用户名: 密码: 验证码:
压电开关调压型气动数字比例压力阀的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动比例压力阀是实现连续控制及气、电、机一体化的关键元件。其中,数字控制比例阀(简称数字阀)具有可直接与计算机连接,不需要D/A转换器,具有结构简单、成本低、可靠性高等优点,因此得到越来越广泛的应用且成为当前的研究热点之一。但目前现有的脉冲开关式数字比例压力阀通常采用高速电磁铁为电-机械转换器,这种驱动方式的数字比例压力阀存在响应速度慢、稳念精度差等缺点,无法满足如快速燃气喷射系统和精密气动定位系统等需要快速响应高精度的场合。因此,迫切需要研究一种新型的具有快速响应和高精度特性的数字比例压力阀。论文从此实际需求出发,对所涉及的问题进行了全面、深入的理论和试验研究。
     首先,论文通过深入分析了以电磁铁为驱动器的传统开关式数字比例压力阀工作过程,指出了提高阀响应速度和控制精度的最根本途径是提高驱动器的动态性能。为此,提出了一种新型的以压电驱动代替电磁驱动、具有快速响应和高精度特性的压电开关调压型气动数字比例压力阀的构想。在功能需求分析基础上,研究了其前置级压电快速驱动-位移放大、摆动开关挡板式先导阀结构及膜片平衡式主阀结构等关键技术;提出并实现了一种压电驱动-放大、先导开关挡板高速通断、膜片式主阀功率放大和压力-电反馈的新型压电开关调压型气动数字比例压力阀的总体结构,并采用模块化设计方法完成了该总体结构的设计。设计了基于弹性铰链的具能放大压电叠堆输出微位移的先导开关挡板机构,并采用有限元分析方法对其进行了静、动态特性和疲劳寿命等分析。
     为了分析压电开关调压型气动数字比例压力阀的静、动态特性以及各主要结构参数、控制参数等对其主要性能的影响,也为阀结构参数和控制参数的合理设计提供理论依据,论文研究了其动态特性数学模型,并进行了相关的仿真研究。试验结果与仿真结果对比验证了所建阀的数学模型及仿真模型是准确的。通过仿真研究,了解了阀工作过程中的静、动态特性,明确了先导开关挡板行程、先导阀通流直径和主阀芯通流直径、阀腔室体积、PWM载波频率及PID控制等对阀主要性能的影响,为后续的深入研究提供了理论指导。
     研制了压电开关调压型气动数字比例压力阀试验样机。在此基础上,构建了具有高速实时采集和数字比例控制功能的试验控制系统,并对前置级压电驱动-放大机构、先导级摆动开关挡板阀、压电开关调压型气动数字比例压力阀进行了基本的开环静、动态测试。试验结果表明:前置级先导开关挡板放大机构阶跃上升时问约为0.57ms,阶跃下降时间约为0.3ms,具有较快的响应速度和良好的工作频宽;可通过控制PWM脉宽比数字控制先导级摆动开关挡板阀的出口流量,具有一定的实用性,适用于小流量、控制精度要求不高的应用场合;所研制的压电开关调压型气动数字比例压力阀的空载流量和出口压力与脉宽比具有一定的线性度,且能实现大流量输出。
     最后,为了提高压电开关调压型气动数字比例压力阀动态性能,提高其稳态精度和降低压力波动,对其进行了控制算法研究。采用了Bang-Bang开关控制和带死区P+PWM复合控制算法,实现了阀的数字比例控制,但其稳念控制性能较差,存在-定的稳态误差和压力波动,特别是在有流量负载下。通过试验发现,数字阀的压力响应延迟是影响阀性能的一个主要因素,为此,提出了PWM控制算法的一种改进形式:调整变位PWM法;并采用Bang-Bang控制+带死区P+调整变位PWM复合控制算法对数字阀进行了控制。通过试验验证了其算法的有效性,能有效提高阀稳念控制精度,大大降低压力波动,特别是在有流量负载下,稳态误差由2kPa降为1kPa,压力波动由15kPa降为5kPa。
     完成了所研制的压电开关调压型气动数字比例压力阀试验样机与同级别的传统电-气比例压力阀的性能比较试验。试验表明:在相同条件下所研制试验样机的响应速度和稳态精度较同级别电-气比例压力阀都有明显的提高,响应速度提高了约66%,稳态精度提高了约50%,具有高速、高精度的特点,具有广阔的应用前景。
Pneumatic proportional pressure valve is the key component of continuous control and the integration of pneumatic, electronic and mechanical. Directly controlled by the computer without D/A converter, with the advantages of simple structure, low cost and high reliability and so on, the digital control of pneumatic valve has gained more and more popularity and become the focus of recent research. However, the traditional on-off type digital electro-pneumatic proportional pressure valve driven by the electro-mechanical converter of electromagnet has the disadvantages of slow response and poor control precision etc, due to the driving component made of electromagnet, cannot meet the certain requirements of high frequency response and high precision, which are commonly required in the rapid gas injection system and the precision pneumatic positioning system, etc. Therefore, it is an urgent need to develop a new type of high-frequency and high-precision digital proportional pressure valve. To achieve this goal, a thorough theoretical and experimental research on the interrelated problem is performed in this thesis.
     First of all, based on the deep analysis of the working cycle of the traditional on-off type electro-pneumatic digital proportional pressure valve driven by electromagnet actuator, it is found that the most fundamental way to improve the valve response speed and control precision is to improve the actuator dynamic performance. Therefore, the conception of novel piezoelectric on-off pressure-regulation type electro-pneumatic digital proportional pressure valve (PDPPV for short) with rapid response and high precision driven by the piezoelectric actuator is proposed. Based on its functional analysis, the key technologies of the prestage of piezoelectric rapid driven and displacement amplification, the structure of swing-switch flapper type pilot valve and diaphragm-balance type main valve are researched. Furthermore, the overall structure of the novel PDPPV is presented and designed by using modular design method. Its prestage is the piezoelectric stack actuator whose output displacement is amplified by the pilot switch flapper amplification mechanism based on flexure hinge and its pilot stage is the two-position three-way swing-switch flapper type valve with the high speed on-off function. And its power stage is diaphragm balanced main valve to enlarge the output flow. Moreover, the pilot switch flapper amplification mechanism is designed and the finite element analysis of its static, dynamic and fatigue life characteristics is correspondingly conducted.
     In order to analyze the static and dynamic response characteristics of the PDPPV and the effect of main structural parameters and control parameters on its performance, as well as to provide the theoretical basis for the appropriate design of its structure parameters and control parameters, the PDPPV dynamic characteristics mathematical model is established and the relevant simulation research is finished. By the comparison between simulation and experiment results, the built mathematical model is proved to be accurate. Through simulation studies, the static and dynamic characteristics on working process of the valve are understood and the effects of pilot switch flapper displacement, the flow passage diameter of pilot valve and main valve, the chamber volume of the valve, PWM carrier frequency and PID control on the PDPPV main performance are also deeply clarified, which will provide theoretical guidance to further deep research.
     Based on the previous work, the experimental prototype of the PDPPV is developed and the corresponding test and control system for the function of high speed real time collection and digital proportional control is built. The static and dynamic tests on the prcstage piezoelectric driven-amplification mechanism, the pilot stage (swing-switch flapper type valve) and the PDPPV are conducted. These tests indicate that:(1) the step rise-time of the pilot switch flapper is about 0.57ms and the step-fall time is about 0.3ms, with faster response speed and wider working bandwidth; (2) it is practical to digitally control the export flow of the swing-switch flapper type valve by regulating the PWM duty cycle, which makes it applicable to the application situation of small flow and low demand of control accuracy; (3) the unloaded flow and outlet pressure of the developed PDPPV have a certain degree of linearity with the PWM duty cycle and the PDPPV has large output flow.
     Finally, in order to improve the dynamic performance and steady-state accuracy of the PDPPV and decrease its pressure fluctuations, its control algorithms are researched. The Bang-Bang control algorithm and the compound control algorithm of P with dead zone plus PWM can basically achieve the digital proportional control of the PDPPV, but its steady-state control performance is poor, with the disadvantages of some steady-state error and pressure fluctuations, especially under the flow load conditions. The experimental research found that the pressure response delay of the PDPPV is the major influence factor of the valve performance. According to this reason and the work characteristics of the PDPPV, based on PWM control algorithm, an adjusted-shift PWM algorithm (AS-PWM) is presented. Moreover, the compound control algorithm using Bang-Bang Control, P with dead zone and AS-PWM is proposed to control the PDPPV. Experimental results show that with this controller, the PDPPV control performance can be effectively improved, especially under flow load conditions, which the steady-state error reduces from 2kPa to 1kPa and pressure fluctuations reduces from 15kPa to 5kPa.
     The performance comparison experiments of the developed PDPPV experimental prototype and the traditional electro-pneumatic proportion pressure valve is conducted. Experiments indicate that under the same experimental conditions, compared with the traditional electro-pneumatic proportion pressure valve, the PDPPV has better performance in response speed and steady-state accuracy, which the response speed improves by about 66% and the steady-state accuracy improves by about 50%. The PDPPV has great dynamic characteristics and high-speed, high-precision characteristics, with good industrial application prospect.
引文
[1]SMC(中国)有限公司.现代实用气动技术(第二版)[M].北京:机械工业出版社,2004.
    [2]李小宁.气动技术发展的趋势[J].机械制造与自动化,2003,2:1-4.
    [3]路甬祥.电液比例控制技术[M].北京:械工业出版社,1988.
    [4]李素玲,刘军营.比例控制与比例阀及应用[J].液压与气动,2003,2:30-32.
    [5]黎启柏编著.电液比例控制与数字控制系统[M].北京:机械工业出版社,1997.
    [6](美)Raymond D.Woodworth,周兴建译.低成本高性能的数字阀[J].液压与气动,1991,3:34~35.
    [7]王东,周棣,首天成.数字液压阀的发展与研究[J].流体传动与控制,2008,2(27):18~21.
    [8]阮健,李胜,杨继隆.液压及气动阀直接数字控制的新途径[J].中国机械工程,2000,3(3):317~320.
    [9]王成宾,权龙.直线步进电机闭环控制的数字阀研究[J].机床与液压,2008,36(11):38-41,66.
    [10]Rich Burton, Jian Ruan, Paul Ukrain, et al. Analysis of Electromagnetic Nonlinearities in Stage Control of a Step-per Motor and Spool Valve [J]. Joural of Dynamic Systems, Measurement, and Control, 2003,125:405~412.
    [11]张利平,魏泽鼎.增量式电液数字控制阀开发中的若干问题[J].工程机械,2003,5:36~40.
    [12]赵晓燕.HGDV脉冲调制开关式数字阀的理论及应用研究[D].兰州:兰州理工大学硕士学位论文,2005.
    [13]吴峰,张河新,李建朝,等.脉宽调制在气动减压阀中的应用[J].液压与气动,2006.4:55~57.
    [14]施光林,钟廷修.高速电磁开关阀的研究与应用[J].机床与液压,2001,2:7-9,17.
    [15]刘少军.高速开关电磁阀的现状及应用[J].液压与气动,1995,6:12-14.
    [16]SMC(中国)有限公司.SMC气动产品样本[M].2002.
    [17]FESTO(中国)有限公司.德国FESTO公司产品样本[M].2003.
    [18]堵利宾,张河新,李建朝,等.基于C8051F脉宽调制(PWM)的气动比例调压阀的开发[J].机床与液压,2008,36(3):92~94.
    [19]鄂世举,曲兴田,杨志刚,等.电液伺服阀新型驱动器设计[J].压电与声光, 2003,25(2):152~154.
    [20]刘少军,厦毅敏,郭淑娟,朱梅森.高速开关阀电磁阀的PWM控制及改进技术[J].机床与液压,1998,4:52-53.
    [21]Main J A, Garcia E. Piezoelectric Stack Actuators and Control System Design: Strategies and Pitfalls [J]. Journal of Guidance, Control, and Dynamics, 1997, 20(3): 479~485.
    [22]宋道仁,肖鸣山编.压电效应及其应用[M].北京:科技普及出版社,1987.
    [23]李树立,孟祥华,李成功,等.一种压电陶瓷直接驱动伺服阀研究[J].压电与声光,2007,29(1):47~49.
    [24]陆豪,朱成林,曾思,等.新型PZT元件驱动的电液高速开关阀及其大功率快速驱动技术的研究[J].机械工程学报,2002,38(8):118~121.
    [25]Shinichi Y. An Ultra Fast-acting Electro-hydraulic Digital Valve and High-speed Electro-hydraulic Servo Valve Using Multilayered PNT Elements [C]. Proceedings of the Second JHPS International Symposium on Fluid Power, Tokyo,1993: 121-130.
    [26]Lindler J E, Anderson E H. Piezoelectric Direct Drive Servovalve [C]. Proceedings of SPIE:Industrial and Commercial Applications of Smart Structures Technologies, San Diego,2002:488~496.
    [27]http://www.hoerbiger.com/Piezo-Proportional-Valves.1440.0.html?&L=1
    [28]阮健.电液(气)直接数字控制技术[M].杭州:浙江大学出版社,2000.
    [29]白继平.2D气动数字伺服阀研究[D].杭州:浙江工业大学硕士学位论文,2005.
    [30]王成宾.步进电机控制的液压数字阀的建模与仿真研究[D].太原:太原理工大学硕士学位论文,2006.
    [31]张萃.增量式数字阀计算机控制系统研究及开发[D].吉林:吉林大学硕士学位论文,2006.
    [32]Ruan J, Burton R. A New Approach of Direct Digital Control for Spool Valves [J]. Fluid Power Systems and Technology, 1999,6:115~124.
    [33]林锐.高速开关阀的研究及数字仿真[D].武汉:武汉理工大学硕士学位论文,2005.
    [34]Michael M, Schechter. Fast Response Multipole Solenoids [J]. SAE 820203: 846~857.
    [35]John N. Back, Robert L. Barkhimer, Michael A.Calkins, etc. Direct Digital Control of Electronic Unit Injectors [J]. SAE 840273:2.332~2.340.
    [36]田中裕久.高速電磁弁に(?)ょろ研究[J].日本楼械学会諭文集(C编),1984,
    参考文献 博士学位论文50(457):1594~1601.
    [37]田中裕久.ディヅタル制御とその応用ツス[J].油空压化設計,1984,22(1):16~23.
    [38]田中裕久,田中弘羲,荒木一雄.三方向形高速電磁弁の電子油压ディヅタル制御[J].日本(?)械学会諭文集(B編),1984,50(458):2663~2666.
    [39]#12
    [40]Masahiko Miyaki, Hideya Fujisawa, Akira Masude, et al. Development of New Electronically Controlled Fuel Injection System ECD-U2 for Diesel Engines [J]. SAE 910252:312~328.
    [41]Heinz Hoffmaun, Karsten Hunnel, Thomas Madersterin, et al. Das Common Rail Einspritz System Ein Neuse Kapitel der Dieseleinspritztechnik [J]. MTZ,1997, 58(10):572~582.
    [42]陈宝江,杨树兴,曹泛.PWM高速开关阀特性分析[J].北京理工大学学报,1993,13(3):355~360.
    [43]刘新亮,张建武,陈兆能.高速开关阀功率驱动特性研究及电路实现[J].液压气动与密封,1998,2:9-11.
    [44]苗建中,郑云川.螺纹插装式高速电磁阀[J].液压与气动,1993,6:29-30.
    [45]王尚勇,程昌圻.柴油机电控燃油系统中的高速电磁阀设计[J].兵工学报,1996,2:37~41.
    [46]周福章,李力千,刘志伟,任德志.高速开关阀的设计与研究[J].机械工程学报,1998,34(5):101~105.
    [47]杨宜民编.新型驱动器及其应用[M].北京:机械工业出版社,1998.
    [48]贾振元,杨兴,武丹.磁致伸缩执行器及其在流体控制元件中的应用[J].机床与液压,2000(2):25~27.
    [49]张福学,王丽坤编.现代压电学[M].北京:科学出版社,2001.
    [50]徐锡林.压电型微驱动器[J].上海交通大学学报,1997,31(1):67~70.
    [51]石延平,张永忠,刘成文.超磁致式高速开关阀的研究与设计[J].中国机械工程,2003,14(21):1824~1826.
    [52]Claeyssen F, Lhermet N, Leletty R. Actuators and motors based on Giant Magnetrostrictive Materials [J]. Journal of Alloys and Compounds,1997(258): 61~73.
    [53]金国庆.新型压电式高速开关阀的研究[D].镇江:江苏大学硕士学位论文,2003.
    [54]张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究[J].光学精密工程,1998,6(5): 26~32.
    [55]Pozzi M, King T. Piezoelectric Actuators in Micropositioning [J]. Engineering Science and Education Journal,2001,10(1):31~36.
    [56]Ping Ge, Musa Jouaneh. Modeling Hysteresis in Piezoceramic Actuators [J]. Precision Engineering, 1995,17:211~221.
    [57]刘少军,朱梅生,夏毅敏等.压电执行器及其在高响应液压控制阀中的应用[J].机床与液压,1998,3:55~56.
    [58]So-Nam Yun, Young-Bog Ham, Jung-Ho Park, etc. Pressure Regulator for Pneumatic Valve with a PZT Actuator [C]. SICE-ICASE International Joint Conference,2006:4121~4125.
    [59]Yokota S, Hiramoto K. Ultra High-speed Electro-hydraulic Servo Valve by Making Use of a Multilayered Piezoelectric Device(PZT) [J]. Transactions of the Japan Society of Mechanical Engineers, Part B, 1991,57(533):182~187.
    [60]Young-Bong Bang, Choon-Shik Joo, Kyo-Li Lee, et al. Development of a Two-stage High Speed Electrohydraulic Servovalve Systems Using Stack-type Piezoelectric Elements [C]. Proceedings of IEEE/ASME International Conference on Adavanced Intelligent Mechatronics, July 2003, V1:131~136.
    [61]S. N. Yun, K. W. Lee, H. H. Kim, etc. Development of the Pneumatic Valve with Bimorph Type Piezoelectric Actuator [J]. Materials Chemistry and Physics, 2006, 97(1):1-4.
    [62]Leletty R, Lhermet N, Patient G, et al. Valves based on Amplified Piezoelectric Actuators [C]. Proceedings of Space Propulsion 2004-4~th International Spacecraft Propulsion Conference, Sardinia, European Space Agency, 2004:333~338.
    [63]Lindle J E, Anderson H. Piezoelectric Direct Drive Servovalve [C]. Proceedings of SPIE:The International Society for Optical Engineering, 2002:488~496.
    [64]Yokota S, Fuwa A. High-speed Direct Servo Valve with no Leak for Extreme Environments Using an Observer [J]. Transactions of the Japan Society of Mechanical Engineers, Part B,1995, 61(581):194~200.
    [65]Piezoelectric Valve [P]. JP 11-315947/FRISCH HERBER,-11-070577 (1999,03, 16):Int. CL.F16K 31/02.
    [66]Piezoelectric Valve and Fluid Flow Control [P]:JP 2000-346224/WILLIAM N O'NEILL,2000-152696 (2000,05,18):Int. CL. F16K 31/02, F16K 11/044.
    [67]Piezoelectric Valve [P]. WO99/31420/MIYAZOE, Shinji, JP98/05623 (1998,12, 11):Int. CL. F16K 31/02,7/14.
    [68]Piezoelectric Actuated Popet Valve to Modulate Pilot Pressures and Control Main Valve Activation [P]. US6,202,670/O'Neill-538841(2000,03,20), Int. CL G05D016/20.
    [69]#12名古屋大学修士输文,1990.
    [70]横土真一,堆浩太郎.高速ディヅタル電油变换器に(?)すろ研究[J].日本楼械学会输文集(B编),1990,56(524):281~286.
    [71]王伯良.无力矩马达电液伺服阀[J].液压与气动,1989,2,23-25.
    [72]Young-Bong Bang, Choon-Shik Joo, Kyo-I1 Lee, etc. Development of a Two-stage high Speed Electrohydraulic Servovalve Systems Using Stack-type Piezoelectric Elements [C]. Proceeding of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003:131~136.
    [73]赵四海,朱红秀,王正良,等.压电晶体型电液开关阀[J].中国矿业大学学报,1997,26(4):99~101.
    [74]王丽荣.基于椭圆形放大机构的压电驱动式高速开关阀研究[D].吉林:吉林大学硕士学位论文,2006.
    [75]李鹏.压电驱动式双喷嘴电液伺服阀的研究[D].吉林:吉林大学硕士学位论文,2003.
    [76]沈传亮.压电型直动式电液伺服阀的基本理论与实验研究[D].吉林:吉林大学博士学位论文,2004.
    [77]鄂世举.压电晶片式电液伺服阀的研究[D].吉林:吉林大学博士学位论文,2003.
    [78]王艳.压电式电-气转换器结构设计与实验研究[D].大连:大连理工大学硕士学位论文,2005.
    [79]高军霞.可编程压电式电气比例阀的研究[D].杭州:浙江大学硕士学位论文,2006.
    [80]Hall S R, Prechtl E F. Development of Piezoelectric Servoflap for Helicopter Rotor Control [J]. Smart Materials and Structures,1996,5(1):26~34.
    [81]Tokin Coporation. Multilayer Piezoelectric Actuator. Japan, 2001.
    [82]Pozzi M, King T. Piezoelectric actuators in micropositioning [J]. Engineering Science and Education Journal,2001,10(1):31~36.
    [83]Yang R, Jouaneh M, Schweizer R. Design and Characterization of a Low-profile Micropostioning Stage [J]. Precision Engineering, 1996, 18(1):20~29.
    [84]Tzou H S, Gadre M. Theoretical Analysis of a Multi-layered Thin Shell Coupled with Piezoelectric Shell Actuators for Distributed Vibration Controls [J]. Journal of Sound and Vibration,1989,132(3):433~450.
    [85]任三平,李益民.电致伸缩微位移机构中的预紧力分析[J].机械工艺师,1995,4:11~12.
    [86]光荣.液气阀类元件用压电致动器微位移放大机构设计与实验[D].云林:国立云林科技大学硕士学位论文,2004.
    [87]Juuti J, Kords K, Lonnakko R, etc. Menchanically Amplified Large Displacement Piezoelectric Actuators [J]. Senors and Actuators,2005,120:225~231.
    [88]郑伟智,辛洪兵,赵罘.压电驱动微位移放大机构的设计[J].机械科学与技术,2003,22(6):966~967.
    [89]Ma Haoquan, Hu Dejin, ZhangKa. Micro-displacement Amplifying Mechanism Driven by Piezoelectric Actuator [J]. Journal of Southeast University(English Edition),2004,20(1):75~79.
    [90]日本液压气动协会编,《液压气动手册》翻译组译.液压气动手册[M].北京:机械工业出版社,1984.
    [91]李庆祥,王东生,李玉和编.现代精密仪器设计[M].北京:清华大学出版社,2004.
    [92]King T G, Xu W. Piezomotors Using Flexure Hinged Displacement Amplifiers [C]. IEE Colloquium on Innovative Actuators for Mechatronic Systems, 1995:1-5,11.
    [93]Wei Xu, Tim King. Flexure Hinges for Piezoactuator Displacement Amplifiers: Flexibility, Accuracy, and Stress Considerations [J]. Precision Engineering, 1996, 19(1):4-10.
    [94]Tim King, Wei Xu. The Design and Characteristics of Piezomotors Using Flexure-hinged Displacement Amplifiers [J]. Robotics and Autonomous Systems, 1996,19(2):189~197.
    [95]Nicolae Lobontiu, Ephrahim Garchia. Two-axis Flexure Hinges with Axially-collocated and Symmetric notches [J]. Computers and Structures, 2003, 81(13):1329~1341.
    [96]李玉和,李庆祥,陈璐云,等.单轴柔性铰链设计方法研究[J].清华大学学报,2002,42(2):172~174.
    [97]Paros J M, Weisbord L. How to design flexure hinge [J]. Machine Design,1965, 37(27):151~157.
    [98]Wu Y F, Zhou Z Y. Design calculations for flexure hinges [J]. Review of Scientific Instruments,2002,73(8):3101~3106.
    [99]Lobontiu Nicolae, Garcia Ephrahim. Analytical Model of Displacement Amlpification and Stiffness Optimization for a Class of Flexure-based Compliant Mechanisms [L]. Computers and Structures, 2003,81(32):2797~2810.
    [100]Oiwar, Matsunagat. A study on Torisional Elastic Hinge [J]. Journal of Precision Engineering, 2000, 66:955~959.
    [101]Jae W. Ryu, Dae G. Gweon, Kee S. Moont. Optimal Design of a Flexure Hings based XY(?) Wafer Stage [J]. Precision Engineering, 1997, 21(1):18~28.
    [102]张亚欧,谷志飞,宋勇.ANSYS7.0有限元分析实用教程[M].北京:清华大学出版社,2004.
    [103]徐灏主编.机械设计手册2(第2版)[M].北京:机械工业出版社,2000.
    [104]赵少汴,王忠保编.抗疲劳设计—方法与数据[M].北京:机械工业出版社,1997.
    [105]李建藩.气压传动系统动力学[M].广州:华南理工大学出版社,1991.
    [106]Pascal Bigras, Karim Khayati. Nonlinear Observer for Pneumatic System with Non Negligible Connection Port Restriction [J]. Proceedings of the American Control Conference,2002(5):3191~3195.
    [107]Maolin Cal, Toshiharu Kagawa, Kenji Kawashima. Energy Conversion Mechanics and Power Evaluation of Compressible Fluid in Pneumatic Actuator Systems [C]. 37th Intersociety Energy Conversion Engineering Conference,2004:438~443.
    [108]Yingzi Jin, Qingjun Yang, Zuwen Wang, et al. Analytical Solution of Filling and Exhausting Process in Pneumatic System [J]. Chinese Journal of Mechanical Engineering, 2006(1):50~54.
    [109]郭万泉.橡胶膜片有限面积的测定及其影响因素[J].航空制造技术,2003(10):53~56.
    [110](法)Mohand Mokhtari, Michel Marie. Matlab与Simulink工程应用[M].北京:电子工业出版社,2002.
    [111]张毅刚,乔立岩编.虚拟仪器软件开发环境--Lab Windows/CVI 6.0编程指南[M].北京:机械工业出版社,2002.
    [112]贾光政,王宣银,刘昊,等.高压气动体积减压系统的Bang-Bang控制研究[J].液压与气动,2004(5):38-40.
    [113]Ye N, Scavarda S, Betemps M, et al. Models of a Pneumatic PWM Solenoid Valve for Engineering Application [J]. Transations of the ASME, 1992, 114:680~688.
    [114]Zaitsu T, Shigehisa T, Shoyama M, et al. Piezoelectric Transofrmer Converter with PWM Control [C]. Applied Power Electronics Conference and Exposition, Conference Proceedings 1996,:voll:279~283.
    [115]Sunao Hamamura, Daisuke Kurose, Tamotsu Ninomiya, Mitsuru Yamamoto. New Control Method of Piezoelectric Transformer Converter by PWM and PFM for Wide Range of Input Voltage [C].7th IEEE International Power Electronics Congress, 2000:3-8.
    [116]陶永华,尹怡欣,葛芦生编.新型PID控制及其应用[M].北京:机械工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700