用户名: 密码: 验证码:
机载激光雷达点云数据滤波算法的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载激光雷达数据处理是Lidar应用系统的重要组成部分,大约有80%的工作量都集中在这上面,其中数据滤波DEM生产技术是最基础的数据处理工作,它对后续的数字产品生产、应用保障都起到关键作用,也是Lidar技术发展与研究的前沿性课题。本文围绕机载Lidar数据滤波技术,结合点云数据结构特征,进行了深入的研究和探索。本文的主要工作和创新点是:
     1.系统的阐述了机载Lidar的定位原理及其结构组成,介绍Lidar的主要数据结构及地物特征,分析数据处理的难点,为实际工程应用和后续的滤波算法设计提供理论依据。
     2.分析原始机载Lidar点云数据噪声点的形成原因,介绍新设备数据噪声形成的特点,针对传统高差阈值法需要大量的统计分析和实验判断的缺点,提出一种高程平面拟合与邻近点密度相结合的判断准则,采用迭代计算-自适应改变阈值参数的方式检测噪声点,改善了噪声剔除效果。
     3.改进了基于虚拟格网结构的形态学滤波方法。采用虚拟格网的数据组织方式,避免对原始数据进行内插格网损失精度。利用形态学梯度作为数据点是否进行开运算的阈值条件,提高对陡坎突变地形判断的准确性,对前后两次形态学开运算的结果进行二次判断,利用地物数据集区域的边缘特性作为地物识别特征,提高滤波的准确度,避免简单的阈值判断对地形数据的损失。实验分析证明,算法具有很强的适应性,在非城区的自然复杂地形数据具有良好的滤波效果。
     4.设计一种基于八叉树数据结构的点云聚类分割算法。利用八叉树的数据组织结构完成点云数据的聚类分割,对八叉树节点采用分割-融合两个步骤整合零散区域,改进区域分割的结果,提高准确性。同时在建立八叉树节点的过程中完成原始数据的索引组织结构,方便数据点集之间的查询计算,提高滤波效率。
     5.基于上述分割结果,提出一种结合区域拓扑结构信息与高差不连续性的滤波准则。对于分割结果的区域数据设计了一种拓扑结构信息,在区域块数据集类别判断上,考虑了区域之间高差不连续性及之间的拓扑结构关系双重判断标准,运用迭代计算的方式,逐渐剔除地物区域数据集以最终达到滤波的目的。该方法改善了传统聚类滤波中的地物判断缺点,在城区地形数据具有良好的表现。
     6.设计一种波形宽度阈值的全波形数据滤波方法。针对全波形数据的特点,用数学推导的方式证明其是高斯模型的波形叠加,采用最小二乘迭代优化的方式估计波形参数,利用波形宽度作为植被点和地形点的分类阈值,完成植被区域数据点的滤波。
Airborne Lidar laser radar data processing is an important part of the application system, about 80% of the workload is concentrated in it, including data filtering DEM production technology is the most basic data processing work, its follow-up of digital products, Application security plays a key role, but also Lidar technology development and cutting-edge research topics. This paper focuses on the airborne Lidar data filtering and sorting technology, combined with point cloud data structure, in-depth study and exploration. The main work and innovations are:
     1. A systematic exposition of the principle of Airborne Lidar and the positioning of the composition, described Lidar data structure and surface features the main characteristics of data processing difficulties, the practical application and follow-up of the filtering algorithm to provide a theoretical basis.
     2. Analysis of Lidar point cloud data in the original noise causes the formation of rough almost to introduce the formation of new equipment, the noise characteristics of the data, the threshold elevation for the traditional method requires a lot of statistical analysis and experiments to determine the shortcomings, presents a fitting plane and elevation near the point of combining the density criterion, the iterative calculations - adaptive changes in the way of detection threshold parameter noise points.Experimental results show that the method can automatically detect outliers purpose of noise points, significantly lower risk of miscarriage of justice.
     3. Proposed structure based on virtual grid to improve morphological filter. The data using a virtual grid organization, to avoid interpolating the original data grid loss of accuracy. Morphological gradient as a data point is the opening operation of the threshold condition, improve the scarp terrain to determine the accuracy of the mutation, two consecutive morphological opening operation on the results of a second judge, using the edge of the regional characteristics of surface featuresObject Recognition as a feature, to improve the accuracy of filtering to avoid open operation blind misjudgment of the terrain data. Experimental analysis shows that the algorithm has strong adaptability to the natural complex in non-urban terrain with good filtering effect.
     4. Is proposed based on octree data structure of the point cloud cluster segmentation.Use of octree data structure to complete point cloud data clustering segmentation, using segmentation octree nodes - two-step integration of fragmented regional integration, improved segmentation results, to improve accuracy. At the same time in the establishment of octree nodes to complete the process of indexing the original data structure, between sets of data points to facilitate the mathematical calculations, to improve filtering efficiency.
     5. Segmentation based on the above results, we propose a new topology information and the regional height discontinuity filter. Segmentation results of the regional data for the design of a topology information, block data set types in the region to determine, considering the height difference between regions and between the discontinuity between the topology of the dual criteria, the use of iterative calculation method gradually removing the surface features of regional data sets in order to eventually achieve the purpose of filtering. This method solves the surface features of traditional clustering filter to determine shortcomings in urban terrain data with good performance, reliable and accurate filtering results.
     6. Presents a waveform width threshold of full-waveform data filtering methods. Full waveform data for the characteristics of a mathematical proof of its derivation is the superposition of Gaussian wave model using the least square iterative optimization method to estimate wave parameters, the use of waveform width points and terrain points as vegetation classification threshold, complete vegetation zone data point filtering.
引文
[1]李德仁.地球空间信息学及在陆地科学中的应用[J].自然杂志, 2005,27(6):316-322.
    [2]宁津生,王正涛.测绘学科发展综述[J].测绘科学, 2006,31(1):9-16.
    [3]刘春,陈华云,吴杭彬.激光雷达三维遥感的数据处理与特征提取[M].科学出版社, 2010.
    [4]张小红.机载激光雷达测量技术理论与方法[M].武汉大学出版社, 2007.
    [5]周晓明. LAS Version 2.0数据格式[J].测绘工程.19 (4): 43-46,2010.
    [6]罗伊萍. Lidar数据滤波和支持向量机分类方法[D].郑州:信息工程大学博士学位论文. 2010.
    [7]王刃.机载Lidar数据滤波与建筑物提取技术研究[D].郑州:信息工程大学博士学位论文. 2008.
    [8] On Web: http://www.leica-geosystems.com[EB/OL]. 2010-01-12.
    [9] On Web: http://www.riegl.com[EB/OL]. 2010-03-20.
    [10] On Web: http://www.optech.ca[EB/OL]. 2010-01-12.
    [11]张小红.机载激光扫描测高数据滤波及地物提取[D].武汉:武汉大学博士学位论文, 2002.
    [12] Norbert Pfifer, Philipp Stadler, Christian Briese. Derivation of Digital Terrain Models in the Scop++ Environment[C]. OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Digital Elevation Models, Stockholm, 2001.
    [13] Vosselman, G. Slope based filtering of laser altimetry data[C]. International Archives of Photogrammetry and Remote Sensing, 2000, Vol. 33, B3/2(pp. 935–942). The Netherlands: Amsterdam.
    [14] Sithole G, Vosselman G. A comparison of existing automatic filters[R]. Technical Report, ISPRS test on extracting DEMs from point clouds, 2003.
    [15] Sithole G, Vosselman G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59:85-101.
    [16]邵怡诚,陈良健.空载光达点云于DEM自动生产与精度评估-使用ISPRS测试资料为例[J].航测及遥感学刊. 11 (1) 2006: 1-12.
    [17]邵怡诚.空载光达资料中地面点选取及房屋侦测-Ground Point Selection and Building Detection from Airborne Lidar Data[D].台湾:国立中央大学博士学位论文, 2007
    [18] Li Chen, Baltsavias. Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences[M]. 2008 ISPRS Congress Book.
    [19] Kilian J, Haala N. Capturing and evaluation of airborne laser scanner data[C]. International Archives of Photogrammetry and Remote Sensing, Vienna, Vol.54 , pp:138-147, 1999.
    [20] Petzold B, Reiss P, Stossel W. Laser Scanning-surveying and mapping agencies are using a new technique for the derivation of digital terrain models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54:95-104.
    [21] R.Wack, A. W. Digital Terrain Models from Airborne Laser Scanner Data-a Grid Based Approach[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIV, Pt.3B, pp:293-296.
    [22] Zhang K, Chen S C, Whitman D, et al. A Progressive Morphological Filter for Removing NongroundMeasurement from Lidar Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 872-882.
    [23] Zhang K, Dean Whitman. Comparison of Three Algorithms for Filtering Airborne Lidar Data[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(3): 313–324.
    [24] Lohmann P, Koch, A, Schaeffer M. Approaches to the Filter of Laser Scanner Data. Proceedings of XIXth Congress of international society for Photogrammetry and Remote sensing(ISPRS)[C], Amsterdam, The Netherlands, 16-23 July2000, pp:534-547.
    [25] Hu Y, Tao C V. Hierarchical Recovery of Digital Terrain Models from Single and Multiple Return Lidar Data[J]. Photogrammetry Engineering & Remote Sensing. 2005, 71: 425-433.
    [26] Vosselman G, Maas H G. Adjustment and filtering of raw laser altimetry data[C]. Editor Kennert Torlegard. Proceedings of OEEPE workshop on airborne laser scanning and interferometric SAR for detailed digital elevation models. Stockholm: Royal Institute of Technology Department of Geodesy and Photogrammetry, 2001. Official Publication OEEPE. No. 40, 2001, pp. 62-72.
    [27] Sithole G. Filtering of laser altimetry data using a slope adaptive filter[C]. International Archives of Photogrammetry and Remote Sensing, 2001, 34(3/W4): 203-210 (Annapolis, ML).
    [28] Roggero, M. Airbore Laser Scanning:Clustering in Raw Data[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIV(pt.3/w4), 2001,pp:227-232.
    [29] Axelsson P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models[C]. International Archives of Photogrammetry and Remote Sensing, 2000, Vol. 33. part B4/1, pp. 110-117.
    [30] Axelsson P. Ground estimation of laser data using adaptive TIN-models[C]. Editor Kennert Torlegard. Proceedings of OEEPE workshop on airborne laser scanning and interferometric SAR for detailed digital elevation models. Stockholm: Royal Institute of Technology Department of Geodesy and Photogrammetry, 2001. Official Publication No. 40. CD-ROM. pp 185-208. Royal Institute of Technology Department of Geodesy and Photogrammetry 100 Stockholm, Sweden.
    [31] Sohn G, Dowman I J. Terrain surface reconstruction by the use of tetrahedron model with the MDL criterion[C]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002, 34 (Part 3):336-344.
    [32] Krzystek, P. Filtering of Laser Scanning Data in Forest Areas Using Finite Elements[C]. Workshop:3-D reconstruction from airborne laser scanner and InSAR data.2003.
    [33] Akel, N.A, Ziberstein, O. Doytsher, Y. Automatic DTM extraction form dense raw Lidar in urban areas[C].Proceedings of FIG working week 2003, April 13-17, Paris, France.
    [34]张小红.机载激光雷达测量技术理论与方法[M].武汉大学出版社, 2007
    [35]张小红,刘经南.机载激光扫描测高数据滤波[J].测绘科学29 (6): 50-53,2004.
    [36] Kraus K, Pfeifer N. Determination of terrain models in wooded areas with airborne laser scanner data [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53:193-203.
    [37] Elmqvist M. Ground Estimation of Lasar Radar Data using Active Shape Models[C]. Editor Kennert Torlegard. Proceedings of OEEPE workshop on airborne laser scanning and interferometric SAR for detailed digital elevation models. Stockholm: Royal Institute of Technology Department of Geodesyand Photogrammetry, 2001.
    [38] Elmqvist M, Jungert E, Lantz F, et al. Terrain modelling and analysis using laser scanner data[C]. International Archives of Photogrammetry and Remote Sensing, Vol. XXXIV–3/W4 Annapolis, MD, 22-24 October 2001. pp. 219-227.
    [39] Brovelli M A, Cannata M, Longoni U M. Mappging and processing Lidar data within GRASS[C]. Proceedings of the Open Source GIS-GRASS Users Conference, Trento, Italy, 2002.
    [40] Brovelli M A, Cannata M, Longoni U M. Lidar Data Filtering and DTM Interpolation Within GRASS [J]. Transactions in GIS, 2004, 8(2): 155-174.
    [41] Sithole G. Segmentation and Classification of Airborne Laser Scanner Data [D]. Netherlands: TU Delft. 2005.
    [42]管海燕. Lidar与影像结合的地物分类及房屋重建研究[D].武汉:武汉大学博士学位. 2009.
    [43]蒋晶珏,张祖勋,明英.复杂城市环境的机载Lidar点云滤波[J].武汉大学学报.信息科学版2007,32 (5): 403-405.
    [44] Workshop on Proposed National Center for Airborne Laser Mapping (NCALM) Final Report[C]. Held at the University of Florida Gainesville, Florida April 24-26, 200.
    [45] J.C. Fernandez, A. Singhania, J. Caceres, K.C. Slatton, M Starek, R. Kumar. An Overview of Lidar Point Cloud Prcocessing SoftWare GEM Center Report NO. Rep_2007-12-1.
    [46] TerraScan User Guide[C].2007.
    [47]舒宁.激光成像[M].武汉大学出版社, 2005.
    [48]王刃.机载Lidar数据滤波与建筑物提取技术研究[D].郑州:信息工程大学博士学位论文. 2008.
    [49]李卉.融合机载Lidar和高分辨率遥感影像的城市道路提取与三维重建的若干算法研究[D].武汉:武汉大学博士学位论文.2009.
    [50] Wehr A, Lohr U. Airborne laser scanning-an introduction and overview [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54:68–82.
    [51]徐景中.基于Lidar点云的DTM重建及道路特征提取的关键技术研究[D].武汉:武汉大学博士论文, 2008.
    [52] Leica ALS60徕卡机载激光扫描系统[EB].
    [53] ALS60 Documentation [EB].
    [54]冯聪慧.机载激光雷达系统数据处理方法的研究[D].郑州:信息工程大学硕士论文.2007.
    [55]曾齐红.机载激光雷达点云数据处理与建筑物三维重建.上海:上海大学博士学位论文2009.
    [56] ASPRS. LAS Specification Version 1.1[S] March 07. 2005.
    [57] ASPRS .LAS Specification Version 2.0 proposal [S].2007.
    [58]王永平.机载Lidar数据处理及林业三维信息提取研究[D].北京:中国测绘科学研究院硕士论文. 2006.
    [59]梁欣廉,张继贤,李海涛.激光雷达应用中的几种数据表达方式[J].遥感信息, 2005, 6:60-64.
    [60]刘沛.多源数据辅助机载Lidar数据处理的关键技术研究[D].北京:中国测绘科学研究院硕士论文. 2008.
    [61]贾广帅.机载激光雷达数据特点和滤波方法研究[D].济南:山东科技大学. 2007.
    [62]王明华,张小红,曾涛,成晓倩.机载Lidar数据滤波预处理方法研究[J]. 2010,35(2):224-227.
    [63]董静.融合多特征的机载Lidar点云数据滤波方法研究[D].阜新,辽宁工程技术大学硕士论文.2011.
    [64] George Vosselman, Hans-Gerd Mass. Airborne and Terrestrial Laser Scanning [M].CRC Press. 2010.
    [65] Johnson T. Kwok I. Fast computation of 2-dimensional depth contours[J]. In Proc. KDD 1998, 224–228.
    [66] Chen Qi. Filtering Airborne Laser Scanning Data with Morphological Methods [J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(2):175-185.
    [67] Qi Chen,Peng Gong,Dennis Baldocchi, G. X. Filtering Airborne Laser Scanning Data with Morphological Methods[J]. Phtotgrammetric Engineering Remote Sensing. 2007, 73 (2): 175-185.
    [68] Qi chen. Improvement of the Edge-based Morphological (EM) method for Lidar data filtering [J]. International Journal of Remote Sensing 2009, 30 (4): 1069-1074.
    [69]冈萨雷斯.数字图像处理[M].电子工业出版社. 2005.
    [70]赵旦.基于MicroStation的机载激光雷达数据处理试验研究[D].西安:长安大学硕士论文. 2009.
    [71]刘文.基于数学形态学原理和TerraScan的Lidar点云数据分类方法[D].青岛:国家海洋局第一海洋研究所硕士论文.2008.
    [72]张皓,贾新梅,张永生,董广军.基于虚拟网格与改进坡度滤波算法的机载Lidar数据滤波[J].测绘科学技术学报. 2009,26(3):224-231.
    [73]梁欣廉,张继贤,李海涛.一种应用于城市区域的自适应形态学滤波方法[J].遥感学报. 2007. 11(2):276-281.
    [74] Cho W., Y.-S. Jwa, H.-J. Chang, S.-H. Lee. Pseudo-grid Based Building Extraction Using Airborne Load Data[C/CD]. 20th ISPRS Congress, Istanbul, Turkey, 2004.
    [75]李勇,吴华意.基于形态学梯度的机载激光扫描数据滤波方法[J].遥感学报, 2008, 12 (4): 633-63.
    [76]陶金花,苏林,李树楷.一种保护细节的从机载激光点云中提取城DTM的方法[J].遥感学报. 2008, 12(2):233-238.
    [77]隋立春,张斌,柳艳,曲佳,李伟,王蒙,李智林.基于改进的形态学算法的Lidar点云数据滤波[J].测绘学报. 2010,39(4): 390-396.
    [78]邬建伟,马洪超,李奇.顾及语义的机载Lidar点云格网化方法.测绘科学技术学报[J]. 2008, 25 (2).
    [79] G. Sithole , G. Vosselman. Filtering of airborne Laser scanner data based on segmented point cloud[C]. ISPRS Laser scanning 2005, Enschede, the Netherlands, September 12-14, 2005.
    [80] G. Vosselman , B.G.H. Gorte , G. Sithole , T. R. Recognising structure in laser scanner point clound.
    [81] George Sithole, G. Vosselman. Automatic Structure Detection in a Point-Cloud of an Urban Landscape.
    [82] G. Vosselman, Enschede, T. N. Advanced Point Cloud Processing [EB].
    [83] Vosselman, S. O. E. A. G. Building Reconstruction by Target Based Graph Matching on Incomplete Laser Data [EB]: Analysis and Limitations. 2009.
    [84] Vosselman, G. Analysis of planimetric accuracy of airborne laser scanning surveys. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing. 2008.
    [85]章大勇,吴文启,吴美平,逯亮清.基于三维Hough变换的机载激光雷达平面地标提取[J].国防科技大学学报. 2010, 32 (2): 130-134.
    [86] Tina Yu Tian, Mubarak Shah.Recovering 3D Motion of Multiple Objects Using Adaptive HoughTransform [J]. Transaction on pattern analysis and machine intelligence, VOL. 19, NO. 10, October 1997.
    [87] Haiyuan WU, Genki YOSHIKAWA, Tadayoshi SHIOYAMA, Glasses Frame Detection with 3D Hough Transform.
    [88]钟成.机载激光雷达数据辅助高质量真正射影像制作[D].武汉:武汉大学博士学位论文. 2009.
    [89]邓非. Lidar数据与数字影像的配准和地物提取研究[D].武汉:武汉大学博士学位论文. 2006.
    [90] Filin, S. Preife, N. Segmentation of airborne laser scanning data using a slope adaptive neighborhood [J]. ISPRS Journal of Photogrammetry and Remote Sensing: 2006, 60, 2, pp.71-80.
    [91]黄先锋.利用机载Lidar数据重建3D建筑物模型的关键技术研究[D].武汉:武汉大学博士学位论文. 2006.
    [92]林明华.机载激光雷达点云数据处理理论与应用研究[D].武汉:武汉大学博士学位论文. 2008.
    [93] Samet, H. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS [M]. Addison-Wesley Publishing Company, Inc, Boston, Massachusett,1990.
    [94]蒋晶钰. Lidar数据基于点集的表示与分类[D].武汉:武汉大学博士学位论文. 2006.
    [95] Punya Prasad Sapkota. Segmentation of Coloured Point Cloud Data [D]. Netherlands: International Institute for Geo-information Science and Earth Observation (ITC) the degree of Master.2008.
    [96]赖旭东.机载激光雷达数据处理中若干关键技术研究[D].武汉:武汉大学博士学位论文. 2006.
    [97]唐菲菲.基于机载Lidar点云数据提取森林地区DTM和植被信息的关键技术研究[D].武汉:武汉大学博士学位论文. 2008.
    [98] G.Sithole. Segmentation and Classification of Airborne Laser Scanner Data [D]. Netherlands: International Institute for Geo-information Science and Earth Observation (ITC) the degree of Master.2005.
    [99]翟瑞芳.激光点云和数字影像结合的小型文物重建研究[D].武汉:武汉大学博士学位论文. 2006.
    [100]张帆.激光扫描数据三维建模中高保真度纹理重建研究[D].武汉:武汉大学博士学位论文. 2008.
    [101]杨洋.基于车载Lidar数据的建筑物立面重建技术研究[D].郑州:信息工程大学硕士学位论文. 2010.
    [102] Yuxiang He. A segment-based approach for digital terrian model derivation in airborne laser scanning data [D]. Netherlands: International Institute for Geo-information Science and Earth Observation (ITC) the degree of Master.2010.
    [103] Miao Wang and Yi-Hsing Tseng. Automatic Segmentation of Lidar Data into Coplanar Point Clusters Using an Octree-Based Split-and-Merge Algorithm [J]. Photogrammetric Engineering & Remote Sensing Vol. 76, No. 4, April 2010, pp. 407–420.
    [104]李奇.机载激光雷达全波形数据量化研究与应用[D].武汉:武汉大学博士学位论文. 2009.
    [105] Wolfgang Wagner, Andreas Ullrich, Vesna Ducic, Thomas Melzer, Nick Studnick. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner [J]. ISPRS Journal of Photogrammetry & Remote Sensing 60 (2006) 100–112.
    [106] Michael Doneus, Christian Briese, et al. Archaeological prospection of forested areas using full-waveform airborne laser scanning [J]. Journal of Archaeological Science 25(2008) 882-893.
    [107] Hug C, Ullrich A, GrimmA. LiteMapper-5600-a Waveform Digitizing Lidar Terrain and Vegetation Mapping System[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2004, 36 (8/W2): 24-29.
    [108] Riegl. LiteMapper Geocode WF User Manual and Reference [Z]. [s.l.]:[s.n.], 2005.61.
    [109] Clément Mallet,Frédéric Bretar. Full-waveform topographic Lidar: State-of-the-art[J], ISPRS Journal of Photogrammetry and Remote Sensing 64(2009) 1-16.
    [110] Optech, 2002. ALTM Airborne Laser Terrain Mappers, Optech Inc., URL: http://www.optech.on.ca/. (last date accessed: 2003/5/ 12) .
    [111] M. Doneus, C. Briese. Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laserscanning[C]. The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST, 2006.
    [112] W. Wagner. M. Hollaus. C. Briese. V. Ducic. 3D vegetation mapping using small-footprint full-waveform airborne laser scanners [J]. International Journal of Remote Sensing, 2008.29: 5, 1433 -1452.
    [113] Reitberger, J. , Krzystek, P. and Stilla, U. Analysis of full waveform Lidar data for the classification of deciduous and coniferous trees[J]. International Journal of Remote Sensing. 2008, 29: 5, 1407-1431.
    [114] Vaughn, Nicholas R. Moskal, L. Monika and Turnblom, Eric C. Fourier transformation of waveform Lidar for species recognition[C], Remote Sensing Letters. 2011.2: 4, 347-356, First published on: 13 December 2010.
    [115] Andreas Ullrich, Nikolaus Studnicka, Markus Hollaus, Christian Briese, Wolfgang Wagner, Michael Doneus, Werner Mücke. Improvements in DTM generation by using full-waveform airborne laser scanning data [J].
    [116] Adrien Chauve, Cl′ement Mallet, Fr′ed′eric Bretar, Sylvie Durrieu, Marc Pierrot Deseilligny, William Puech.Processing full-waveform Lidar data: Modelling rawsingals[C]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 2007, Espoo, Finland.
    [117] MA Hong-chao, LI Qi. Modified EM algorithm and its application to the decomposition of laser scanning waveform data [J]. Journal of Remote Sensing.2009.
    [118]李奇,马洪超.基于激光雷达波形数据的点云生产[J].测绘学报.2008, 37(3).349-35.
    [119]刘峰,谭畅.全波形Lidar数据分解方法的研究[J].中南林业科技大学学报. 2010, 30(8), 148-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700