用户名: 密码: 验证码:
使用物理方法由TRMM/TMI亮温资料反演中国陆地降水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究使用MM5中尺度模式模拟了中国陆地的11个中尺度降水个例以获得降水廓线,由Monte-Carlo三维辐射传输模式计算这些降水廓线的上行辐射亮温,构建出初始的云-辐射数据库。采用对照表和综合判据方法控制初始数据库并从中获得Database_m11、Database_m12、Database_m21、Database_m22共四个数据集,作为GPROF反演算法的先验数据库。对2007年7月间的三次强降水过程的地面雨强进行反演,与TMI 2A12产品及NESDIS、GSCAT、PCT-SI三种经验算法反演的雨强相比较,发现Database_m12参与反演的地面雨强与TMI 2A12的结果较接近,明显优于使用数据集Database_m11获得的反演结果,甚至优于三种经验算法的反演结果;使用数据库Database_m22获得的结果比Database_m21更接近TMI 2A12的结果。使用PR 2A25产品的雨强对上述各算法反演的雨强做综合检验,发现总体上TMI 2A12产品提供的雨强效果最好。各数据库中,Database_m12的反演效果较好。对照表方法控制的数据库Database_m11和Database_m12反演的雨强的效果优于综合判据方法控制的数据库Database_m21和Database_m22的反演效果。且使用数据库Database_m21和Database_m22反演的地面雨强通常表现偏大。使用地面S波段雷达反演的雨强检验各算法的效果,发现物理算法的结果与地面雷达结果的相关性明显高于经验算法,平均相对偏差也较小,反演的效果较为稳定,其中Database_m12的反演效果甚至优于GPROF 6.0算法的反演效果。这是因为虽然Database_m12以GPROF 6.0算法的数据库为对照表,但其中包含的廓线是具有中国陆地、特别是该地区的梅雨锋的降水特征的降水廓线。使用雨量计观测到的逐时降水量考察各算法反演效果,显示数据库Database_m21和Database_m22的反演结果相对较好。经验算法中PCT-SI综合指数法对这三个降水个例的反演效果较稳定,优于另外两种经验算法。数据库Database_m12参与反演的可降水(pw)在垂直分布和含量上与TMI 2A12的结果以及地面雷达反演的液态水结果非常一致,而云水(cw)、云冰(ci)和可降冰(pi)与TMI的反演结果在垂直高度分布上分别较接近,各水凝物的含量最大值所在高度也分别一致,含量上都高于TMI的结果。使用另外3个数据集反演的4种水凝物垂直结构与使用Database_m12的结果在垂直分布结构基本一致,而可降水(pw)的含量偏低一些。综合判据法控制的数据库对可降水的位置的反演与地面雷达反演的液态水位置最接近。研究还发现将数据库Database_m21和Database_m22中雨强小于0.01mm/hr的降水廓线过滤后,对于地面雨强的反演结果没有影响,而且检验发现过滤后的数据库反演效果略好。对于水凝物垂直廓线的反演也可以收到更好的效果,并将运算时间缩短了1/4。综上,研究所确立的物理算法是成功的,可作为发展适用于我国的由微波亮温反演地面雨强和水凝物廓线的物理方法一次有益尝试。
In order to construct the initial cloud-radiation database, 11 cloud-precipitating systems over land surface in China were simulated by MM5 to obtain the rainfall profiles whose upwelling radiative brightness temperature were computed by Monte-Carlo radiative transfer model. Then as the priori databases, 4 databases named Database_m11, Database_m12, Database_m21 and Database_m22 were extracted from the initial cloud-radiation database by using check list and compositve criteria method. The rain rates of three cloud-precipitation systems during July 2007 were retrieved by importing those 4 databases to the GPROF algorithm respectively. Comparing with the results from TMI 2A12 product and three statistic algorithms containing NESDIS, GSCAT and PCT-SI, the rain rate from Database_m12 was close to TMI’s and better than that from Database_m11 significently, even better than those from statistical algorithms sometimes. The rain rate of Database_m22 was closer to TMI than that of Database_m21. The rainfall intensities of PR were used to inspect the results calculated by the above algorithms. It is found that TMI 2A12 product shows the best results. Among the four databases, Database_m12 has better impression in general. Database_m11 and Database_m12 controlled by check list display better behavior than Database_m21 or Database_m22 obtained by compositive criteria method. And the databases controlled with compositive criteria method would cause rain rate more intensive. In the same way, the rainfall intensities calculated from the Doppler Radars on land surface were also utilized to compare the results from the above databases. The rain rates from physical methods are more compatible with those observed by the Doppler Radars than those from the statistical methods. Especially the results retrieved by Database_m12 are even better than those from TMI 2A12 product. The reason is although the Database_m12 is based upon the database of GPROF 6.0, it contains the cloud-precipitation profiles which represent the rainfall character of Meiyu front on that area in China. The better expression of Database_m21 and Database_m22 can be found when one-hour accumulated precipitation observed by rain gauges is supposed to test the above various algorithms. Generally PCT-SI has the best behavior than the other two statistical methods. Among the four kinds of hydrometeors retrieved by Database_m12, the precipitable water (pw) displays consistent with that from TMI 2A12 product or the cloud liquid water retrieved by Radar on land. The vertical distributions of other three hydrometeors including cloud water (cw), cloud ice (ci) and precipitable ice (pi) are close to those of TMI. However the contents of those three kinds of hydrometeors are sometimes higher than those from TMI respectively. The hydrometeor structures obtained from other three databases are similar to those from Database_m12 except that the contents of those hydrometeors are lower generally. The distribution place of pw retrieved by the databases controlled with compositive criteria is consistent with cloud liquid water computed from Doppler Radar. When the databases neglected the less than 0.01mm/hr in precipitating profiles, there is almost no negative effect on the retrieved rainfall intensity, but the better hydrometors vertical distribution would be produced. Also the computing time can be reduced by 1/4. Thus, the algorithm constructed in this study has a positive effect on retrieving rainfall intensity and the profiles of hydrometeors. And it can be regarded as a helpful attempt to improve the physical algorithm applied in China with which the rainfall intensity and hydrometeor structures can be retrieved from brightness temperature.
引文
[1] Kummerow C, Barnes W. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Oceanic Tech., 1998, 15(3): 809-817.
    [2]吴庆梅,程明虎,苗春生.用TRMM资料研究江淮、华南降水的微波特性.应用气象学报,2003,14(2):206-214.
    [3] Cheng M, R Brown and Collier C G. Delineation of Rain Areas Using Meteosat IR-VIS Data in the Region of the United Kingdom. J. Appl. Meteo., 1993, 32: 884-898.
    [4] Cheng M. Estimation of Precipitation Using Satellite, Radar and Rain Gauge, Ph. D Thesis. University of Bristol. 1994, 31pp. and 400pp.
    [5] Cheng M and R Brown. Delineation of Precipitation Areas by Correlation of Meteosat Visible and Infrared Data with Radar Data. Mon. Wea. Rev., 1995, 123: 2743-2757.
    [6]黄容.利用云和辐射传输模式对对流性降水云微物理及辐射特性的研究.硕士论文,中国气象科学研究院,2003.
    [7]毛冬艳.用TRMM资料对中国暴雨个例的分析和降水反演.硕士论文,中国气象科学研究院,2001.
    [8] Shin Dong-Bin,Kummerow C D. Parametric Rainfall Retrieval Algorithms for Passive Microwave Radiometers. J. Appl. Meteor.,2003,42:1480-1496.
    [9]袁金国,牛铮,龙丽民. TRMM卫星和全球降雨观测计划GPM及其应用.安徽农业科学,2006,34(9): 1754-1757.
    [10]周秀骥等.大气微波辐射及遥感原理.科学出版社,1982.
    [11]张培昌,王振会.大气微波遥感基础.气象出版社,1995.
    [12] Ferraro R R and G F Marks. The Development of SSM/I Rain Rate Retrieval Algorithms Using Ground Based Radar Measurements. J. Atmos. Oceanic Tech., 1995, 12:755-770.
    [13] Wilheit T T, Cheng A T C, King J L,et al. Microwave Radiometric Observations Near 19.35, 92 and 183GHz of Precipitation in Tropical Storm Cora. J. Appl. Meteo., 1982, 21(8):1137-1145
    [14] Liu G. and Curry J A. Retrieval of Precipitation from Satellite Microwave Measurement Using both Emission and Scattering. J. of Geophysical Research, 1992, 97: 9959-9974.
    [15] Petty G W. Physical Retrievals of Over-ocean Rain Rate from Multichannel Microwave Imagery PartⅠ: Theoretical Characteristics of Normalized Polarization and Scattering Indices. Meteo. Atmos. Phys., 1994, 54(1):79-99
    [16] Petty G W. Physical retrievals of over-ocean rain rate from multichannel microwave imagery PartⅡ: algorithm implementation. Meteorol. Atmos. Phys., 1994, 54:101-121
    [17] Kummerow C, Olson W S and Giglio L. A Simplified Scheme for Obtaining Precipitation and Vertical Hydrometeor Profiles from Passive Microwave Sensors. IEEE Trans. Geosci. Remote Sens., 1996, 34: 1213-1232
    [18] Hong Y, Kummerow C and Olson W S. Separation of Convective/Stratiform Precipitation Using Microwave Brightness Temperature. J. of Appl. Meteo., 1999, 38: 1195-1213.
    [19]李万彪,陈勇,朱元竞,赵柏林.利用热带降雨测量卫星的微波成像仪观测资料反演陆地降水.气象学报,2001,59(5):591-601.
    [20] Fu Y F, Liu G S. The Variability of Tropical Precipitation Profiles and Its Impact on Microwave Brightness Temperatures as Inferred from TRMM Data. J. App. Meteo., 2001, 40(12): 2130—2143
    [21]李小青,吴蓉璋.用GPROF算法反演降水强度和水凝物垂直结构.应用气象学报,2005,16(6):705-716.
    [22]李小青.星载被动微波遥感反演降水算法回顾.气象科技,2004,32(3):149-154.
    [23]邓伟.用TRMM卫星微波成像仪(TMI)资料对我国降水各例的反演.硕士论文,中国气象科学研究院,2004.
    [24] Berg W, Olson W, Ferraro R, et al. Anassessment of the First and Second Generation Navy Operational Precipitation Retrieval Algorithms. J. Atm. Sci., 1998, 55:1558-1575.
    [25] Grody N C. Precipitation Monitoring over Land from Satellite by Microwave Radiometry. in International Geoscience and Remote Sensing Symposium(IGARSS'84),Strasbourg, France, ESASP-215,417-423.
    [26] Liu G and Curry J A. An Investigation of the Relationship between Emission and Scattering Signals in SSM/I Data. J. of Atmos. Sci, 1998, 55(5): 1628-1643.
    [27] Spencer R W, Goodman H M and Hood R E. Precipitation Retrieval over Land and Ocean with the SSM/I: Identification and Characteristics of the Scattering Signal. J. of Atmos. and Oceanic Technol., 1989, 6: 254-273.
    [28] Grody N C. Classification of Snow Cover and Precipitation Using the Special Sensor Microwave/Imager (SSM/I). J. of Geophys. Res., 1991 96: 7423-7435.
    [29] Zhao. B., Yan, W. Li, J. Yuan, Y. Chen, H. Gao and Y. Zhu. Rainfall Retrieval and Flooding Monitoring in China using TRMM Microwave Imager (TMI). J. Meteor. Soc. Japan, 2001, 79: 301-315.
    [30] Wilheit T T, Chang A, Rao M S B and Theon J S. A Satellite Technique for Quantitatively Mapping Rainfall Rates Over the Oceans. J.Appl.Meteorol., 1977,16:551-560.
    [31] Hong Ye, Thomas T Wilheit, William R Russell. Estimation of Monthly Rainfall over Oceans from Truncated Rain-Rate Samples: Application to SSM/I Data. Journal of Atmospheric and Oceanic Technology,1997, 14(5): 1012-1022.
    [32] Weinman J A and Davis R Thermal. Microwave Radiances from Horizontally Finite Clouds of Hydrometeors. J. Geo. Res., 1978, 83 (C6): 3099-3107.
    [33] Wu Rongzhang, Weinman J A. Microwave Radiances from Precipitating Clouds Containing Aspherical Ice, Combined Phase, and Liquid Hydrometeors. J. Geo. Res., 1984, 89: 7170-7178.
    [34] Kummerow C and Weinman J A. Radiative Properties of Deformed Hydrometeros for Commonly Used Passive Microwave Frequencies. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(5):629-638.
    [35] Adler R F, Haw-Young M Yeh , Prasad N, Wei-Kuo and Joanne Simpson. Microwave Simulation of a Tropical Rainfall System with a Three-dimensional Cloud Model. J. Appl. Meteor., 1991, 30:924-953.
    [36] Ferriday J G and Avery S K. Passive Microwave Remote Sensing of Rainfall with SSM/I:Algorithm Development and Implementation. J. Appl. Meteor., 1994, 33: 1587-1596.
    [37] Liu G and J A Curry. Determination of characteristic features of cloud liquid water from satellite microwave measurement. J. Geophys. Res., 1993, 98:5069-5092.
    [38] Wentz F J and R W Spencer. SSM/I Rain Retrievals within an Unified All-weather Ocean Algorithm. J. Atmos. Sci., 1998, 55: 1613-1627.
    [39] Bauer P and P Schluessel. Rainfall, Total Water, Ice Water, and Water Vapor over Sea from Polarized Microwave Simulations and Special Sensor Microwave/Imager data. J. Geophys. Res., 1993, 98:20737-20759.
    [40] Kummerow C and L Giglio, A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from Space, Part I: Algorithm Description. Journal of Applied Meteorology, 1994, 33:3-18.
    [41] Kummerow C and L Giglio, A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from Space, part II: applications to SSM/I data. Journal of Applied Meteorology, 1994, 33:19-34.
    [42] Kummerow C, William S Olson and L Giglio. A Simplified Scheme for Obtaining Precipitation and Vertical Hydrometeor Profiles from Passive Microwave Sensors. IEEE Trans. Geosci. Remote Sens., 1996, 34: 1213-1232.
    [43] Kummerow C, Y Hong, W S Olson, S Yang, R F Adler, J Mccollum, R Ferraro, G Petty, D-B Shin and T T Wilheit. The Evolution of the Goddard PROFiling Algorithm(GPROF)for Rainfall Estimation from Passive Microwave Sensors. J. A. M., 2001, 40(11):1801-1820.
    [44] Smith E A, X Xiang, A Mugnai, and G J Tripoli. Design of an Inversion-Based Precipitation Profile Retrieval Algorithm Using an Explicit Cloud Model for Initial Guess Microphysics. Meteorol. Atoms. Phys., 1994, 54:53-78.
    [45] Smith E A, X Xiang, A Mugnai, R E Hood and R W Spencer. Behavior of an Inversion-Based Precipitation Retrieval Algorithm with High-Resolution AMPR Measurement Including a Low-Frequency 10.7-GHz Channel. Journal of Atmospheric and Oceanic Technology, 1994, 11:858-873.
    [46] Pierdicca N, Marzano F S, G D Auria, P Basili, P Ciotti and A Mugnai. Precipitation Retrieval from Spaceborne Microwave Radiometers Based on Maximum a Posteriori Probability Estimation. IEEE Trans. Geosci.Remote Sens., 1996, 34:831-847.
    [47] Smith E A, A Mugnai, N J Cooper, G T Tripoli and X Xiang. Foundations for Statistical Physical Precipitation Retrieval from Passive Microwave Satellite Measurement, PartⅠ: Brightness temperature properties of a time dependent cloud-radiation model. Journal of Applied Meteorology, 1992, 31(6): 506-531.
    [48] Mugnai A, Smith E A and G T Tripoli. Foundations for Statistical Physical Precipitation Retrieval from Passive Microwave Satellite Measurement, PartⅡ: Emission-Source and Generalized Weighting-Function Properties of a Time-dependent Cloud-Radiative Model. Journal of Applied Meteorology, 1993, 32: 17-39.
    [49] Adler, Robert F, G J Huffman and P R Keehn. Global Tropical Rain Estimates from Microwave Adjusted Geosynchronous IR Data. Remote Sens. Rev., 1994, 11: 125-152.
    [50] Aonashi K, Shibata A and Liu G. An Over-ocean Precipitation Retrieval Using SSM/I Multichannel Brightness Temperatures. J. Meteo. Soc. Japan, 1996, 74:617-637.
    [51] Kummerow C, Robert A Mack and M Hakkarinen. A Self-Consistency Approach to Improve Microwave Rainfall Rate Estimation From Space. J. Appl. Meteorol., 1989, 28(9):869-886.
    [52] McCollun J R and R R Ferraro, Next Generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E Microwave land rainfall algorithms, J. Geo. Res.,2003,108(D8), 7.3-7.17.
    [53] Olson W S,Hong Y,C D Kummerow,Joseph Turk. A Texture-Polarization Method for Estimating Convective–Stratiform Precipitation Area Coverage from Passive Microwave Radiometer Data. Journal of Applied Meteorology, 2001b,40(9):1577-1591.
    [54]李小青.利用TRMM资料反演降水强度和水凝物垂直结构.硕士论文,中国气象科学研究院,2003.
    [55] Grecu M and E N Anagnostou. Use of Passive Microwave Observations in a Radar Rainfall-profiling Algorithm. J. Appl. Meteor, 2002, 41:702-715.
    [56] Grecu M, W S Olson and E N Anagnostou. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency Active and Passive Microwave Observations, Journal of Applied Meteorology, 2004, 43:562-575.
    [57] Grecu M, W S Olson. Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar–Radiometer Retrievals. Journal of Applied Meteorology and Climatology, 2006, 45:416-433.
    [58]李万彪,陈勇,朱元竞,赵柏林.利用热带降雨测量卫星的微波成像仪观测资料反演陆地降水.气象学报,2001,59(5):591-601.
    [59]程明虎,何会中,毛冬艳等.用TRMM资料研究1998年长江流域暴雨(英文). Advances in Atmospheric Sciences, 2001,18(3):387-396.
    [60]何文英,陈洪滨,周毓筌.微波被动遥感陆面降水统计反演算式的比较.遥感技术与应用,2005,20(2):221-227.
    [61]钟中,王晓丹.利用微波亮温资料反演陆地和海洋降水方案的对比.解放军理工大学学报(自然科学版),2006,7(2):200-204.
    [62]傅云飞,宇如聪,徐幼平等. TRMM测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究.气象学报, 2003,61(4):421-431.
    [63]傅云飞,张爱民,刘勇等.基于星载测雨雷达探测的亚洲对流和层云降水季尺度特征分析.气象学报,2008,66(5):730-746.
    [64] Furuzawa A F, Nakamura K. Differences of Rainfall Estimates over Land by Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and TRMM Microwave Imager (TMI)—Difference on Storm Height. J Appl. Meteorol., 2005, 44: 367-282.
    [65]刘奇,傅云飞.基于TRMM_TMI的亚洲夏季降水研究.中国科学,D辑:地球科学,2007,37(1):111-122.
    [1]黄美元,徐华英等著.云和降水物理.科学出版社,1999.
    [2]程麟生.中尺度大气数值模式发展现状和应用前景.高原气象,1999,18(3):350-360.
    [3]高坤.中尺度数值预报模式的进展和应用.浙江气象科技,1999,20(2):1-5.
    [4]王鹏云.新一代Penn State/NCAR中尺度数值模式MM5.气象科技,1995,2:32-35.
    [5]王劲松,李耀辉,张华.第五代PSU/NCAR中尺度模式系统(MM5)介绍Ⅰ:地形及地表分类参数处理(TERRAIN模块).甘肃气象,2000,18(2):4-9.
    [6]王劲松,李耀辉,张华.第五代PSU/NCAR中尺度模式系统(MM5)介绍Ⅱ:第一猜值场的形成(DATAGRID模块).甘肃气象,2000,18(3):7-11.
    [7]王劲松,李耀辉,张华.第五代PSU/NCAR中尺度模式系统(MM5)介绍Ⅲ:客观分析(RAWINS模块).甘肃气象,2000,18(3):12-16.
    [8]王劲松,李耀辉,张华.第五代PSU/NCAR中尺度模式系统(MM5)介绍Ⅳ:初边值形成后处理过程(INTERP模式).甘肃气象,2000,18(4):1-5,14.
    [9]王劲松,李耀辉,张华.第五代PSU/NCAR中尺度模式系统(MM5)介绍Ⅴ:预报模式(MM5模块).甘肃气象,2000,18(4):6-14.
    [10]徐辉.引进热力学第二定律改进中尺度数值模式的一种新方法.硕士论文,中国气象科学研究院,2004.
    [11]王小兰.结合MM5和M-C辐射传输模式对中国地区对流性降水云微波辐射特性的研究.硕士论文,中国气象科学研究院,2005.
    [12]刘奇俊.中尺度模式的显式云降水方案和暴雨模拟.博士论文,北京大学,2000.
    [13]楼小凤,胡志晋,王鹏云,周秀骥.中尺度模式云降水物理方案介绍.应用气象学报,2003,14:49-59.
    [14] Lin Wenshi, Fong Soikun, Wu Chisheng, Ku Chimeng, Wang Anyu and Yang Yan. A Simulating Study on Resolvable-Scale Microphysical Parameterization in a Mesoscale Model. Advances in Atmospheric Sciences, 2000, 17(3): 487-502.
    [15]孙晶,王鹏云.用MM5模式Reisner霰方案对华南暴雨的数值模拟.气象,2003,29(4):10-14.
    [16] Reisner J, Rasmussen R M, Bruintjes R T. Explecit Forecasting of Supercooled Liquid Water in Winter Storms Using the MM5 Mesoscale Model. Q. J. R. Meteor. Soc., 1998, 124:1071-1107.
    [17] Haferman J L, W F Krajewski, T F Smith and A Sánchez. Radiative Transfer for a Three-dimensional Raining Clouds. Applics Optics., 1993, 32: 2795-2801.
    [18] Wilheit T T, Chang A T C, Rao M S B and Theon JS. A Satellite Technique for Quantitatively Mapping Rainfall Rates Over the Oceans. J. Appl. Meteorol., 1977, 16: 551-560.
    [19] Wu Rongzhang, J A Weinman. Microwave Radiances from Precipitating Clouds Containing Aspherical Ice, Combined Phase, and Liquid Hydrometeors. J. Geo. Res., 1984, 89: 7170-7178.
    [20] Kummerow C D. On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies. Journal of Geophysical Research, 1993, 98(D2): 2757-2765.
    [21]张培昌,王振会.大气微波遥感基础,气象出版社,1995,P293-303.
    [22] Petty G W. Physical Retrievals of Over-ocean Rain Rate from Multichannel Microwave Imagery PartⅡ: algorithm implementation. Meteorol. Atmos. Phys., 1994, 54:101-121.
    [23] Roberti L,J L Haferman and C Kummerow. Microwave Radiative Transfer through Horizontally Inhomogeneous Precipitating Clouds. J. Geo. Res., 1994, 99: 16707-16718.
    [24] Liu Q, C Simmer and E Ruprecht. Three-dimensional Radiative Transfer Effects of Clouds in the Microwave Spectral Range. J. Geo. Res., 1996, 101: 4289-4298.
    [25] Roberti L, Kummerow C. Monte-Carlo Calculation of Polarized Microwave Radiation Emerging from Cloud Structures. J. Geo. Res., 1999, 104: 2093-2104.
    [26]黄容,程明虎,崔哲虎,王柏忠,何会中.用云和辐射传输模式研究对流性降水云微物理及辐射特性.气象,2004,30(3):7-11.
    [27]王小兰,程明虎,崔哲虎.对流性降水云辐射特性研究.气象,2005,31(9):3-7.
    [28] Liebe H J. An Updated Model for Millineter Wave Propagation in Moist Air. Radio Sci., 1985, 20:1069-1089.
    [29]黄容.利用云和辐射传输模式对对流性降水云微物理及辐射特性的研究.硕士论文,中国气象科学研究院,2003.
    [30]毛冬艳.用TRMM资料对中国暴雨个例的分析和降水反演.硕士论文,中国气象科学研究院,2001.
    [31]何会中,崔哲虎,程明虎,周凤仙. TRMM卫星及其产品应用.气象科技,2004,32(1):13-18.
    [1] Kummerow C and L Giglio, A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from Space, Part I: Algorithm Description. Journal of Applied Meteorology, 1994, 33:3-18.
    [2] Kummerow C and L Giglio, A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from Space, part II: applications to SSM/I data. Journal of Applied Meteorology, 1994, 33:19-34.
    [3] Kummerow C, William S Olson and L Giglio. A Simplified Scheme for Obtaining Precipitation and Vertical Hydrometeor Profiles from Passive Microwave Sensors. IEEE Trans. Geosci. Remote Sens., 1996, 34: 1213-1232.
    [4] Kummerow C, Y Hong, W S Olson, S Yang, R F Adler, J Mccollum, R Ferraro, G Petty, D-B Shin and T T Wilheit. The Evolution of the Goddard Profiling Algorithm(GPROF)for Rainfall Estimation from Passive Microwave Sensors. J. A. M., 2001, 40(11):1801-1820.
    [5] Smith E A, X Xiang, A Mugnai, and G J Tripoli. Design of an Inversion-Based Precipitation Profile Retrieval Algorithm Using an Explicit Cloud Model for Initial Guess Microphysics. Meteorol. Atoms. Phys., 1994, 54:53-78.
    [6] Smith E A, X Xiang, A Mugnai, R E Hood and R W Spencer. Behavior of an Inversion-Based Precipitation Retrieval Algorithm with High-Resolution AMPR Measurement Including a Low-Frequency 10.7-GHz Channel. Journal of Atmospheric and Oceanic Technology, 1994, 11:858-873.
    [7] Pierdicca N, Marzano F S, G D Auria, P Basili, P Ciotti and A Mugnai. Precipitation Retrieval from Spaceborne Microwave Radiometers Based on Maximum a Posteriori Probability Estimation. IEEE Trans. Geosci.Remote Sens., 1996, 34:831-847.
    [8] Shin Dong-Bin, Kummerow C.D. Parametric Rainfall Retrieval Algorithms for Passive Microwave Radiometers. J. Appl. Meteor., 2003, 42:1480-1496.
    [9] Grecu, M. and E N Anagnostou, Overland Precipitation Estimation from TRMM Passive Microwave Observations, J. Appl. Meteor, 2001, 40(8), 1367-1380.
    [10] Grecu, M. and E N Anagnostou, Use of Passive Microwave Observations in a Radar Rainfall-profiling Algorithm. J. Appl. Meteor, 2002, 41, 702–715.
    [11]Grecu M, W S Olson and E N Anagnostou, Retrieval of Precipitation Profiles from Multiresolution, Multifrequency Active and Passive Microwave Observations, Journal of Applied Meteorology, 2004,43:562-575.
    [12]Grecu M, W S Olson, Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar–Radiometer Retrievals, Journal of Applied Meteorology and Climatology, 2006, 45:416-433.
    [13]Reisner J, Rasmussen R M, Bruintjes R T. Explecit Forecasting of Supercooled Liquid Water in Winter Storms Using the MM5 Mesoscale Model. Q. J. R. Meteor. Soc., 1998, 124:1071-1107.
    [14]左志燕,康红文,2004,长江流域一次暴雨过程的模拟对行星边界层参数化的敏感性研究,新疆气象,27(2),4-10.
    [15]Weinman J A and R Davis, Thermal Microwave Radiances from Horizontally Finite Clouds of Hdrometeors”, J. Geo. Res., 1978, 83 (C6): 3099-3107
    [16]Kummerow C D and Weinman J A. Determining Microwave Brightness Temperature from Precipitating Horizontal Finite and Vertically Structures Clouds, J. Geoghys. Res., 1988,93:3720-3728
    [17]Adler R F, Haw-Young M Yeh, N Prasad, Wei-Kuo and Joanne Simpson. Microwave Simulation of a Tropical Rainfall System with a Three-dimensional Cloud Model, J. Appl. Meteor., 1991, 30:924-953.
    [18]Haferman J L, W F Krajewski, T F Smith et al. Radiative Transfer for a Three-dimensional Raining Clouds. Applics Optics., 1993, 32: 2795-2801.
    [19]Roberti Laura, J L Haferman and C Kummerow. Microwave Radiative Transfer through Horizontally Inhomogeneous Precipitating Clouds. J. Geo. Res., 1994, 99: 16707-16718.
    [18]Liu Q, C Simmer and E Ruprecht. Three-dimensional Radiative Transfer Effects of Clouds in the Microwave Spectral Range, Journal of Geophysical Research, 1996, 101: 4289-4298
    [19]Liebe H J. An Updated Model for Millineter Wave Propagation in Moist Air, Radio Sci., 1985, 20:1069-1089.
    [20]Wu Rongzhang, J A Weinman. Microwave radiances from precipitating clouds containing aspherical ice, combined phase, and liquid hydrometeors, J. Geo. Res., 1984, 89: 7170-7178
    [21]黄容.利用云和辐射传输模式对对流性降水云微物理及辐射特性的研究.硕士论文,中国气象科学研究院,2003.
    [22]罗云峰,张培昌,王振会.有云大气微波辐射传输模式反演辐射亮温的数值实验. 1997,《大气遥感技术论文集》,强风暴实验室著,气象出版社.
    [23]Smith E A, A Mugnai, N J Cooper et al. Foundations for statistical physical precipitation retrieval from passive microwave satellite measurement PartⅠ: Brightness temperature properties of a time dependent cloud-radiation model. Journal of Applied Meteorology, 1992, 31(6): 506-531.
    [24] Hong Y, J L Haferman, W S Olson et al. Microwave brightness temperatures from tilted convective systems. J. Appl. Meteorol., 2000, 39: 983-998.
    [25]Mugnai A, Smith E A, and G T Tripoli. Foundations for statistical physical precipitation retrieval from passive microwave satellite measurement. PartⅡ: Emission-Source and Generalized Weighting-Function Properties of an Time-dependent Cloud-Radiative Model. Journal of Applied Meteorology, 1993, 32: 17-39.
    [26]Anagnostou E N and C Kummerow. Stratiform and Convective Classification of Rainfall Using SSM/I 85-GHz Brightness Temperature Observations. J. Atmos. Oceanic Technol., 1997, 14, 570-575.
    [27]Hong Y, C Kummerow and W S Olson. Separation of Convective /Stratiform Precipitation Using Microwave Brightness Temperature. Journal of Applied Meteorology, 1999, 38(8),1195-1213.
    [28]Olson W S, Hong Y, C D Kummerow,Joseph Turk. A Texture-Polarization Method for Estimating Convective-Stratiform Precipitation Area Coverage from Passive Microwave Radiometer Data. Journal of Applied Meteorology, 2001b, 40(9),1577-1591.
    [1] Kummerow C, William S Olson and L Giglio. A Simplified Scheme for Obtaining Precipitation and Vertical Hydrometeor Profiles from Passive Microwave Sensors. IEEE Trans. Geosci. Remote Sens., 1996, 34:1213-1232.
    [2] Kummerow C, Y Hong, W S Olson, S Yang, R F Adler, J Mccollum, R Ferraro, G Petty, D-B Shin and T T Wilheit. The Evolution of the Goddard Profiling Algorithm (GPROF)for Rainfall Estimation from Passive Microwave Sensors. J. A. M., 2001, 40(11):1801-1820.
    [3] Grody N C. Classification of Snow Cover and Precipitation Using the Special Sensor Microwave/Imager (SSM/I). J. of Geophys. Res., 1991, 96:7423-7435.
    [4] Ferraro R R, N C Grody and G F Marks. Effects of Surface Conditions on Rain Identification Using the SSM/I, Rem. Sens. Rev., 1994, 11, 195-209.
    [5] Ferraro R R, E A Smith, W Berg, G J Huffman, A Screening Methodology for Passive Microwave Precipitation Retrieval Algorithms, J. Atmos. Sci., 1998, 55(9): 1583-1600.
    [6]李小青.利用TRMM资料反演降水强度和水凝物垂直结构.硕士论文,中国气象科学研究院,2003.
    [7] Spencer R W, H M Goodman and R E Hood. Precipitation Retrieval over Land and Ocean with the SSM/I: Identification and Characteristics of the Scattering Signal, J.of Atmos. and Oceanic Technol., 1989, 6: 254-273
    [8] Roberti L, Kummerow C. Monte-Carlo Calculation of Polarized Microwave Radiation Emerging from Cloud Structures. J. Geo. Res., 1999, 104: 2093-2104.
    [9] Olson W S, Hong Y, C D Kummerow,Joseph Turk. A Texture-Polarization Method for Estimating Convective-Stratiform Precipitation Area Coverage from Passive Microwave Radiometer Data. Journal of Applied Meteorology, 2001b, 40(9),1577-1591.
    [10]Anagnostou E N and C Kummerow. Stratiform and Convective Classification of Rainfall Using SSM/I 85-GHz Brightness Temperature Observations. J. Atmos. Oceanic Technol., 1997, 14, 570-575.
    [11]Hong Y, C Kummerow and W S Olson. Separation of Convective /Stratiform Precipitation Using Microwave Brightness Temperature. Journal of Applied Meteorology, 1999, 38(8), 1195-1213.
    [12]Olson W S, C D Kummerow, Ye Hong, Wei-Kuo Tao. Atmospheric Latent Heating Distributions in the Tropics Derived from Satellite Passive Microwave Radiometer Measurements. Journal of Applied Meteorology, 1999, 38(6):633–664.
    [13]McCollun J R and R R Ferraro, Next Generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E Microwave land rainfall algorithms. J. Geo. Res., 2003, 108(D8), 7.3-7.17.
    [14]李小青,星载被动微波遥感反演降水算法回顾,气象科技,2004,32(3):149-154.
    [15]Adler R F, A J Negri, P R Keehn, Ida M Hakkarinen, Estimation of Monthly Rainfall over Japan and Surrounding Waters from a Combination of Low-Orbit Microwave and Geosynchronous IR Data, J. Appl. Meteo., 1993, 32(2):335–356.
    [16]Adler R F,Huffman G J, P R Keehn, Global Tropical Rain Estimates from Microwave Adjusted Geosynchronous IR Data. Remote Sens.Rev., 1994, 11:125-152.
    [17]Zhao B, Yan, W Li, J Yuan, Y Chen, H Gao and Y Zhu. Rainfall Retrieval and Flooding Monitoring in China using TRMM Microwave Imager (TMI). J. Meteor. Soc. Japan, 2001, 79: 301-315.
    [18]Iguchi T,Kozu T, MEneghini T, J Awaka and K Okamoto, Rain-profiling Algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 2000, 39(12): 2038-2052
    [19]俞小鼎,姚秀萍,熊廷南,周小刚,吴洪,邓北胜,宋燕编著,《多普勒天气雷达原理与业务应用》,北京:气象出版社,2006,p1-3.
    [20]张培昌,杜秉玉,戴铁丕编著,《雷达气象学》,气象出版社,2001年1月,第一版,p182-188.
    [21]方茸,陈健,魏春璇.2007年7月4日合肥地区暴雨天气过程诊断分析及数值预报的对比检验.安徽农业科学.2007,35(31):10043-10044.
    [22]赵思雄,张立生,孙建华.2007年淮河流域致洪暴雨及其中尺度系统特征的分析.气候与环境研究.2007,12(6):713-727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700