用户名: 密码: 验证码:
数字流域平台上人类活动对地表水资源的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于辽河水系老哈河流域栅格数字高程模型(DEM)数据,采用数
    字流域水系模型(DEDNM)、河流工具RiverTools、地理信息系统ArcView
    软件,根据地形提取水系信息,构建数字流域水系、子流域与河网的空
    间拓扑关系。
    在构建数字流域的基础上运用新安江模型模拟径流量的方法,对不
    同时期的实测水文资料进行率定,率定后的模型反应了相应的下垫面及
    人类活动状况,利用率定了的模型和实测长系列降水、蒸发资料,模拟
    计算流量过程。这种径流过程代表下垫面和人类活动水准不变情况下气
    候波动对径流的影响,然后利用计算的长系列径流过程与实测径流过程
    对照,其差别反映下垫面的自然变化过程是十分缓慢的,可以忽略,因
    此这种差别主要代表了人类活动的影响,从前后期率定水文模型所得参
    数的差别及参数所代表的物理意义来分析下垫面及人类活动的变化,从
    而将气候波动和人类活动对地表水资源影响程度定量分解出来。并且在
    此基础上还可以作出对未来水资源量的预测。
    结果表明,本文研究的流域老哈河流域地表水资源减少的趋势是非常
    明显的,并随着年代的增长在不断加剧。针对减少的径流量,本文还提
    出了将它分为气候影响、人类活动可还原水量和不可还原水量两种,并
    且阐述了在现阶段,这种分类方法是切实可行的。
On the basis of raster Digital Elevation Model (DEM) data over the Laohahe River Catchment in the upper and west area of the Liaohe Basin within Inner Mongolia Autonomous Region, the Digital Elevation Drainage Network Model (DEDNM) is applied for assigning flow-vector directions over flat and depressional areas of the DEM, for identifying stream network and watershed divides, and for establishing spatial topological structure of subcatchments and stream network. Meanwhile, River network analysis Tools (RiverTools) and geographic information system software (ArcView) are used to display subcatchments and river network extracted from DEM data.
    On the platform of the digital basin built above, the Xin'anjiang model is selected for runoff simulation during the different periods. It is assumed that model parameters calibrated from measured precipitation-runoff data in a specific period, reflect the situation of land surface and the human activity in that period. Firstly, daily data of precipitation, pan evaporation, and discharge in 1960's are used to calibrate the parameters of the Xin'anjiang model. Then the parameters calibrated are applied to the computation of daily discharge from 1950's through 1990's, in which daily measured data of precipitation and pan evaporation are taken as the input of the Xin'anjiang model. The difference between computed and observed runoff becomes larger and larger from 1950's to 1990's. The mean annual precipitation is 400.65 mm in 1960's, and 474.14 mm in 1990's. However, the mean value of observed annual runoff is seventy million cubic meters less in 1990's than that in 1960's. It could be seen that the influence of human activity on stream runoff is very obvious.
    The quantity of downstream flow depends on precipitation over a catchment and withdrawal from the upstream. River runoff has a tendency towards decrease. The increase of the amount of water taken from river course is the direct cause why observed runoff decreases. As land cover forms the boundary between the atmosphere and the terrestrial sphere, changes in land cover may have significant implications on water resources. Some of them are very difficult to be estimated, such as an increase in water use induced by land-use change, soil conservation, modification of socioeconomic structure. The methodology is provided in this research for the separation of influence of human activity on water resources from that of climate change on hydrological regime.
引文
[1]李硕,曾志远,张运生.数字地形分析技术在分布式水文建模中的应用[J].地球科学进展,2002,17(5):769-775.
    [2]Srinivasan R, Arnold J G. Integration of a basin scale water quality model with GIS[J]. Water Resources Bulletin, 1994,30(3):453-462.
    [3]Rewert C C, Engel B A. ANSWERS on GRASS: Integrating a watershed simulation with GIS[Z]. American Society of Agriculture Engineers, Number ASAE Paper No.91-2621,1991.
    [4]Engel B A, Srinivasan R, Rewert C C. A spatial decision support system for modeling and managing agricultural nonpoint source pollution[A]. In:Goodchild M F, Parks B O, Steyaert L T, eds. Environmental Modeling with GIS[C]. New York: Oxford University Press, 1993.231-237.
    [5]Neitsch S L, Diluzio M. Arc View Interface for SWAT99.2-User's Guide[Z]. 808 East Blackland Rd, Temple, Texas-76502:USDA, Agriculture Research Service and Grassland Soil and Water Research Laboratory. 1999.
    [6]Maidment David R. GIS and hydrologic modeling-An assessment of progress[A]. In: Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling[C]. Santa Fe, NM, January 21-26,1996.
    [7]Francisco Olivera, David R M. Storm Runoff Computer Using Spatial Distributed Terrain Parameters[DB/OL]. 1998.
    [8]闾国年,钱亚东,陈钟明.基于栅格数字高程模型提取特征地貌技术研究[J].地理学报,1998,53(6):562-569.
    [9]Ocallaghan J F, Mark D M. The extraction of drainage network from digital elevation data [J]. Computer version, Graphics and Image Processing, 1984,28:323-344.
    [10]Jensen S K, Domingue J O. Extracting topographic structure from digital elevation data for geographic information system analysis [J]. Photogrammetric Engineering and Remote Sensing, 1988,54(11): 1593-1600.
    [11]Martz L W, De Jong E. Catch: A FORTRAN program for measuring catchment area from digital elevation models[J]. Computers &Geosciences, 1988,14(5): 627-640.
    [12]Garbrecht J, Martz L W. The assignment of drainage direction over flat surface in raster digital elevation models[J]. Journal of Hydrology, 1997,193:204-213.
    [13]Jensen S k. Application of hydrology information automatically extracted from digital elevation models[J]. Hydrological Processes, 1991,5(1):31-44.
    [14]David M. Wolock, et al. Comparison of Single and Multiple Flow Direction Algorithms for Computing Topographic Parameters in TOPMODEL[J]. Water Resources Research,
    
    1995,31(5): 1315~1324.
    [15]闾国年,钱亚东,陈钟明.流域地形自动分割研究[J].遥感学报,1998,2(4):298-304.
    [16]Daya sagar B S, Venu M, Srinivas D. Morphological operators to extract channel network from digital elevation models[J]. International Journal of Remote Sensing, 2000,21(1):21-29.
    [17]Francisco Olivera, Seann Reed, David Maidment. HEC-PrePro v.2.0: An View Pre-processor for HEC's Hydrologic Modeling System[Z]. ESRI User Conference Proceedings 1998[DB/OL],I998.
    [18]Martz W., Garbrecht J., Numerical definition of drainage network and subcatchment areas from digital elevation models [J]. Computers & Geosciences, 1992, 18(6):747-761.
    [19]Garbrecht J, Martz L W. Topaz Overview [M]. USDA-ARS, Grazingland Research Laboratory, 7207 West Cheyenne St, EI Reno, Oklahoma, 73036,1999.
    [20]柯正谊,何建邦,池天河.数字地面模型[M].北京:中国科学技术出版社,1993,1-3.
    [21]Moore I D. Hydrologic modeling and GIS, in GIS and Environmental Modeling: Progress and Research Issues, edited by M. F. Goodchild, L. T. Steyaert, B.O. Parks, M P.Crane, C A. Johnston, D R. Maidment, and S. Glendinning, Gis World, Inc., Fort Collins, Colo., in press, 1995.
    [22]Strahler A N., Quantitative analysis of watershed geomorphology, Trans. Am. Geophys. Union, v.38, 1957, 6:913-920.
    [23]Garbrecht J., Determination of the execution sequence of channel flow for cascade routing in a drainage network, Hydrosoft, v1, 1988,3:129-138.
    [24]赵人俊,流域水文模拟-新安江模型与陕北模型[M].北京:水利电力出版社,1984.
    [25]任立良,张炜,李春红,王美荣.中国北方地区人类活动对地表水资源的影响研究[J].河海大学学报,2001,29(4):13-18.
    [26]刘新仁,余晓珍.人类活动及气候变化对水资源影响的研究[J].黑龙江水专学报,1993年第4期:7-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700