用户名: 密码: 验证码:
直线度误差数字化评定理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术、网络技术、信息技术和先进制造技术等的不断发展,制造系统正在由原来的能量驱动型转变为信息驱动型,数字化与精密化已成为先进制造技术的核心与关键;数控机床、三坐标测量机等数字装备已得到广泛应用,加工精度和测量精度都已可达到纳米级。然而,目前对几何误差的评定仍然普遍采用评定精度较低的最小二乘法(LSM)等近似方法。测量精度与评定精度是影响测量结果精度的两个主要因素,迫切需要提高对直线度误差等几何误差的评定精度。同时,直线是构成机械零部件最基本的几何要素,常常作为方向误差、位置误差、跳动误差等的基准要素;空间直线度误差作为最复杂的几何误差之一,其评定理论与算法还很不成熟。
     因此,本文针对直线度误差的数字化评定理论与算法进行研究。首先阐述了其研究背景、目的与意义,对平面直线度误差和空间直线度误差评定研究的现状进行了评述,分析了现有研究所存在的问题;说明了对给定平面内直线度误差的评定进行可视化研究的必要性、以及研究空间直线度误差数字化评定理论与算法的重要性。然后,运用几何学原理、最优化理论、凸壳理论、误差理论和可视化技术作了如下研究:
     (1)介绍了给定平面内直线度误差评定理论,对其两端点连线算法、LSM算法和最小区域算法进行了可视化设计;并用数字实验验证了三种可视化设计算法的正确性,实现了给定平面内直线度误差评定的可视化。
     (2)总结了空间直线度误差评定的基础理论,对评定空间直线度误差的LSM算法进行了深入的理论分析,揭示出其原理缺陷是:不能精确拟合出三维直线,当测点坐标值具有不同的数量级时,其评定结果存在严重失真;并研究了改进的LSM+算法、基于测点集算术平均中心的最小二乘算法(LSABC)、改进的LSABC+算法、三维最小二乘算法(3DLSA)等的数学模型;按这些数学模型进行了数字实验,验证了这些算法是有效的,克服了LSM算法的原理缺陷,实现了精确的三维直线拟合;是具有较高精度的、评定空间直线度误差的好算法。
     (3)基于最小区域准则,对空间直线度误差的三点接触情况进行了理论分析,得出了三点接触的最小区域判断准则;对该准则的正确性作了理论分析和验证。在此基础上,研究了评定空间直线度误差的三点接触算法(TPTA)和三点接触的平均中心点求解三维凸壳的新算法(3DCHA),用实例验证表明,3DCHA算法比现有三维凸壳算法的求解效率高2~6倍。利用3DCHA算法能从测点集中提取有效测点、减少计算时间的特点,设计了双基点的空间网格点交叉搜索算法(SCSA),多组测点集的数字实验证明,SCSA算法比现有多种算法具有更高的精度,并能达到纳米级评定精度。
     (5)依据新一代GPS标准规定的要素操作技术,在数控三坐标测量机上对两个零件进行了三维数字化检测实验,提取了两个零件圆柱形要素的测点坐标值。研究了求解三维最小二乘拟合圆心、三维最小外接拟合圆心、三维最大内接拟合圆心、三维最小区域拟合圆心的数学模型;按这些数学模型和要素操作技术,编制程序实现了空间直线度误差的数字化精确评定。同时,应用空间直线度误差的数字化精确评定方法,实现了阶梯轴圆柱形零件同轴度误差值的数字化精确评定。
     以上研究表明,给定平面内直线度误差评定的可视化研究,以及评定空间直线度误差的LSM+算法、LSABC算法、LSABC+算法和3DLSA算法能满足现代数字制造工程中对直线度误差进行数字化评定的需要。基于最小区域准则的三点接触的最小区域判断准则和TPTA算法、以3DCHA算法为基础的SCSA算法实现了对空间直线度误差的精确评定,并可达到纳米级评定精度;能满足精密/超精密加工和微纳制造等先进制造工程中对空间直线度误差进行数字化精确评定的要求。同时,基于新一代GPS标准规定的要素操作技术,实现了对空间直线度误差和同轴度误差的数字化检测,并用检测数据验证了上述所研究的理论和算法的正确性、有效性和应用效能。因此,本文的研究在数字化制造工程中具有重要的理论意义和应用价值。
With the technology development of the computer, network, information, and advanced manufacturing, the manufacturing systems have been changing from initial energy-driven into current information-driven. Digitization and precision have become the core and key issues of the advanced manufacturing technology. CNC machine tool, coordinate measurement machines and other digital equipments have been got widely used in the manufacturing engineering.The machining accuracy and measuring accuracy have been increased up to nanometer level.However, the least squares method (LSM) and other approximate methods with low evaluation accuracy have been still widely used for the evaluation of geometric error. The measurement accuracy and the evaluation accuracy were two important factors of the measurement result, it is urgent need to improve the evaluation accuracy of geometric error such as straightness error. At the same time, the straight line is the essentialest geometrical factor of mechanical parts, and often used as a datum line of orientation error, or location error, or run-out error. In addition, spatial straightness error is one of the most complex geometric errors, its evaluation theory or algorithm is still immature.
     Therefore,This research is focused on the digitized evaluation theory and algorithms of the straightness error. Firstly, the research background, the purpose and the meaning of this research were been expounded. The present research situation of the evaluation of the planar straightness error and the spatial straightness error were been reviewed, the problems existing in the current research are analyzed. The research necessity on visualization for evaluation of the planar straightness error and the research importance on digitized and accurate evaluation theory and algorithms of spatial straightness error were been explained. Then, Using geometry theory, optimization theory, convex shell theory, theory of errors and visualization technology, the research is as following:
     (1) The evaluation theory of planar straightness error was showed. Visualization design were performed for the two end-points link line algorithm, LSM algorithm and minimum zone algorithm, and the correctness of the three kinds visualization algorithms is verified with digital experiment, the visualization of evaluation for planar straightness error is carried out.
     (2) The basic theory for the evaluation of spatial straightness error was summarized. The LSM algorithm for evaluation of the spatial straightness error was analyzed theoretically in depth, its principle defects are revealed as following:with the LSM algorithm,accurate3D fitting straight line could not be obtained, and when the measurement point coordinates with different unit scale, the evaluation results will be in serious distortion. The mathematical models of the improved LSM algorithm, or the Least Square Algorithm Based on the Center of the measured points set (LSABC), or the improved LSABC algorithm, or the three Dimensional Least Square Algorithm (3DLSA) were all deduced. The digital experiment according to these mathematical models shows:these algorithms are effective, the principle defects of the LSM algorithm was overcome, the real3d fitting straight line can be carried out. These algorithms are good algorithms to evaluate the spatial straightness error, and have a higher precision.
     (3) Based on the minimum zone criterion, the tangent case with three points of the spatial straightness error was theoretical analyzed, and the minimum zone judgment criterion of the tangent case with three points was obtained, the correctness of the judgment criterion was analyzed and verified theoretically. Based on the analysis, a Three Points Tangent Algorithm (TPTA) and its minimum zone judgment algorithm to evaluate the spatial straightness error were proposed. The TPTA algorithm was verified by some digital experiment, it could guarantee that three measured points are tangent to an inch with the minimum zone circumscribing the measured points set, it is a more effective algorithm than many other algorithms, such as LSM.
     (4) According to the tangent characteristics getting touch with four or five points among the measured points set of the spatial straightness error, an new3D Convex Hull Algorithm based on the Center of the measured (3DCHA) was put forward, Some examples show that3DCHA algorithm has higher efficiency to2-6times than other3d convex hull algorithm existing. By the trait of some effective measured points can be extracted from the measured points set and the computational time can be reduced by3DCHA, the Space grid point Cross Search Algorithm based on double basis point (SCSA) was designed. Some digital experiments show that SCSA has higher precision than other algorithms existing, and can obtain the nanometer level evaluation precision in evaluating the spatial straightness error.
     (5) According to the geometrical features operating Techniques provided by the new generation Geometrical Product Specification and verification (GPS) standards, the3D digital detect experiments of two parts were performed, the measuring point coordinates of the cylindrical parts were extracted with NC coordinate measuring machine. Some mathematical model for solving the centre of3D least squares fitting circle,3D minimum circumscribed fitting circle,3D maximum inscribed fitting circle,3D minimum zone fitting circle were proposed. By the mathematical model and the element operating Techniques, digital accurate evaluation to the spatial straightness error was come true. At the same time, applying the digital accurate evaluation methods to the spatial straightness error, the digital accurate evaluation the values of the coaxiality error of a ladder cylindrical shaft was come ture.
     As above of all research show:the research on the visualization evaluation for planar straightness error, and on the improved LSM algorithm, the LSABC algorithm, and the improved LSABC algorithm, and the3DLSA algorithm which assessing the spatial straightness error could meet the requirement of the digital evaluation to the straightness error in modern digital manufacturing engineering. The minimum zone judgment criterion being tangent with three points and the TPTA algorithm, the SCSA algorithm based on the3DCHA algorithm could realize accurate evaluation to the spatial straightness error, and obtain the nanometer level evaluation precision. It could meet the requirement of the digital accurate evaluation to the spatial straightness error in advanced manufacturing engineering such as precision/ultra-precision processing, micro-nano manufacturing and so on. At the same time, the digital detection of spatial straightness error and the coaxiality error were achieved based on the elements operation Techniques specified by the new generation of GPS standard, and that the correctness, and effectiveness, and the application efficiency of the theory or the algorithm researched above were validated by the digital detected data, Therefore, the research on this topic shows that it has important theoretical significance and application value in the digital manufacturing engineering.
引文
[1]熊有伦,王瑜辉,杨文玉等.数字制造与数字装备.航空制造技术,2008(9):26-31
    [2]李圣怡.超精密加工技术与机床的新进展.航空精密制造技术2009,45(2):26-28
    [3]袁哲俊.国内外精密加工技术最新进展.工具技术,2008,42(10):5-138
    [4]杨叔子,吴波.先进制造技术及其发展趋势.机械工程学报,2003,39(10):73-78
    [5]鲁聪达,王笑等.超精密研磨技术及其发展的研究(上).现代制造工程,2008(3):126-128
    [6]Kai Wolf,Dieter Roller,Dirk Schafer.An approach to computer-aided quality control based on3D coordinate metrology.Journal of Materials Processing Technology,2000,107(1-3):96-110
    [7]Xiao-Jin Wan, Cai-Hua Xiong, Can Zhao, Xu-Feng Wang. A unified framework of error evaluation and adjustment in machining.International Journal of Machine Tools&Manufacture,2008,48(11):1198-1210
    [8]谢华锟.数控切削加工领域的数字化测量技术和量具量仪.航空制造技术,2008(23):26-29
    [9]刘焕牢.数控机床几何误差测量及误差补偿技术的研究[华中科技大学博士学位论文].湖北武汉:华中科技大学,2005
    [10]李小力.数控机床综合几何误差的建模及补偿研究[华中科技大学博士学位论文].湖北武汉:华中科技大学,2006
    [11]陈冰江,平宇.支持数字化制造的质量数据获取与分析技术研究.航空维修与工程,2006(4):38-41
    [12]丁锋,何正嘉.数字化加工环境下智能质量分析和诊断的理论与方法.组合机床与自动化加工技术,2006(9):42-44
    [13]Xiaoqing Tang, Hu Yun. Data model for quality in product lifecycle. Computers in Industry,2008,59(2-3):167-179
    [14]Shichang Du, Lifeng Xi, Jun Ni, Pan Ershun, C.Richard Liu.Product lifecycle-oriented quality and productivity improvement based on stream of variation methodology. Computers in Industry,2008,59(2-3):180-192
    [15]JeanYves Dantan, AhmedJawad Qureshi. Worst-case and statistical tolerance analysis based on quantified constraint satisfaction problems and Monte Carlo simulation. Computer-Aided Design,2009,41(1):1-12
    [16]宁汝新,刘检华,唐承统.数字化制造中的建模和仿真技术.机械工程学报,2006,42(7):132-137
    [17]P.G.Maropoulos,D.Ceglarek. Design verification and validation in product lifecycle. CIRP Annals-Manufacturing Technology,2010,59(2):740-759
    [18]张国雄主编.三坐标测量机.天津:天津大学出版社,1999
    [19]张国雄.三坐标测量机的发展趋势.中国机械工程,2000,11(1):222-226
    [20]张国雄.坐标测量技术发展方向.红外与激光工程,2008,37(4):1-5
    [21]赵树忠.提高激光跟踪三维坐标测量精度的研究[天津大学博士学位论文].天津:天津大学,2007,1-16
    [22]中国国家标准化管理委员会.GB/T1182-2008产品几何技术规范(GPS)几何公差形状、方向、位置和跳动公差标注.北京:中国标准出版社,2008
    [23]中国国家标准化管理委员会.GB/T11336-2004直线度误差检测.北京:中国标准出版社,2004
    [24]中国国家标准化管理委员会.GB/T1958-2004产品几何技术规范(GPS)形状和位置公差检测规定.北京:中国标准出版社,2004
    [25]International Organization for Standardization.ISO1101-2004:Geometrical Product Specifications(GPS)-tolerances of form, orientation, location and run out.2nd ed. Geneva,Switzerland,2004
    [26]V.T.Portman, R.D.Weill, V.G.Shuster, Y.L.Rubenchik.Linear-programming-based assessments of geometrical accuracy:standard presentation and application area.International Journal of Machine Tools&Manufacture,2003,43(10):1023-1033
    [27]熊有伦主编.精密测量的数学方法.北京:中国计量出版社,1989,5
    [28]Vijay Srinivasan. Standardizing the specification, verification, and exchange of product geometry:Research, status and trends.Computer-Aided Design,2008,40(7):738-749
    [29]Giovanni Moroni,Stefano Petro. Geometric tolerance evaluation:A discussionon minimum zone fitting algorithms. Precision Engineering,2008,32(3):232-237
    [30]Zbigniew Humienny. State of art in standardization in GPS area.CIRP Journal of Manufacturing Science and Technology,2009,2(1):1-7
    [31]Antonio Roberto Balbo, Edmea Cassia Baptista, Marcos Nereu Arenales. An adaptation of the dual-affine interior point method for the surface flatness problem. European Journal of Operational Research,2007,181(3):1607-1616
    [32]Moon-Kyu Lee. An enhanced convex-hull edge method for flatness tolerance evaluation. Computer-Aided Design,2009,41(12):930-941
    [33]N.Venkaiah, M.S.Shunmugam. Evaluation of form data using computational geometric techniques-Part Ⅰ:Circularity error. International Journal of Machine Tools&Manufacture,2007,47(7-8):1229-1236
    [34]Li Xiuming, Shi Zhaoyao. Application of convex hull in the assessment of roundness error. International Journal of Machine Tools&Manufacture,2008,48(6):711-714
    [35]Li Xiuming, Shi Zhaoyao. Development and application of convex hull in the assessment of roundness error. International Journal of Machine Tools&Manufacture,2008,48(1):135-139
    [36]Li Xiuming, Shi Zhaoyao. The relationship between the minimum zone circle and the maximum inscribed circle and the minimum circumscribed circle. Precision Engineering,2009,33(3):284-290
    [37]Li Xiuming, Shi Zhaoyao. Evaluation of roundness error from coordinate data using curvature technique. Measurement,2010,43(2):164-168
    [38]Tristan Roussillon, Isabelle Sivignon, Laure Tougne. Measure of circularity for parts of digital boundaries and its fast computation. Pattern Recognition,2010,43(1):37-46
    [39]E.S.Gadelmawla. Simple and efficient algorithms for roundness evaluation from the coordinate measurement data. Measurement,2010,43(2):223-235
    [40]S.Hossein Cheraghi, Guohua Jiang, Jamal Sheikh Ahmada. Evaluating the geometric characteristics of cylindrical features. Precision Engineering,2003,27(2):195-204
    [41]N.Venkaiah, M.S.Shunmugam. Evaluation of form data using computational geometric techniques-Part Ⅱ:Cylindricity error. International Journal of Machine Tools&Manufacture,2007,47(7-8):1237-1245
    [42]雷贤卿.基于误差分离的圆柱度精密测量技术研究.[西安理工大学博士学位论文].陕西西安:西安理工大学,2007,03
    [43]Xiu-Lan Wen, Jia-Cai Huang, etc. Conicity and cylindricity error evaluation using particle swarm optimization. Precision Engineering,2010,34(2):338-344
    [44]Xiulan Wen, Aiguo Song. Animmune evolutionary algorithm for sphericity error evaluation. International Journal of Machine Tools&Manufacture,2004,44(10):1077-1084
    [45]G.L.Samuel, M.S.Shunmugam. Evaluation of sphericity error from form data using computational geometric techniques. International Journal of Machine Tools&Manufacture,2002,42(3):405-416
    [46]LiMei Song, XingLin Zhou,etc. Novel3D sphericity evaluation based on SFS-NDT. NDT&E International,2005,38(6):442-447
    [47]Poornima Balakrishna, Shivakumar Raman. An Integrated Approach for the Estimation of Spherical Form Tolerance. Journal of Manufacturing Systems,2006,25(3):172-183
    [48]Pei-Hsing Huang, Ji-Chun Lee. Minimum zone evaluation of conicity error using minimum potential energy Algorithms. Precision Engineering,2010,34(4):709-717
    [49]Xiangchao Zhang, Xiangqian Jiang, Paul J.Scott. Minimum zone evaluation of the form errors of quadric surfaces. Precision Engineering,2011,35(2):383-389
    [50]S.T.Huang, K.C.Fan,John H.Wu. A new minimum zone method for Evaluating straightness errors. Precision Engineering,1993,15(3):158-165
    [51]KirstenCarr,PlacidFerreira.Verification of form tolerancesbn Part Ⅰ:Basic issues, flatness, and straightness. Precision Engineering,1995,17(2):131-143
    [52]Kirsten Carr,Placid Ferreira.Verification of form tolerances Part Ⅱ:Cylindricity and stratghtness of a median line. Precision Engin-eering,1995,17(2):144-156
    [53]S.Hossein,Cheraghi Huay,S.Lim,Saied Motavalli. Straightness and flatness tolerance evaluation:an optimization approach. Precision Engineering,1996,18(1):30-37
    [54]D.S.Suen,C.N.Chang. Application of neural network interval regress-ion method for minimum zone straightness and flatness. Precision Engineering,1997,20(3):196-207
    [55]V.N.Narayanan Namboothiri,M.S. Shunmugam. Form error evaluation usingL1approximation. Computer Methods in Applied Mechanics and Engineering,1998,162(1-4):133-149
    [56]J.B.Gou,Y.X.Chu,Z.X.Li. A geometric theory of form,profile,and orientation tolerances. Precision Engineering,1999,23(2):79-93
    [57]G.L.Samuel, M. S.Shunmugam.Evaluation of straightness and flatness error using computational geometric techniques. Computer-Aided Design,1999,31(13):829-843
    [58]徐武彬.长导轨的直线度误差评定.机械,1999,26(2):32-34
    [59]付凤岚,刘小英,李玲等.计算机在评定和计算直线度误差中的应用.武汉汽车工业大学学报,1996,21(3):31-33
    [60]Rohit Sharma,Karthik Rajagopal,Sam Anand. A Genetic Algorithm Based Approach for Robust Evaluation of Form Tolerances.Journal of Manu-facturing Systems,2000,19(1):46-57
    [61]邓圭玲,段吉安,王刚.评定直线度误差的新算法—缩小约束域的有效特征点法.工程设计,2000(3):32-34
    [62]Guiling Deng, Gang Wang, Jian Duan. A new algorithm for evaluating form error: the valid characteristic point method with the rapidly contracted constraint zone. Journal of Materials Processing Technology,2003,139(1-3):247-252
    [63]C-H Liu,C-K Chen,W-Y Jywe. Evaluation of straightness and flatness using a hybrid approach-genetic algorithms and the geometric characterization method. Proceedings of the Institution of Mechani-cal Engineers,Part B:Journal of Engineering Manufacture,2001,215(3):377-382
    [64]石敏,王家纯,阙青颖.直线度误差最小条件评定不同算法比较.沈阳大学学报,2001,13(4):64-66
    [65]李秀明,石照耀.基于凸多边形的直线度误差评定方法.计量技术,2007(7):29-31
    [66]李秀明,石照耀.基于凸多边形的直线度误差的评定.机械科学与技术,2008,27(6):736-738
    [67]赵志海.线度误差评定的数据处理方法.哈尔滨理工大学学报,2001,6(3):65-66
    [68]袁江,邱自学,乙克松等.基于PC的直线度误差自动测量与评定系统.传感器技术,2001,20(10):35-37
    [69]袁江,邵建新,邱自学.最小条件评定直线度误差的快速精确算法.工具技术,2008,42(2):75-77
    [70]Timothy Weber,saeid Motavalli,Behrooz Fallahi,et al. A unified approach to form error evaluation.Precision Engineering-Journal of the International Societies for Precision Engineering and Nano-technology,2002,26(3):269-278
    [71]Mu-Chen Chen,Shu-Kai S.Fan.Tolerance evaluation of minimum zone straig htness non-linear programming techniques:a spreadsheet approach.Computers&Industrial Engineering,2002,3(3):437-453
    [72]A.M.Malyscheff,T.B.Trafalis,S.Raman. From support vector machine learning to the determination of the minimum enclosing zone. Computers&Industrial Engineering,2002,42(1):59-74
    [73]Jyunping Huang.An efficient approach for solving the Straightness and flatness problems at large number of datapoints. Computer-Aided Design,2003,35(1):15-25
    [74]CUI Chang-cai,YE Dong,Huang Qing cheng,et al. Precise computation of planar straightness error using genetic algorithm. Optics and Precision Engineering(光学精密工程),2003,11(4):374-378
    [75]马海荣,郭聚东.定平面内直线度误差评定的实用方法.工具技术,2004,38(4):62-64
    [76]陈国强,赵俊伟.基于LINGO的直线度误差精确评定.机械,2005,32(5):31-32
    [77]陈国强,赵俊伟.最小条件下直线度误差评定的不确定度研究.农业机械学报,2008,39(1):169-171
    [78]隋文涛.基于VB的直线度误差评定软件的设计与应用.山东理工大学学报(自然科学版),2006,20(4):2-35
    [79]隋文涛,张丹.评定直线度误差的三种算法及程序实现.机械工程师,2006(3):146-147
    [80]隋文涛,张丹.机床导轨直线度误差的精确评定.工具技术,2007,41(1):111-112
    [81]李亚军,郑志刚.直线度误差的数据处理及程序设计.中国测试技术,2007,33(3):67-69
    [82]P.B.Dhanish,Jose Mathew.A fast and simple algorithm for evaluation of minimum zone straightness error from coordinate data. The International Journal of Advanced Manufacturing Technology,2007,32(1-2):92-98
    [83]岳武陵,吴勇.基于SQP算法的形状误差统一评定.农业机械学报,2007,38(12):169-172
    [84]岳武陵,吴勇.平面度和直线度误差的快速评定—增量算法.计量学报,2008,29(2):120-123
    [85]黄富贵,崔长彩.评定直线度误差的最小二乘法与最小包容区域法精度之比较.光学精密工程,2007,15(6):889-893
    [86]王林艳,李少康,王玉荣.交错排序法在评定直线度误差中的应用.西安工业大学学报,2008,28(4):323-327
    [87]李微微,方淳.基于Visual Basic软件的直线度误差精确评定.台州学院学报,2008,30(3):32-38
    [88]林志熙,周景亮.基于MATLAB的直线度误差数据处理的研究.工具技术,2008,42(3):84-87
    [89]杨将新,茅健,曹衍龙等.基于新一代GPS体系的直线度不确定度研究.计量学报,2008,29(1):14-16
    [90]葛为民.基于LabVIEW直线度误差测量数据处理方法研究.精密制造与自动化,2009(3):55-57
    [91]薛小强.基于近似凸壳的直线度误差评定方法.南京工程学院学报(自然科学版),2009,7(1):20-24
    [92]胡仲勋,王伏林.给定平面内直线度误差评定及其可视化研究.湖南大学学报(自然科学版),2007,34(3):29-32
    [93]Xiangyang Zhu, Han Ding,Michael Y.Wang.Form Error Evaluation:An Iterative Reweighted Least Squares Algorithm. Transaction of the ASME:Journal of Manufacturing Science and Engineering,2004,126(8):535-541
    [94]王金星,蒋向前,徐振高,李柱.空间直线度坐标测量的不确定度计算.华中科技大学学报(自然科学版),2005,33(12):1-3.
    [95]倪骁骅,邓善熙.空间直线度最小二乘评定结果的不确定度估计.工具技术,2006,40(5):72-74
    [96]赵凤霞,张琳娜,郑玉花.基于新一代GPS的空间直线度误差评定及其不确定度估计.机械强度,2008,30(3):441-444
    [97]王宁侠.最小二乘法在空间直线度检测中的应用.陕西科技大学学报,2009,27(5):124-126
    [98]胡仲勋,杨旭静,金湘中.LSM算法评定空间直线度误差的分析与改进.湖南大学学报(自然科学版),2010,37(2):27-31
    [99]胡仲勋,杨旭静,王伏林.空间直线度误差评定的LSABC算法研究.工程设计学报,2008,15(3):187-190
    [100]胡仲勋,王伏林,周海萍.空间直线度误差评定的新算法.机械科学与技术,2008,27(7):879-882
    [101]胡仲勋,杨旭静,金湘中.评定空间直线度误差的3DLSA算法研究.中国机械工程,2010,21(3):325-329
    [102]刘平,张玉.轴线直线度误差的数学模型与几种计算机解法.宇航计测技术,1989,44(2):4-8
    [103]钱名海,吴宏基,刘健.空间直线度误差评定的研究.磨床与磨削,1993(2):66-68
    [104]刘健,王晓明著.鞍点规划与形位误差评定.大连理工大学教授学术丛书(96卷),大连理工大学出版社,1996,12
    [105]宋芸.任意方向直线度误差.航空计测技术,1993(2):8-24
    [106]侯宇.空间直线度的评定.计量技术,1994(3):2-(32)
    [107]侯宇,吕进.三坐标测量机上形状误差评定的理论与方法.仪器仪表学报,1996,17(6):18-622
    [108]张镭,张玉.轴线直线度误差数学模型的仿真分析.东北大学学报(自然科学版),1995,16(1):66-70
    [109]方茹.一种评定空间直线度的最小外包容圆柱方法.哈尔滨工业大学报,1999,31(3):96-97
    [110]张成悌.空问直线度的评定与数据处理.实用测试技术,1997(3):5-9
    [111]张成悌.空间直线度的评定与数据处理(续).实用测试技术,1997(4):22-23
    [112]张成悌.空间直线度最小区域评定法及其特点.实用测试技术,1999(6):18-22
    [113]廖平,喻寿益.基于遗传算法的空间直线度误差的求解.中南工业大学学报,1998,29(6):586-588
    [114]张青,范光照,徐振高等.按最小圆柱包络法评定空间直线度误差.华中理工大学学报,1997,25(8):41-43
    [115]张青,李柱.空间直线度误差评定的计算机实现方法.计量技术,1998(1):9-14
    [116]张青,范光照,徐振高等.按最小条件评定空间直线度误差的理论研究.计量学报,1998,19(4):246-253
    [117]Qing Zhang,K.C.Fan,Zhu Li.Evaluation method for spatial straightness errors based on minimum zone condition. Precision Engineering,1999,23(4):264-272
    [118]简德.用网络分离法确定空间任意方向直线度误差的理想轴线的位置.现代计量测试,1997(5):15-18
    [119]简德.用网络分离法优化评定空间任意方向直线度误差的数学模型.四川轻化工学院学报,2000,13(3):20-22
    [120]简德.用网络分离法优化评定空间任意方向直线度误差的数学模型.计量与测试技术,2001(1):8-9
    [121]刘文文,费业泰.空间直线度包容评定的线性逼近算法.中国科学技术大学学报,1999,29(2):242-247
    [122]Jyunping Huang.An exact minimum zone solution for three dimensional straightness evaluation problems.Precision Engineering,1999,23(3):204-208
    [123]粟时平,李圣怡,王贵林.基于鞍点规划及遗传算法的空间直线度误差优化评定.长沙电力学院学报(自然科学版),2001,16(3):39-42
    [124]粟时平,李圣怡,王贵林.基于鞍点规划法的形位误差计算机评定.长沙电力学院学报(自然科学版),2001,16(3):39-42
    [125]岳武陵,杨杰,朱志松.空间直线度误差的快速评定.计量技术,2001(3):17-19
    [126]岳武陵,吴勇.基于多目标优化的空间直线度误差评定.光学精密工程,2008,16(8):1423-1428
    [127]张新宝.空间直线度误差无衍射光莫尔条纹测量方法的研究[华中科技大学博士学位论文].湖北武汉:华中科技大学,2002,09
    [128]L-M Zhu,H Ding,Y-L Xiong.Distance Function Based Algorithm for Spatial Straightness Evaluation. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2003,217(7):931-939
    [129]LiMin Zhu,Ye Ding,Han Ding.Algorithm for Spatial Straightness Evaluation Using Theories of Linear Complex Chebyshev Approximation and Semi-infinite Linear Programming.Journal of Manufacturing Science and Engineering, Transactions of the ASME,2006,128(1):167-174
    [130]Ye Ding,LiMin Zhu,Han Ding. A unified approach for circularity and spatial straightness evaluation using semi-definite programming.International Journal of Machine Tools&Manufacture,2007,47(10):1646-1650
    [131]Ye Ding,LiMin Zhu,Han Ding.Semidefinite programming for Che-byshev fitting of spatial straight line with applications to cutter location planning and tolerance evaluation.Precision Engineering,2007,31(4):364-368
    [132]Johan Lofberg.Comment on"A unified approach for circularity andspatial traightness evaluation using semi-definite programming"by Ye Ding,LiMin Zhu,Han Ding[International Journal of Machine Tools&Manufacture,47(10)(2007)1646-1650].International Journal of Machine Tools&Manufacture,2008,48(12-13):1523-1524
    [133]Xiulan Wen,Aiguo Song.An improved genetic algorithm for planar and spatial straightness error evaluation.International Journal of Machine Tools&Manufacture,2003,43(11):1157-1162
    [134]茅健,曹衍龙.基于粒子群算法的空问直线度误差评定.工程设计学报,2006,13(5):291-294
    [135]李淑娟,刘云霞.基于坐标变换原理的最小区域法评定空间直线度误差.计测技术,2006,26(1):24-25
    [136]何改云.形位误差的逼近原理及算法研究.[天津大学博士学位论文].天津:天津大学,2006,5
    [137]黄富贵,崔长彩.任意方向上直线度误差的评定新方法.机械工程学报,2008,44(7):221-224
    [138]雷贤卿,薛玉君,李济顺等.基于网格搜索算法的空间直线度误差评定方法.计量学报,2009,30(2):115-119
    [139]国家技术监督局,GB11336-89直线度误差检测.北京:中国标准出版社,1989
    [140]周培德.中国计算机学会学术著作丛书,计算几何——算法分析与设计(第2版),清华大学出版社,2005.4
    [141](荷)德贝尔赫(Berg, M.)等著,邓俊辉译,计算几何——算法与应用(第2版),清华大学出版社2005.9
    [142]马利民,蒋向前,王金星,徐振高,李柱.新一代产品几何量技术规范(GPS)中的几何要素,中国机械工程,2005,16(12):1045-1049
    [143]彭和平,刘晓军,蒋向前,徐振高.新一代GPS系统表面模型的数字化描述与操作技术,组合机床与自动化加工技术,2006(10):12-18
    [144]庆科维,张琳娜,孙利平,赵凤霞.新一代GPS操作技术在平面度误差评定中的应用,制造技术与机床,2007(1):85-88
    [145]张琳娜,郑玉花,庆科维,郑鹏,赵凤霞.基于GPS的圆度、圆柱度误差数字化计量方法研究,机械强度,2007,29(5):811-815
    [146]赵凤霞,张琳娜,郑玉花,马乐.基于新一代GPS的空间直线度误差评定及其不确定度估计,机械强度,2008,30(3):441-444
    [147]郑鹏,张琳娜,赵凤霞.形状误差评定的拟合操作研究,计量与测试技术,2008,35(12):1-3
    [148]郑鹏,孙晓波,张琳娜.基于新一代GPS体系的圆度误差评定研究.机床与液压,2009,37(9):153-159
    [149]Wen-Yuh Jywe, Chien-Hong Liu, Cha'o-Kuang Chen. The min-max problem for evaluating the form error of a circle, Measurement,1999,26(4)273-282
    [150]Xiulan Wen, Qingguan Xia, Yibing Zhao. An effective genetic algorithm for circularity error unified evaluation, International Journal of Machine Tools&Manufacture,2006,46(14):1770-1777
    [151]彭晓南,刘飞,雷贤卿.一种利用坐标测量机实现圆度误差评价的方法.仪器仪表学报,2008,29(8):1654-1658
    [152]岳武陵,吴勇.基于仿增量算法的圆度误差快速准确评定.机械工程学报,2008,44(1):87-91
    [153]黄富贵,郑育军.基于区域搜索的圆度误差评定方法.计量学报,2008,29(2):117-119
    [154]李秀明,石照耀.圆度误差评定的曲率法研究.计量学报,2008,29(2):102-105
    [155]刘新宇,郭会,张增良.三坐标测量机检测同轴度误差分析.华北航天工业学院学报,2003,13(2):6-7
    [156]武春利,杨蓉.三坐标测量机测量同轴度误差的方法探讨.现代制造技术与装备,2008,182(1):39-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700