Wind-related limnological variation in Lake Okeechobee Florida Lake Research Management, 1990, 6(1): 93~100.
    24 Shanahan P., Luettich JrR.A. Harleman D.R. F.Water quality modeling: Application to lakes and reservoirs: Case study of Lake Balaton Hungary.Water Quality Modeling.1991, 5(1): 69~114.
    25 Hellstron T.The effect of resuspension on algal production in a shallow lake Hydrobiologia, 1991, 213(3): 183~190.
    26 Rossi G., Premazzi G. Delay in lake recovery caused by internal loading. Wat Res, 1991, 25(3): 567~575.
    27 James R. Thomas, Victor J, Bierman Jr. A preliminary modeling analysis of water quality in Lake Okeechobee, Florida Calibration results.Wat.Res, 1995, 29(12): 2755~2766.
    28 CarpenterS., BrockW.,Hanson P. Ecological and social dynamics in simple models of ecosystem management.Conserv.Ecol,1999, 3(2): 4~23.
    29 Janssen M.A., Carpenter S.R.Managing the resilience of lake: A multi-agent modeling approach. Consrev. Ecol, 1999, 3(2): 15~31.
    30 Srinivasu P. D. N. Regime shifts in eutrophied lakes: A mathematical study. Ecological Modelling, 2004, 197(2):115~130.
    31 Chen XinJian, ASCE M., Sheng Y. Peter, et al Three-dimensional modeling of sediment and phosphorus dynamics in Lake Okeechobee, Florida: Spring 1989 Simulation. Journal of Environmental Engineering, 2005, 131(1): 359~374.
    32黄明海,齐鄂荣,吴剑.遗传梯度法在水质数学模型参数估值的应用[J].环境科学学报,2002,22(3):315~319.
    33徐祖信,尹海龙.黄浦江二维水质数学模型研究[J].水动力学研究与进展,2003,18(3):261~265.
    34张青,杜禹,等.干旱区湖泊水质预测的数学模型[J].数学的实践与认识,2003,33(12):4~8.
    35张昌兵,熊朝坤,等.水质大涡模拟数学模型研究[J].水科学进展,2004,15(4):431~435.
    36方正,马莉莉,袁建平.水箱水质变化数学模型及计算机仿真研究[J].武汉大学学报,2005,38(5):99~103.
    37陈玉松,胡开林,等. ACF32处理西坝河水BOD5的一维水质数学模型研究[J].昆明理工大学学报,2006,31(3): 54~57.
    38梁常德,龙天渝.蓄水城区河段水质数学模型建立的探讨[J].水资源与水工程学报,2006,17(3):62~67.
    39邓光毅,王加友,张红霞.长江水质评价和预测的数学模型[J].内江师范学院学报,2006,21:181~184.
    40郝一平.长江水质预测数学模型与检验[J].河南机电高等专科学校学报,2006,14(5):32~34.
    41宋丽艳,张志旭.松花江水质评价数学模型[J].佳木斯大学学报,2007,25(1):122~123.
    42 Chen C W·Concepts and Utilities of Ecologic Model[J]·J of Sanit, Engineering Division, ASCE, 1970, 96: 1085~1097.
    43 Di toro D M, O’Connor D J, Thomann T V.A Dynamic Model of Phytoplankton Population in the Sacramento San Joaquin Delta[J]·Advances in Chemistry, American Chemical Society, 1971, 106: 131~180.
    44 Jorgensen S E. Application of Ecological Modeling in Environmental Management, part A. New York: Elsevier Scientific Publishing Company, 1983,227~279
    45 Jorgensen S E. State-the-art management of models for lakes and Reservoirs. Lakes and Reservoirs: Research andManagement, 1995, 1(2): 79~87.
    46 Chapra,S.C.and Pelletier,G.J.QUAL2K:A Modeling Framework for Simulating River and Stream Water Quality: Documentation and Users Manual[M].Civil and Environmental Engineering Dept.,Tufts University ,Medford,MA.2003,12:3.
    47郭永彬,王焰新.汉江中下游水质模拟与预测-QUAL2K模型的应用[J].安全与环境工程,2003,10(1):4~7.
    48 Cerco C F.Phytoplankton kinetics in the Chesapeake Bay Eutrophication Model.Water Quality and Ecosystems Modeling, 2000,1:5~49.
    49 Erichsen, A.C and Rasch, P.S. Two-and Three-dimensional Model System Predicting the Water Quality of Tomorrow. DHI Water and Environment, 2002, 165~184.
    50朱宜平,张海平,陈玲.景观水体的水动力优化设计[J].中国给水排水,2007,23(10):36~38.
    51江霜英,王雨,张海平,等.上海市竹园第一污水处理厂升级改造工程对长江口水体环境的影响[J].环境科学研究,2008,21(1):159~167.
    52李瑞杰,诸裕良,郑金海.虎门太平水道航道整治工程潮流数模计算[J].水运工程,2003,350(3):38~42.
    53周贤宾,吴建,詹中英等. EFDC模型在饮用水源保护区划分中的应用研究-以杭嘉湖地区某水厂为例[J].环境科学导刊,2009,28(2):30~ 32.
    54左书华.Delft3D在鳌江口外平阳咀海域流场模拟中的应用[J].水文,2007,27(6):55~58.
    55栗苏文,李红艳,夏建新.基于Delft 3D模型的大鹏湾水环境容量分析[J].环境科学研究,2005,18(5):91~95.
    56 Cerco C F and Cole F. Three dimensional eutrophication model of Chesapeake bay. Journal of Environmental Engineering, 1993, 19(6): 1006~1025.
    57 Robert B A et al. WASP4 A hydrodynamic and water quality model theory, user's manual, andprogrammer's guide. Environmental Research Laboratory, USEPA. 1991.
    58 Pilar H, Robert B A and Daniel P. Modeling eutrophication kinetics in reservoir microcosms. Water Research, 1997,31(9): 2511~2519.
    59 Warwick J J and Cockrum D M. Estimating no-point-source loads and associated water quality impact. Journal of Water Resources Planning and Management, 1997, 123(5):302~310.
    60 Kao J J, Lin W L and Tsai C H. Dynamic spatial modeling approach for estimation of internal phosphorus load. Water Research, 1998, 32(1): 47~56.
    61 Janse J H, Ellen V D and Tom A. A model study in the stability of the macrophyte-dominated state as affected by biological factors. Water Research, 1998, 32(9): 2696~2706.
    62刘玉生,唐宗武,等.滇池富营养化生态动力学模型及其应用[J].环境科学研究, 1991,4(6):1~8.
    63宋永昌,王云,戚仁海.淀山湖富营养化及其防治研究[M].上海:华东师范大学出版社,1991,157~180.
    64阮景荣,蔡庆华,刘建康.武汉东湖的磷-浮游植物动态模型[J].水生生物学报, 1988,12(4):289~307.
    65刘元波,陈伟平.太湖梅梁湾藻类生态模拟与藻类水华治理对策分析[J].湖泊科学,1998, 10(4): 53~59.
    66胡维平,濮培民,秦伯强.太湖水动力学三维数值试验研究—1.风生流和风涌增减水的三维数值模拟[J].湖泊科学, 1998,10(4):17~25.
    67胡维平,秦伯强,濮培民.太湖水动力学三维数值试验研究—3.马山围垦对太湖风生流的影响[J].湖泊科学, 2000,12(4):335~342.
    68夏军,窦明.水体富营养化综合水质模型及其应用研究[J].上海环境科学, 2000,19(7):302~308.
    69李一平,逢勇,丁玲.太湖富营养化控制机理模拟[J].环境科学与技术,2004, 27(3): 1~3.
    70杨具瑞,方铎.滇池湖泊富营养化动力学模拟研究[J].环境科学与技术,2004, 26(3): 37~38.
    71李锦秀,禹雪中,幸治国.三峡库区支流富营养化模型开发研究[J].水科学进展,2005,16(6) 777~783.
    72 Jorgensen S E.Structural dynamic model[J]·Ecological Modeling, 1986, 31: 1~9
    73 Jorgensen S E, Mejer H F·A holistic approach to ecological modeling[J]·Ecological Modeling, 1979, 7(1~2): 169~189.
    74 Straskraba M.Nature control mechanisms in models of aquatic ecosystems[J]·Ecological Modeling, 1979, 6(3): 305~322.
    75 Jorgensen S E.Use of models as experimental tool to show that structural changes are accompanied by increased exergy[J]·Ecological Modeling, 1988, 41: 117~126.
    76 Jorgensen S E.Development of models able to account for changes in species composition[J]·Ecological Modeling, 1992, 62:195~208.
    77 Jorgensen S E.Fundamentals of ecological modeling (second edition)[A]·Amsterdam: Elsevier,1994, 630.
    78 Jorgensen S E, Nielsen S N.Models of the structural dynamics in lakes and reservoirs[J]·Ecolocial Modeling, 1994, 74: 39~46.
    79 Jorgensen S E, Nielson S N, Mejer H F.Emergy, Environ, Exergy and Ecological Modelling[J]·Ecological Modeling, 1995, 77:99~109.
    80 Nielsen S N.Application of exergy in structural-dynamical modeling[J]·Vert Int Ver Limnol, 1990, 24: 641~645.
    81 Nielsen S N.Application of maximum exergy in structural dynamical models [A]. Danish National Environmental Research Institute.1992.
    82 Nielsen S N.Modelling structural dynamical changes in a Danish shallow lake [J]·Ecological Modeling, 1994, 73: 13~30.
    83 Nielsen S N.Optimization of exergy in a structural dynamic model[J]·Ecological Modeling, 1995, 77: 111~122.
    84 Jorgensen S E.Integration of Ecosystem Theories: A Pattern[A]·Kluwer Dordrecht, 1997, 400.
    85卢小燕,徐福留,等.湖泊富营养化模型的研究现状与发展趋势[J].水科学进展,2003,14(6):792~798.
    86 Klemas V. Borchardt J F. and Treasure W M. Suspended sediment observations from ERTS-1[J].Remote Sensing of Environment, 1971~1973, 2: 205~221.
    87 Klemas V., Bartlett D. and Philpot W. Coastal and estuarine studies with ERTS~1 and Skylab[J].Remote Sensing of Environment, 1974, 3:153~174.
    88 Kritikos H and Yorinks L. Suspended solids analysis using ERTS-A data[J].Remote Sensing of Environment, 1974, 3(1): 69~78.
    89 Sathyendranath S, Prieur L, Morel A. A three-component model of ocean colour and its application to remoter sensing of phytoplankton pigments in coastal waters [J]. INT. J.Remote Sensing, 1989, 10(8):1373~1394.
    90 Lahet F, Ouillon S. A Three-component model of ocean colour and its application in the Ebro River Mouth Area [J]. Remote Sensing of Environment, 2000, 72:181~190.
    91 Gitelson A, Szilagyi F and Mittenzwey K. H.Improving quantitative remote sensing for monitoring of inland water quality [J].Water Research, 1993, 27(7):1185~1194.
    92 Janet E. Nichol. Remote sensing of tropical blackwater rivers: a method for environmental water quality analysis [J].Applied Geography, 1993, 13(2):153~168.
    93 Janet E. Nichol. Remote sensing of water quality in the Singapore-Johor-Riau growth triangle [J] Remote Sensing of Environment, 1993, 43(2):139~148.
    94 Hoogenboom H.J, Dekker A. G and Althuis Ij. A. Simulation of AVIRIS Sensitivity for Detecting Chlorophyll over Coastal and Inland Waters [J].Remote Sensing of Environment, 1998,65(3):333~340.
    95 Moore G F, Aiken J.The atmospheric correction of water colour and the quantitative retrieval of suspended particulate in CaseⅡwaters application to MERIS [J]. INT. J.Remote Sensing, 1999, 20(9):1713~1733.
    96 Brivio P A, Giardino C. Validation of Satellite data for quality assurance in lake monitoring applications [J]. The Science of the Total Environment, 2001, 268:3~18.
    97 Dekker. Analytical algorithms for lake water TSM estimation for retrospective analyses for TM and SPOT sensor data [J]. INT. J. Remote Sensing, 2002, 23(1):15~35.
    98 Richard L.Miller and Brent A. McKee. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters[J].Remote Sensing of Environment, 2004, 93:259~266.
    99李旭文,季耿善,杨静.苏州运河水质的TM分析[J].环境遥感,1993, 8:36~44.
    100刘堂友,匡定波,等.湖泊藻类叶绿素a和悬浮物浓度的高光谱定量遥感模型研究[J].红外与毫米波学报,2004,23(1):11~15.
    101杨英宝,江南等.东太湖湖泊面积及网围养殖动态变化的遥感监测[J].湖泊科学,2005, 17(2): 133~138.
    102尹球,巩彩兰,匡定波,等.湖泊水质卫星遥感方法及其应用[J].红外与毫米波学报,2005,24(3):198~202.
    103徐萌,李亚春等.苏北大型湖泊水域的EOS/MODIS遥感监测[J].气象科技,2007,35(4):579~582.
    104童小华,谢欢,等.基于多光谱遥感的水质监测处理方法与分析[J].同济大学学报(自然科学版),2007,35(5):675~680.
    105 Hsiu-Hua Liao and Udoyara S. Tim. Interactive water quality modeling within a GIS environment [J]. Computers, Environmet and Urban Systems, 1994, 18(5): 343~363.
    106 Lehmann A, Jaquet J. M. and Lachavanne J. B.Contribution of GIS to submerged macrophyte biomass estimation and community structure modeling, Lake Geneva, Switzerland [J]. Aquatic Botany, 1994, 47(2):99~ 117.
    107 Lehmanna A, Jaquetb J M and Lachavannea J B.A GIS approach of aquatic plant spatial heterogeneity in relation to sediment and depth gradients, Lake Geneva, Switzerland[J].Aquatic botany,1997,58:347~361.
    108 Fu-Liu Xu, Shu Tao, R.W. Dawson, Beng-Gang Li.A GIS~based method of lake eutrophication assessment [J].Ecological Modelling, 2001, 144:231~244.
    109 Pe′rez O.M., Ross L.G et al.Water quality requirements for marine fish cage site selection in Tenerife (Canary Islands):predictive modelling and analysis using GIS[J].Aquaculture,2003,224: 51~68.
    110 Fernandez G.P, Chescheir G.M et al. DRAINMOD-GIS: A lumped parameter watershed scale drainage and water quality model [J].Agricultural Water management, 2006, 81:77~97.
    111马蔚纯,张超.基于GIS的水质数值模拟[J].地理学报,1998,53:67~75.
    112江毓武,洪华生,张珞平.地理信息系统(GIS)在厦门海域水质模型中的应用[J].厦门大学学报(自然科学版),1999,38:90~95.
    113杨具瑞,方铎.GIS支持下水质模型模拟的实现研究[J].甘肃农业大学学报,1999,3:307~309.
    114贾海峰,程声通,杜文涛.GIS与地表水水质模型WASP5的集成[J].清华大学学报(自然科学版),2001,41: 125~128.
    115刘瑞民,王学军,等.应用GIS分析太湖水质的污染现状[J].环境污染与防治,2002,24(4):224~226.
    116张行南,耿庆斋,逄勇.水质模型与地理信息系统的集成研究[J].水利学报,2004,1:90~94.
    117郑泽梅,夏斌,张俊岭.GIS与水质模型集成研究与实践[J].环境科学与技术,2005,28:10~11.
    118 D’Eon, S P. Accuracy and signal reception of a hand~held Global Positioning System (GPS) receiver. Forest. Chron, 1995, 71, 192~196.
    119 August, P, Michaud J, Labash C, Smith C. GPS for environmental applications: Accuracy and precision of locational data. Photogram. Eng.Remote Sens. 1994, 60 (1): 41~45.
    120 Liu C J, Brantigan R. Using differential GPS for forest traverse surveys. Can. J. Forest. Res, 1995,
    25, 1795~1805.
    121吴向阳.应用GPS技术快速建立河流控制网[J].地矿测绘,1997,2:18~20.
    122杨久东,吴风华.RTKGPS技术应用于湖泊资源保护的研究[J].地质灾害与环境保护,2003,14(3):18~20.
    123蒋建虎,张振江,基于GPRS和GPS的移动水质监测系统设计[J].自动化技术与应用2006,25(8):66~68.
    124李畅游,史小红.干旱半干旱地区湖泊二维水动力学模型[J].水利学报,2007.38(12):1482~1488.
    125李畅游,刘廷玺,高瑞忠等.乌梁素海富营养化主控因子年季变化分析及综合评价[J].水文,2004,24(3):14~24.
    126于瑞宏,刘廷玺,李畅游等.干旱区草型湖泊悬浮固体浓度及水深的遥感与分析[J].水利学报,2005,36(7):853~862.
    127尚士友,杜建民.草型湖泊富营养化适度控制技术的研究[J].内蒙古农牧学院学报,1995, 16(2):87~90.
    128尚士友,杜健民.草型富营养化湖泊生态恢复工程技术的研究[J].生态学杂志,2003,22(6):57~62.
    129乌云塔娜,尚士友.乌梁素海总磷控制模型的研究[J].内蒙古农业大学学报,2002,23(4):81~83.
    130尚士友,杜健民,李旭英等.乌梁素海富营养化适度控制的研究[J].内蒙古大学学报(自然科学版),2003,34(5):588~592.
    131王丽敏.水草收割工程对乌梁素海氮元素转移过程的研究[D].内蒙古:内蒙古农业大学, 2004:1~33.
    132孙惠民,何江,吕昌伟等.乌梁素海沉积物中有机质和全氮含量分布特征[J].应用生态学报,2006, 17(4):620~624.
    133孙惠民.乌梁素海富营养化及其机制研究[D].内蒙古:内蒙古大学, 2006:1~75.
    134段晓男,王效科,欧阳志云等.乌梁素海野生芦苇群落生物量及影响因子分析[J].植物生态学报,2004,28(2):246~251.
    135王效科,赵同谦,欧阳志云.乌梁素海保护的生态需水量评估[J].生态学报,2004,24(10): 2124~2129.
    136段晓男,王效科,冯兆忠等.乌梁素海野生芦苇光合和蒸腾特性研究[J].干旱区地理,2004,27(4): 637~641.
    137李亚威.大型植物过量生长型的富营养化湖泊~乌梁素海[J].内蒙古环境保护,2002,14(2):3~6.
    138杨贵生,邢莲莲,颜重威等.乌梁素海湿地鸟类新记录[J].内蒙古大学学报(自然科学版),1999, 30(6):739~741.
    139赵军.乌梁素海芦苇资源的生产现状与展望[J].内蒙古草业,2001,2:147~48.
    140陶黎,叶俊峰,李晓霞等.乌梁素海鱼类种群变化的研究[J].内蒙古环境保护,2002,14(3): 16~17.
    141齐珺.长江武汉段水沙作用下污染物多相输移三维数值模拟研究[博士学位论文].北京:北京师范大学,2008.
    142贺锡泉.非突发性环境风险研究[J].中国环境科学,1990,10(3):218~223.
    143 Warrant Piver, Lee A.Duval, Jill A.Schreifer.Evaluating health risks from ground-water contaminants[J].Journal of Environmental Engineering, 1998, 124(5):475~468.
    144陈小红,涂新军.一个水质风险率计算的随机模型[J].环境科学学报,2000,20(3):290~293.
    145胡国华,夏军.风险分析的灰色随机风险率方法研究[J].水利学报,2001,(4):1~6.
    146胡国华,夏军,赵沛伦.河流水质风险评价的灰色随机风险率方法[J].地理科学,2002,22(2):249~252.
    147 Wasserman L A. Belief functions and statistical inference [J].The Canadian Journal of Statistics, 1990, 18(3):183~196.
    148夏军.灰色系统水文学[M].武汉:华中理工大学出版社,2000.49~53.
    149曾光明,何理,等.河流水环境突发性与非突发性风险分析比较研究[J].水电能源科学,2002,20(3):13~15.
    150曾光明,卓利,钟政林,等.突发性水环境风险评价模型事故泄漏行为的模拟分析[J].中国环境科学,1998,18(5):403~406.
    151夏军.区域水环境质量灰关联度评价方法的研究[J].水文,1995,(2):4~10.
    152赵沛伦,申献辰,夏军,等.泥沙对黄河水质影响及重点河段水污染控制[M].郑州:黄河水利出版社.1998.98~113.
    153 Finney B A, Bowles D S, Windham M P. Random differential equations in river water quality modeling [J]. Water Resources Research,1982, 18(1): 122~134.
    154 Padgett W J, Rao A N V. Estimation of BOD and DO probability distribution [J]. J. Environmental Eng. ASCE, 1988, 114(1): 74 ~90.
    155黄平.水质随机微分模型系数的识别方法及应用[J].水利学报,1988,(3):41~48.
    156 Shinozuka, M, Basic Analysis of Structural Safey [J].J. of Structural Division, ASCE.1983, 3,109.
    157张震宇,武洪涛,张绍峰.数字水利环境工程应用[M].北京:科学出版社.2004.89~94.
    158黄伟军,丁晶.灰色先验分布研究[A].夏军.现代水科学不确定性研究与进展[C].成都:成都科技大学出版社,1994.178~182.
    159谢永明.河流有机污染水质模型及其参数识别[J].环境科技,1986,6(2):14~23.
    160谢永明,叶常明,杜秀英,等.河流水质模式参数估计的研究[J].环境科技,1981,2(2):21~26.
    161 O'Connor J.Mechanism of reaeration in natural streams. American society of civil engineers,1956.
    162李畅游,高瑞忠等.乌梁素海水质富营养化评价及其年季动态变化特征[J].水资源与水工程学报, 2005.16(2):11~15.
    163任春涛,李畅游等.基于GIS的乌梁素海水体富营养化状况的模糊模式识别[J].环境科学研究, 2007.20(3):68~74.
    164任春涛,李畅游等.基于模糊ISODATA技术和模糊模式识别方法的水环境分区研究[J].中国农村水利水电, 2007.3:10~12.
    165刘瑞民,王学军.湖泊水质参数空间优化估算的原理与方法[J].中国环境科学,2001,21(2):177~ 179.
    166孙洪泉.地质统计学及其应用[M].徐州:中国矿业大学出版社,1990:96~125.
    167崔文连,王勇.崂山水库叶绿素a含量与富营养化程度探讨[J].山东环境,1999,91(3):50~51.
    168李泽军.从水体叶绿素含量评价于桥水库富营养化程度[J].河北水利水电技术,2001,6:44~45.
    169舒金华.我国湖泊富营养化程度评价方法的探讨[J].环境污染与防治,1990,12(5):2~7.
    170冯民权,郑邦民,周孝德.河流及水库流场与水质的数值模拟[M].北京:科学出版社,2007:182~207.
    171 Hamrick J M. A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects[R]. Gloucester, Massachusetts: Virginia Institute of Marine Science, the College of William and Mary, 1992, 1~60.
    172 Daniel L T. Spatial and temporal hydrodynamic and water quality modeling analysis of a large reservoir on the South Carolina (USA) coastal plain [J]. Ecological Modeling, 1999, (114):137~173.
    173 Moustafa, M. Z., and J. M. Hamrick. Calibration of the wetland hydrodynamic model to the Everglades nutrient removal project [J]. Water Quality and Ecosystem Modeling, 2000 ,1, 141~167.
    174 Wool, T. A., S. R. Davie, and H. N. Rodriguez, Development of three-dimensional hydrodynamic and water quality models to support TMDL decision process for the Neuse River estuary, North Carolina [J]. Journal of Water Resources Planning Management, 2003,129, 295~306.
    175 Kyeong Park, Hoon-Shin Jung, Hong-Sun Kim,Sung-Mo Ahn Three-dimensional hydrodynamic-eutrophication model(HEM-3D):application to Kwang-Yang Bay,Korea[J]. Marine Environmental Research, 2005, 60:171~193.
    176 Jin, K. R., Z. G. Ji, and J. M. Hamrick. Modeling winter circulation in Lake Okeechobee, Florida [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2002, 128, 114~125.
    177 Jin, K.-R., J. M. Hamrick, and T. S. Tisdale, Application of three-dimensional hydrodynamic model for Lake Okeechobee [J]. Journal of Hydrology Engineering, 2000.126, 758~771.
    178 Kuo, A. Y., J. Shen, and J. M. Hamrick,: The effect of acceleration on bottom shear stress in tidal estuaries[J].Journal of Waterways, Ports, Coast. Ocean Engineering. 1996,122, 75~83.
    179陈景秋,赵万星,季振刚.重庆两江汇流水动力模型[J].水动力学研究与进展,2005,20(12):829~ 835.
    180陈异晖.基于EFDC模型的滇池水质模拟[J].云南环境科学,2005,24(4):28~30.
    181王建平,苏保林.贾海峰等.密云水库及其流域营养物集成模拟的模型体系研究[J].环境科学,2006,27(7):1286~1291.
    182 Zhen Gang JI.HYDRODYNAMICS AND WATER QUALITY Modeling Rivers,Lakes,and Estuaries[M].A JOHN WILEY & SONS,INC.2007:1~15.
    183 Tetra Tech, Inc.The Environmental Fluid Dynamics Code Theory and Computation Volume 3: Water Quality Module [R]. 10306 Eaton Place Suite 340, 2007:1~10.
    184 Hamrick, J. M. A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspect [R]. Special report No.317 in Applied Marine Science and Ocean Engineering, 1992:1~60.
    185窦振兴,杨连武.一种三维环流模型及其应用[J].计算物理,1993,10(1): 25~36.
    186王红.三维多组分泥沙数学模型及其应用[硕士学位论文].天津:天津大学,2007.
    187 Cerco C F,Cole T.User’s guide to the CE-QUAL-ICM three dimensional eutrophication model, Release Version 1.0,Technical Report EL-95-15,US Army Eng.Waterways Experiment Station,Vicksburg,MS,USA,1995.
    188 Robert B A,Tim A W,James L M.The water quality analysis simulations program,WASP5,Part A:model documentation,Environmental Research Laboratory,Athens,Georgia,1993.
    189何国建.三维水沙及水质数学模型的研究与应用[博士学位论文].北京:清华大学,2007.
    190李畅游,于瑞宏,高瑞忠,等.基于遗传算法的乌梁素海水环境的投影寻踪评价[J].内蒙古农业大学学报,2003,24(4):1~6.
    191李卫平,李畅游等.内蒙古乌梁素海氮、磷营养元素分布特征及地球化学环境分析[J].资源调查与环境,2008,29(2):131~138.
    192李畅游,武国正,李卫平等.乌梁素海浮游植物调查与营养状况评价[J].农业环境科学学报,2007.26:283~287.
    193史小红,李畅游,贾克力.乌梁素海污染现状及驱动因子分析[J].环境科学与技术,2007.30(4):37~39.
    194李畅游,任春涛,武国正等.基于MATLAB实现的乌梁素海水质等级的模糊模式识别评价[J].农业环境科学学报, 2007,26(6):2299~2304.
    195武国正,李畅游,张生.基于主成分聚类综合分析法的湖泊富营养化评价[J].环境污染与防治,2008(6):1~8.
    196 Lin W L,Carlso K,Chen C J.Diagonal Cartesian method for numerical simulation of incompressible flows over complex boundaries.Numerical Heat Transfer,Part B,1998,33(2):181~ 213.
    197 Guobin Fu,Michael E.Barber,Shulin Chen.Impacts of Climate Change on Regional Hydrological[J].Journal of Hydrologic Engineering,ASCE,2007,12(5):452~461.
    198 JOHN R.WHITE.Influence of Phosphorus loading on biogeochemical cycling of nitrogen in northern Everglades soils [PH.D].University of Florida,1999.
    199张晨.长距离调水工程水质安全研究与应用[博士学位论文].天津:天津大学,2008.
    200 Rui Zou,StePHen Carter.Integrated hydrodynamic and water quality modeling system to support nutrient total maximum daily load development for Wissahickon Creek,Pennsylvania[J].Journal of Environmental Engineering,ASCE,2006,132(4):555~556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700