用户名: 密码: 验证码:
海相碳酸盐岩储层地震响应特征数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸盐岩在我国分布广泛,如今塔里木盆地、四川盆地以及珠江口盆地已成为我国碳酸盐岩油气勘探的重点地区。随着碳酸盐岩油气勘探技术的提高,已取得轮南、塔中、靖边、罗家寨、千米桥等地区的油气发现和突破。碳酸盐岩隐蔽油气藏勘探由于储层空间分布的非规则性、多尺度性及勘探技术分辨率的限制,在勘探过程中仍然存在诸多困难。鉴于问题的复杂性,目前对储层还难以进行有效识别和预测。针对勘探难点,本文用数值模拟方法研究储层在地震记录上的响应特征规律,研究成果对储层识别和预测具有很高的应用价值和实际意义。本次研究工作主要集中在以下几个方面:
     1.实现复杂模型的高精度数值模拟。本文首先对单程波数值模拟傅立叶有限差分法、频率-空间域法、相移插值法及广义屏法进行理论推导和分析,对传统相移插值法给予修正并提出频率-空间域自适应插值方法,并对傅立叶有限差分法的发展潜力给予分析。通过标准模型试算,证明文中所述算法对于复杂模型能得到高精度数值模拟结果但相互间存在差异,并就算法计算精度及计算效率问题给出定量分析,为成像算法的实际应用提供参考。
     2.对实际资料典型碳酸盐岩储层地震响应特征进行数值模拟研究。首先用数值方法模拟碳酸盐岩理论缝、洞、礁等储集体在不同激发频率、地质条件下的地震记录,总结其运动学、动力学地震响应特征规律,通过实际资料处理证明利用数值模拟技术研究碳酸盐岩储层的可行性和有效性,研究储层地震响应特征有利于对碳酸盐岩储层进行识别。
     3.实现三维环礁模型的数值模拟研究。目前对碳酸盐岩油气藏数值模拟及属性参数研究大多只在二维情况下开展,而实际地下地质体却是三维的。本文通过综合建模技术建立三维环礁模型,并利用适应速度空间变化的三维数值模拟方法研究环礁的地震响应特征,且开发的软件已在微机上实现,具有实际应用前景。
     4.通过数值模拟研究地震波经过含流体储层后的高频吸收衰减现象,并利用低频响应特征对储层进行识别和预测。通过频率-空间域吸收补偿模型分析,给出在特定地震地质条件下对地震波吸收衰减进行高频补偿所应具备的条件,并在塔里木盆地塔中地区实际资料应用中有效提高地震数据体的垂向分辨率。
Carbonate rocks are widespread in China, Now Tarim basin, Sichuan basin and Pearl River Mouth basin are becoming important regions for carbonate exploration. With development of technology, reservoir exploration has made great discoveries and outbreak at areas of Lungu, Tazhong, Jingbian, Luojiazhai and Qianmiqiao. There are still full of difficulties in the course of exploration because carbonate reservoir are unconventional, irregular, multi-scale space distribution and restrictions of limited spatial resolution. For the complication of the problem, it is hard to make the precise results using the ordinary reservoir identification and prediction technique. The paper has researched the character of seismic response by numerical simulation. The result is valuable for reservoir exploration. The achievements and recognitions are as follows:
     1. The paper has proposed high accuracy simulating methods for complex geologic model. Firstly methods based on one-way wave equation are discussed such as Fourier finite-difference, methods in the domain of frequency-space, phase shift plus interpolation and general screen propogators, and then propose adaptive interpolation method and point out the potential development of Fourier finite-difference. Accuracy numerical results on the standard data are achieved by these methods while exist discrepancy respectively, finally analyse the accuracy and efficiency quantificationally, it can be used for application as a reference.
     2. The paper deals with seismic simulating record. Firstly summarize the character ofseismic response of ideal model on fracture and reef by high-precision simulating method, and prove farther the availability for simulating making use of field seismic data processing, it is in favor of identification fracture.
     3. Seismic response of 3D dimension ring reef model is simulated. Currently carbonate reservoir and attribute parameter are studied almost in 2D while genuine geologic body is 3D. Now reef model is created by integrative structural modeling, and research the character of seismic response by imaging method which is steady for variational reference slowness, Software is programmed and implemented in personal computer and can be used widely in reality.
     4. Simulating wave propagation in the stratum filling with saturated liquid is studied. Reservoir can be forecasted using the character of high frequency absorption and attenuation. The effectiveness of compensation for high frequency in f-x domain is proved, and the applying situation of the seismic and geology in surface has been given which attenuation of high frequency of seismic wave ban be compensated by numerical simulations. The frequency band of post stack seismic data processed is widened properly and the temporal resolution is increased efficiently without decreasing the S-N ratio in Tazhong area of Tarim basin.
引文
[1]贺振华.反射地震资料偏移处理与反演方法[M].重庆大学出版社,1989.
    [2]贺振华,黄德济,胡光岷,何建军,赵宪生.复杂油气藏地震波场特征方法理论及应用[M].四川科学技术出版社,1989.
    [3]贺振华,黄捍东,胡光岷,王成祥,黄德济.地下介质横向变化的地震多尺度边缘检测技术[J].物探化探计算技术.1999,21(4),289-294.
    [4]贺振华,黄德济.缝洞储层的地震检测和预测[J].勘探地球物理进展.2003,26(2),79-83.
    [5]贺振华,杜正聪,文晓涛.碳酸盐岩喀斯特溶洞和裂缝系统的地震模拟与预测[J].地球科学进展.2004,19(3),399-402.
    [6]贺振华,胡光岷,黄德济.数学检波器与波动方程地震叠前正演[J].成都理工大学学报(自然科学版).2004,31(6),675-678.
    [7]贺振华,胡光岷,黄德济.致密储层裂缝发育带的地震识别及相应策略[J].石油地球物理勘探.2005,40(2),190-195.
    [8]贺振华,熊晓军.等时叠加波动方程正演[J].物探化探计算技术.2005,27(3),194-198.
    [9]贺振华,黄德济,文晓涛.裂缝油气藏地球物理预测[M].四川科学技术出版社,2007.
    [10]毕玉英,杨宝俊.二维粘弹介质全波场正演模拟[J].石油地球物理勘探.1995,30(3),352-362.
    [11]董良国.弹性波数值模拟中的吸收边界条件[J].石油地球物理勘探.1999,34(1),45-56.
    [12]董敏煜.多波多分量地震勘探[M].石油工业出版社,2002.
    [13]杜增利.致密碎屑岩储层地震预测研究.成都理工大学博士论文,2007.
    [14]杜正聪.缝洞储层地震波场正演与偏移.成都理工大学硕士论文,2003.
    [15]范嘉松.中国古生代生物礁的研究的基本状况与今后的发展方向[M].海洋出版社,1996.
    [16]傅旦丹,何樵登.正交各向异性介质地震弹性波场的伪谱法正演模拟[J].石油物探.2001,40(3),8-14.
    [17]符力耘,牟永光.弹性波边界元法正演模拟[J].地球物理学报.1994,37(4),521-529.
    [18]顾乔元.塔里木盆地轮南地区奥陶系潜山含油气性研究.成都理工大学博士论文,2001.
    [19]桂志先,贺振华.裂隙介质中纵波地面地震记录模拟及特征[J].计算物理.2004,21(1),91-94.
    [20]何樵登.地震勘探原理和方法[M].地质出版社,1986.
    [21]胡光岷,贺振华,黄德济.基于TCP/IP协议的地震资料网络并行处理研究.成都理工学院学报.1999,26(4),338-342.
    [22]胡平忠,王金中.中国生物礁与油气[M].海洋出版社,1996.
    [23]金胜汶,陈必远,马在田.三维波动方程有限差分正演方法[J].地球物理学报.1994,37(6),804-809.
    [24]李德生,金顺爱.中国海相油气地质勘探与研究[J].海相油气地质.2005,10(2),1-8.
    [25]李庆忠.走向精确勘探的道路[M].石油工业出版社,1993.
    [26]李文林,李承楚.含裂隙介质中弹性波场正演模拟[J].石油地球物理勘探.1994,29(6),713-723.
    [27]李亚林,贺振华,黄德济,刘树根.露头砂岩纵横波衰减的各向异性实验研究[J].石油地球物理勘探.1999,34(6),658-664.
    [28]李正文,赵志超.地震勘探资料解释[M].地质出版社出版,1988年.
    [29]梁华,罗容.利用地震资料研究川东上二叠统生物礁分布规律[J].天然气工业.1999,19(5),91-91.
    [30]凌云.大地吸收衰减分析[J].石油地球物理勘探.2001,36(1),1-8.
    [31]刘金子,张向君,董建平.波动方程显式短算子二维正演模拟[J].吉林大学学报(地球科学版).2004,34(1),138-141.
    [32]刘殊,甘其刚.碳酸盐岩沉积相分析在飞仙关组鲕滩储层预测中的应用[J].勘探地球物理进展.2003,26(3),190-198.
    [33]刘文革,贺振华,黄德济.频率-空间域波场自适应插值法深度偏移[J].成都理工大学学报(自然科学版).2008,35(2),162-166.
    [34]刘文革,贺振华,黄德济,杜增利.高精度傅立叶有限差分法模型正演[J].石油地球物理勘探.2007,42(6),629-633.
    [35]刘洋,李承楚.双相各向异性介质中弹性波传播特征研究[J].地震学报.1999,21(4),367-373.
    [36]陆全康,赵惠芬.数学物理方法[M].2003,高等教育出版社.
    [37]马在田.高阶有限差分偏移[J].石油地球物理勘探.1982,17(1),6-15.
    [38]牟永光,斐正林.三维复杂介质地震数值模拟[M].石油工业出版社,2005.
    [39]南京大学数学系计算数学专业编.偏微分方程数值解法[M].科学出版社,1979.
    [40]牛滨华,何樵登.六方和斜方各向性介质一维横波双折射正演数值模拟[J].石油物探.1991,30(4),56-63.
    [41]牛滨华,孙春岩.半空间介质与地震波传播[M].石油工业出版社,2002.
    [42]欧庆贤.中国南方海相碳酸盐岩油气勘查研究论文集[M].江苏科学技术出版社,1994.
    [43]裴正林,牟永光.火成岩区地震波传播规律研究[J].石油物探.2004,43(5),433-437.
    [44]《现代应用数学手册》编委会.现代应用数学手册计算方法分册[M].清华大学出版社,2005.
    [45]邵志刚.伪谱法在粘弹介质地震波场正演模拟中的应用.吉林大学硕士论文,2003.
    [46]斯麦霍夫.裂缝性油气储集层勘探的基本原理与方法[M].石油工业出版社,1985.
    [47]谭廷栋.裂缝性地层侧向测井解释新方程[J].地球物理学报.1983,26(6),588-596.
    [48]汪和杰,牛滨华.EDA介质中的弹性波[J].石油地球物理勘探.1994,29(6),70-712.
    [49]王华忠,程玖兵,马在田.单平方根波场外推算子与波动方程叠前深度偏移.反射地震学论文集[M].同济大学出版社,2000.
    [50]王华忠,马在田,曹景忠.优化系数傍轴近似方程三维一步法偏移[J].石油地球物理勘探.1998,33(2),170-184.
    [51]王仁宏.数值逼近[M].高等教育出版社,2003.
    [52]王山山,邓玉琼.弹性波正演模拟的混合算法[J].石油地球物理勘探.1997,32(6),804-808.
    [53]王一刚,文应初.川东地区上二叠统长兴组生物礁分布规律[J].天然气工业.1998,18(6),10-15.
    [54]王振华.三维波动方程P-R分裂偏移[J].石油地球物理勘探.1990,25(4),379-397.
    [55]文晓涛.缝洞储层的地震检测及综合预测.成都理工大学博士论文,2006.
    [56]邬光辉,黄广建,王振宇.塔中奥陶系生物礁地震识别与预测[J].天然气工业.2007,27(4),40-42.
    [57]吴亚生.广西隆林下二叠统生物礁的综合研究[J].地质论评.1989,35(1),52-59.
    [58]吴永国.复杂地质体波动方程地震波场模拟与偏移成像.成都理工大学硕士论文,2007.
    [59]谢桂生.三维各向异性介质中的地震波模拟[J].石油物探.1994,33(3),54-58.
    [60]谢里夫.勘探地震学[M].石油工业出版社,1999.
    [61]熊高君,贺振华等.改进的正演模拟定位原理[J].石油地球物理勘探.1998,33(6),742-748.
    [62]熊高君,张学工,贺振华.三维定位原理与三维反射波场模拟[J].矿物岩石.2002,22(3),93-97.
    [63]熊晓军.单程波动方程地震数值模拟新方法研究.成都理工大学博士论文,2007.
    [64]杨海军,刘胜,李宇平.塔中地区中-上奥陶统碳酸盐岩储集层特征分析[J].海洋油气地质.2000,5(1),73-83.
    [65]杨培山.华北碳酸盐岩潜山油藏开发[M].北京石油工业出版社,1985.
    [66]姚姚.菲涅耳带与洞缝型油气藏地震波场[J].石油物探.2005,44(5),491-494.
    [67]俞寿朋.高分辨率地震勘探[M].北京石油工业出版社,1993.
    [68]苑春方,彭苏萍,张中杰.Kelvin-Voigt均匀粘弹性介质中传播的地震波[J].中国科学D 辑-地球科学.2005,35(10),957-962.
    [69]张关泉.利用低阶偏微分方程组的大倾角差分偏移[J].地球物理学报.1986,29(3),273-282.
    [70]张文生,张关泉.螺旋坐标下的因子分解合成炮叠前深度偏移[J].地球物理学报.2003,46(4),520-525.
    [71]张永刚.地震波场数值模拟方法[J].石油物探.2003,42(2),143-148.
    [72]郑天发.海相碳酸盐岩隐蔽油气藏勘探,成都理工大学博士论文,2006.
    [73]庄东海,王超,肖斌.虚谱法三维地震波动方程正演模拟[J].江汉石油学院学报.1998,20(4),30-33.
    [74]Alterman Z,Kara J F C.Propogation of elastic waves in layered media by finite-difference method[J].Bull.Seis.Soc.Am,1968,58(1):367-398.
    [75]Bayliss A,Jordan K E,LeMesurier B J.A fourth-order accurate finite-difference scheme for the computation of elastic waves[J].Bull.Seis.Soc.Am,1986,76(4):1115-1132.
    [76]Baysal E,Kosloff D and Sherwood J W C.Reverse time migration[J].Geophysics,1983,48(11):1514-1524.
    [77]Berkhout A J.Wave field extrapolation techniques in seismic migration,a tutorial[J].Geophy -sics,1981,46(12):1638-1656.
    [78]Biondi B.Stable wide-angle Fourier finite-difference downward extrapolation of 3D wave -fields[J].Geophysics,2002,67(3):872 -882.
    [79]Blacquiere G,Debeye H W J,Wapenaar C P A.3D table-driven migration[J].Geophys Prosp,1989,37(6),925-958.
    [80]Bland D.The theory of linear viscoelasticity[M].Pergamon Press Inc,1960.
    [81]Bouchon M.Diffraction of elastic waves by cracks or cavities using the discrete wavenumber method[J].J.Acoust.Soc.Am,1987,81,1671-1676.
    [82]Carcione J M,Kosloff D and Kosloff R.Viscoacoustic wave propagation simulation in the earth[J].Geophysics,1988,53(6):769-777.
    [83]Carcione J M.Seismic modeling in viscoelastic media[J].Geophysics,1993,58(1):110-120.
    [84]Carcione J M and Helle H B.Numerical solution of the poroviscoelastic wave equation on a staggered mesh[J].J.Comput.Phys,1999,154,520-527.
    [85]Carcione J M,Herman G C and Kroode A P E.Seismic modeling[J].Geophysics,2002,67(4):1304-1325.
    [86]Castagna J P.Recent advance in seismic lithoiogic analysis[M].Geophysics,1993.
    [87] Chen P. Spectral ringing suppression and optimal windowing for attenuation and Q measure -ments [J]. Geophysics. 1998, 63 (2): 632-636.
    [88] Choquette P W, Pray L C. Geologic nomenclature and classification of porosity in sedimen -tary carbonate [M]. American Association of Petroleum Geologists Bulletin, 1970.
    [89] Christensen R M. Theory of viscoelasticity: An introduction [M]. Academic Press Inc, 1982.
    [90] Claerbout J F. Toward a unified theory of reflector mapping [J]. Geophysics, 1971, 36 (3): 467-481.
    [91] Claerbout J F, Doherty S M. Downward continuation of moveout-corrected seismograms [J]. Geophysics, 1972,37 (5): 741-768.
    
    [92] Claerbout J F. Imaging the earth's interior [M]. BlackWell Scientific Publications Inc, 1985.
    [93] Clayton R W and Engquist B. Absorbing boundary conditions for wave-equation migration [J]. Geophysics, 1980,45 (5): 895-904.
    [94] Crampin S. Geological and industrial implications of extensivedilatancy anisotropy [J]. Nature, 1987,328,491-496.
    [95] Dablain M A. The application of high-order differencing to the scalar wave equation [J]. Geophysics, 1986, 51(1): 54-66.
    [96] Day S M and Minster J B. Numerical simulation of attenuated wavefields using a Pade appro -ximant method [J]. Geophys.J.R.Astr.Soc. 1984, 78, 105-118.
    [97] Ewing W M, Hardetzky W S and Press F. Elastic Waves in Layered media [M]. New York: McGraw-Hill, 1957.
    [98] Fornberg. The pseudospectral method: Comparison with finite differences for the ealstic wave equation [J]. Geophysics, 1987,52 (4): 483-501.
    [99] Gazdag J. Wave equation migration with the phase-shift method [J]. Geophysics, 1978, 43 (7): 1342-1351.
    [100] Gazdag J. Modeling of the acoustic wave equation with transform method [J]. Geophysics, 1981,46(6): 854-859.
    [101] Gazdag J and Squazzero P. Migration of seismic data by phase shift plus interpolation [J]. Geophysics, 1984,49(2): 124-131.
    
    [102] Gennady M G, Valeri A K and Vjacheslav M V. Seismic low-frequency effects from oil- saturated reservoir zones [J]. SEG Expanded Abstracts, 2002, 21.
    [103] Grechka V. Effective media: A forward modeling view [J]. Geophysics, 2003, 68 (6): 2055- 2062.
    [104] Gregor P E, Gregor T B and Flavio S A. Factors controlling elastic properties in carbonate sediments and rocks [J]. The Leading Edge, 2003, 22(7),654-660.
    [105] Guddati M and Heidari A H. Migration with arbitrarily wide-angle wave equations [J]. Geo -physics, 2005, 70 (3): s61-s70.
    [106] Hale D. Stable explicit depth extrapolation of seismic wavefields [J]. Geophysics, 1991, 56 (11): 1770-1777.
    [107] Hestholm S. Elastic wave modeling with free surface: Stability of long simulations [J]. Geo-physics, 2003,68 (1): 314-321.
    [108] He Zhenhua, Xiong Gaojun and Zhang Yixiang. Nonzero offset Seismic Forward Modeling By one-way Acoustic Wave-equation [J]. SEG Expanded Abstracts, 1998, 17, 1921-1924.
    [109] Hildebrand F B. Introduction to Numerical Analysis [M]. New York: McGraw-Hill, 1956.
    [110] Hudson J A. Wave speeds and attenuation of elastic wave in material containing cracks [J]. Geophy.J.R.Astr.Soc, 1981,64(1): 133-150.
    
    [111] Jerome H, Rousseau L and Maarten V. Modeling and imaging with the scalar generalized-screen algorithms in isotropic media [J]. Geophysics, 2000, 66 (5): 1551-1568.
    [112] Jones T D. Pore fluids and frequency-dependent wave propagation in rocks [J]. Geophysics, 1986,51 (10): 1939-1953.
    [113] Jordan C and Wilson J L. Reefs: Geologic considerations for geophysicists [J]. The Leading Edge, 1998,17.
    [114] Kessinger W. Extended split-step Fourier migration [J]. SEG Expanded Abstracts, 1992, 11, 917-920.
    [115] Kneib G and Kerner C. Accurate and efficient seismic modeling in random media [J]. Geophy -sics, 1993, 58 (4): 576-588.
    [116] Kosloff D and Baysal E. Forward modeling by a Fourier method [J]. Geophysics, 1982, 47 (10): 1402-1412.
    [117] Lamer K and Beasley C. Cascaded migration: Improving the accuracy of finite-difference migration [J]. Geophysics, 1987, 52 (5): 618-643.
    [118] Lee M W and Suh S Y. Optimization of one-way wave equations [J]. Geophysics, 1985, 50 (10): 1634-1637.
    [119] Lgel H, Mora P and Riollet B. Anisotropic wave propagation through finite-difference grids [J]. Geophysics, 1995, 60 (4): 1203-1216.
    [120] Liu H P, Anderson D L and Kanamori H. Velocity dispersion due to anelasticity: implications for seismology and mantle composition [J]. Geophys.J.R.Astr.Soc. 1976, 47,41-58.
    [121] Li Z. Compensating finite-difference errors in 3-D migration and modeling [J]. Geophysics, 1991,56(10): 1650-1660.
    [122] Loewenthal, D. The wave equation applied to migration [J]. Geophysical Prospecting, 1976, 24, 380-390.
    [123] Love A E H. A Treatise on the Mathematical Theory of Elasticity [M]. New York: Dover, 1944.
    [124] Lysmer J, Drake L A. A finite element method for seismology, Ch.6 in Methods in Computa -tional Physics II, Seismology, Alder B, Fernbach S, Bolt B A, Academic Press, 1972.
    [125] Mallick S, Craft K L, Meister L J. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data [J]. Geophysics, 1998, 63 (2): 692-706.
    [126] Mora P. Modeling anisotropic seismic waves in 3D [J]. SEG Expanded Abstracts, 1989, 8, 1039-1043.
    [127] Padovani E; Priolo E, Seriani G. Low- and high-order finite element method: experience in seismic modeling [J]. J. Comp.Acoust, 1994, 2, 371-422.
    [128] Pao Y H, Varatharajulu V. Huygens'principle radiation conditions and integral formulas for the scattering of elastic waves [J]. J.Acoust.Soc.Am, 1976, 59, 1361-1371.
    [129] Pon S and Lines L. Sensitity analusis of seismic depth migrations [J]. Geophysics, 2005, 70 (2): s39-s42.
    [130] Raikes S A and Whiter R E. Measurements of earth attenuation from down-hole and surface seismic recordings [J]. Geophysical Prospecting. 1984, 32 (3): 829-919.
    [131] Riding R. Cyanophyte calcification and changes in ocean chemistry [J]. Nature, 1982, 299, 814-815.
    [132] Ristow D, Ruhl T. Fourier finite-difference migration [J]. Geophysics, 1994, 59 (12): 1881- 1893.
    [133] Russo G and Zollo A. A constant Q technique for the numerical simulation of attenuation of seismic body waves [J]. Geophysics, 2003,68 (5): 1744-1748.
    [134] Sava P and Fomel S. Riemannian wavefield extrapolation [J]. Geophysics, 2005, 70 (3): t45- t56.
    
    [135] Scales J A. Theory of seismic imaging [M]. Samizdat press, 1994.
    [136] Simon W H. 3D Geoscience Modeling: Computer Techniques for Geological Characterization [M]. Springer Verlag, 1994.
    [137] Stoffa P L and Fokkema J T. Split-step Fourier migration [J]. Geophysics, 1990, 55 (4): 410- 421.
    
    [138] Stolt R H. Migration by Fourier transform [J]. Geophysics, 1978,43 (1): 23-48.
    [139] Tal-Ezer H, Carcione J M and Kosloff D. An accurate and efficient scheme for wave propaga -tion in linear viscoelastic media [J]. Geophysics, 1990, 55 (10): 1366-1379.
    [140] Terry D J. Pore fluids and frequency-dependent wave propagation in rocks [J]. Geophysics, 1986,51 (10): 1939-1953.
    [141] Thomsen L. Elastic anisotropy due to aligned cracks in porous rock [J]. Geophysical prospect -ing, 1995,43 (4): 805-829.
    [142] Viau C A. Depositional sequences, facies and evolution of the Upper Devonian Swan Hills reef build-up, central Alberta, Canada, in Harris, Carbonate Build-ups-A Core Workshop: SEPM Core Workshop Notes, 1983 (4): 112-143.
    [143] Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method (shear waves) [J]. Geophysics, 1986, 51 (4): 889-901.
    [144] Watts N R, Coppold M P. Application of reservoir geology to enhanced oil recovery from Upper Devonian Nisku reefs, Alberta, Canada [J]. AAPG Bulletin, 1994,78, 78-101.
    [145] Wu R S, Huang L J. Scattered field calculation in heterogeneous media using a phase-screen propagator [J]. SEG Expanded Abstracts, 1992,11,1289-1292.
    [146] Yilmaz O. Seismic data processing [M]. Soc.Expl.Geophys, 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700