用户名: 密码: 验证码:
基于多项式预测滤波的实时信号网络传输技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络控制系统的不断发展使实时信号网络传输问题越来越重要。最大限度地兼顾信号传输的实时性和可靠性,是网络控制系统发展必须解决的问题。
     本文的主要研究内容包括:
     (1)提出了一个基于多项式预测滤波理论的实时信号传输方法,通过构建虚拟传感器,将网络的不确定性转化为系统的不确定性。通过预测的方法缓解网络传输不确定性造成的不良影响,改善信号传输的实时性。发送端只发送重建信号所必需的采样值,减少数据发送对网络带宽的占用;在接收端,使用多项式预测滤波器预测恢复没有发送、丢失、迟到以及错误的数据并重建源信号,信号就像来自于本地的虚拟传感器。实现了信号的传输与使用分离,将网络传输过程中产生的不良影响转化为本地虚拟传感器信号的误差。用户不必直接考虑复杂的网络特性,而只需关注虚拟传感器的输出误差。
     (2)提出了一种基于多项式预测滤波理论的网络控制系统建模方法,通过预测的方法对网络控制系统中传输的传感器采样和控制信号量进行补偿。采用增广状态空间的方法对所提出的网络控制系统模型的稳定性进行分析,得出网络控制系统渐进稳定的充分必要条件。最后通过实例验证,表明采用此方法改善了网络控制系统对网络影响的鲁棒性。
With the development of electronic communication technology and computer network technology, some research hotspots have appeared, such as networked control systems (NCSs) and sensor network. The signals that transmitted in NCSs or wireless sensor network are almost real-time signals sampled by sensors, so their time performance is of utmost importance to users. With the development of NCSs, the problem of real-time signal network transmission is becoming more and more important. Especially for control systems based on Internet and wireless network, network transmission uncertainties, such as delay, dropout and disorder of data frames, data incompleteness and asynchronism caused by single-packet or multi-packets transfer and network congestion, not only have a great impact on the real-time performance, reliability and stability of embedded network systems, but also make their analysis and design become fairly difficult. Transmission uncertainties are unavoidable. If the real-time performance is improved unilaterally, the reliability will be lowered and vice versa. The problem that must be solved for the development of NCSs is how to balance between real-time performance and reliability of signal network transmission.
     In the research field of real-time signal network transmission, most researchers have focused on the network transmission of audio/video signals, while studies on sensor signals or measurement signals are less. From the point of signal characteristics, sensor signals and audio/video signals are quite different, and their usage is also widely discrepant. The main contents in this dissertation can be summarized as follows:
     (1)Real-time signal network transmission technology based on polynomial predictive filtering (PPF)
     Combined with the study on characteristics of real-time sensor signal, a method of applying PPF theory in real-time signal network transmission is presented. Effects resulting from transmission uncertainties are alleviated by prediction, and the real-time performance and reliability of signal network transmission is improved. The basic ideas are presented as follows. Transmitters may only send samples which are necessary for reconstruction of the original signal, and bandwidth occupancy is reduced. At receivers, a polynomial predictive filter is adopted to restore data which are not sent, delayed and lost. The original signal is reconstructed by these restored data. Users can re-sample the reconstructed signal to gain estimation of signal at their expected time. During the whole transmission, in order to reduce those invalid transmissions caused by bit errors, channel coding is used to encode samples; in order to reduce the influence caused by dropouts, some redundancy data are sent. With signal reconstruction, remote signals are just like coming from virtual local sensors. The transmission and usage are separated, and errors resulting from transmission uncertainties and prediction are processed together as the output errors of virtual local sensor. From the user's perspective, the network is transparent. Users can make use of these signals without considering complex network characteristics directly and focus on output errors of virtual local sensor only.
     (2)PPF-based NCS modeling method
     The application of PPF theory is discussed in this dissertation. A new NCS modeling method which combines quering method with signal prediction is presented. First, aiming at smoothness of real-time signals in NCSs, PPF theory can be applied in NCSs, and real-time signals transmitted in NCSs can be handled from the perspective of signal processing. Effects on sensor signals and control signals resulting from transmission uncertainties are compensated. The basic ideas are presented as follows. Two buffer stacks are set up at the side of controller and actuator, which are used to store the predicted values of unreached samples and the control values or sensor samples received formerly. Based on the data in these stacks, controller or actuator can predict the future value of signal and use this value as input directly. Then, the necessary and sufficient gradual stability condition of NCS is given based on augmented state vector method. At last, compared with queuing method, some simulation instances are taken to validate the NCS model presented in this dissertation. The results have showed that the robust of NCS against network influence can be improved by using this method. By using the modeling method presented in this dissertation, the design methods for deterministic systems can be used in NCSs without suffering the disadvantages of queuing method.
     The main innovation points in this dissertation can be summarized as follows:
     (1) A new real-time signal network transmission model is presented, and data reliability can be improved in the premise of ensuring the real-time performance of transmitted signals.
     ①The real-time signal network transmission is studied from the perspective of signal processing, and a method is presented which combines PPF theory with channel coding. Real-time sensor signals are transmitted with‘compression’and encoding, and samples are restored and used to reconstructe original signals. On one hand, effects resulting from transmission uncertainties are alleviated by prediction, and the reliability can be improved under the premise of meeting the real-time requirement; On the other hand, network load can be reduced, and bandwidth can be utilized more efficiently.
     ②By constructing a virtual local sensor, transmission uncertainties are transformed into uncertainties of system model consequently, and the errors resulting from transmission uncertainties and prediction are processed together as the output errors of virtual local sensor.
     ③The original signal is reconstructed, and users can choose different sampling period and re-sample the reconstructed signal to abtain predicted sample values at the desirable time.
     (2) Real-time signals transmitted in NCSs can be compensated by using PPF theory, and the dynamic performance of control system can be ensured to a certain extent. The method presented in this paper can use maximum information received through network, and transmission utilization and network capacity can be improved. PPF-based NCSs can utilize disordered samples or samples with long delay to predict the future value of signal. In former studies, these samples are discarded and considered to be invalid as dropouts, even though they are received later. PPF-based modeling method of NCSs is more universal, developers can focus on control systems themselves without considering the different network characteristics.
     (3) The multi-frequency sampling problem between controller and actuator can be solved by signal reconstruction and re-sampling.
引文
[1] G.. P. Liu, S. C. Chai, D. Rees. Networked Predictive Control of Internet/Intranet Based Systems[C]. CCC 2006, Harbin, 2006: 2024-2029.
    [2]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报, 2003, 14(7): 1282-1291.
    [3] Ray A, Halevi Y. Integrated Communication and Control Systems: Part I-Analysis[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1988, 110(4): 367-373.
    [4] Halevi Y, Ray A. Integrated Communication and Control Systems: Part II-Design Considerations[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1988, 110(4): 374-381.
    [5] Feng Li Lian, James Moyne, Dawn Tibury. Network Design Consideration for Distributed Control Systems[J]. IEEE Trans on Control System Technology, 2002, 10(2): 297-307.
    [6] Feng Li Lian, James Moyne, Dawn Tibury. Performance Evaluation of Control Networks: Ethernet, Controlnet, and Devicenet[J]. IEEE Control Systems Magazine, 2001, 21(1): 66-83.
    [7] Panos Antsaklis, John Baillieul. Special Issue on Networked Control Systems[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1421-1423.
    [8] Luis A. Montestruque, Panos Antsaklis. Stability of Model-based Networked Control Systems with Time-varying Transmission Times[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1562-1572.
    [9]魏震,李长虹,谢剑英.网络控制系统在线时延估计控制[J].控制与决策, 2003, 18(5): 545-549.
    [10] Michael S. Branicky, Stephen M. Phillips, Wei Zhang. Stability of Networked Control Systems: Explicit Analysis of Delay[C]. Proceedings of the Control Conference, 2000, 3: 2352-2357.
    [11] R. P. G. Collinson. Fly-by-wire Flight Control[J]. Computing and Control Engineering Journal, 1999, 10(4): 141-152.
    [12] R. Johansson, P. Johannessen, K. Forsberg, H. Sivencrona, J. Torin. On Communication Requirements for Control-by-wire Application[C]. Proceedings of the 21st International System Safety Conference, 2003: 1123-1132.
    [13] Sanket Amberkar, Farhad Bolourchi, Jon Demerly, Scott Millsap. A Control System Methodology for Steer-by-wire System[R]. SAE Technical Paper, 2004.
    [14] Qiang Ling, Michael D. Lemmon. Optimal Dropout Compensation in Networked Control Systems[C]. Proceedings of the IEEE Conference on Decision and Control, 2003, 1: 670-675.
    [15]郭敏强,王树清.基于模型的网络控制系统传输特性分析[J].仪器仪表学报, 2003, 24(5): 453-456.
    [16]杨健,张慧慧.基于DSP的嵌人式网络化数据采集分析系统[J].北京工业大学学报, 2006, 32(8): 709-713.
    [17]韩志峰,宋执环.基于嵌入式网络的数据采集与分布式计算系统.传感技术学报, 2006, 19(3): 885-889.
    [18]黄海峰,孙小菡,张明德,李锦辉,丁东.多媒体工业监控网络中信号实时传输机制的研究[J].工业仪表与自动化装置, 2000, 5: 8-11.
    [19]谢志江,胡应鹏,朱明星,尧鹏.基于DSP的机械振动信号实时以太网数据传输技术[J].重庆大学学报(自然科学版), 2006, 29(2): 6-8.
    [20]朱友平,张金祥.杨家海.基于TINI技术的生理信号实时传输系统的实现[J].计算机工程, 2006, 32(7): 229-230.
    [21]张敬辕,谢剑英.基于Internet的实时视频信号传输研究进展[J],通信学报, 2001, 22(7): 92-99.
    [22] Y. Shan and A. Zakhor. Cross Layer Techniques for Adaptive Video Streaming over Wireless Networks[C]. Proc. IEEE Int. Conf. Multimedia and Expo (ICME), 2002: 277-280.
    [23] G. Cote, F. Kossentini and S. Wenger. Error Resilience Coding[M]. New York: Marcel Dekker, 2001.
    [24] H. Ma and M. El Zarki. MPEG-2 Video Transmission over Wireless Access Networks Using type-I Hybrid ARQ Schemes for VoD Services[C]. Packet Video Workshop’99, 1999.
    [25] A. Majumdar, D. G. Sachs, I. Kozintsev, K. Ramchandran and M. Yeung. Multicast and Unicast Real-time Video Streaming over WLAN[J]. IEEE Trans. CSVT., 2002, 12: 524-534.
    [26] Reha Civanlar M. Protocols for Real-time Multimedia Data Transmission over the Internet[C]. ICASSP, IEEE International Conference on Acoustics, Speech and SignalProcessing, 1998, 6: 3809-3812.
    [27] Liu Bing-zhang, Qin Jie, Zhang Xin, Yang Da-cheng. A Prediction-based Smoothing Scheme for Real-time Video Transmission in 3G CDMA Systems[C]. IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2006: 1-5.
    [28] Mathias Johanson. Stereoscopic Video Transmission over the Internet[C]. WIAPP 2001, 7: 12-19.
    [29] Cho Yoong-Goog, Jayasumana Anura, Brunkow David, Chandrasekar V. Architecture and Implementation for High bandwidth Real-time Radar Signal Transmission and Computing Application[C]. Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4863: 87-98.
    [30] Huang H., Sun X., Zhang, M., Ding, D.. Real-time Data Transmission Mechanism in Optical Fiber Industrial Network[J]. Chinese Journal of Electronics, 2001, 10(4): 511-515.
    [31] Jarno M. A. Tanskanen. Polynomial Predictive Filters: Implementation and Applications[D]. Helsinki University of Technology, Espoo, Finland, 2000.
    [32] J. M. A. Tanskanen, A. Huang, T. I. Laakso and S. J. Ovaska. Prediction of Received Signal Power in CDMA Cellular Systems[C]. In Proc. 45th IEEE Vehicular Technology Conf., Chicago, IL, 1995: 922–926.
    [33]杨曼丽,李运华,袁海滨.网络控制系统的时延分析及数据传输技术研究[J].控制与决策, 2004, 19(4): 361-367.
    [34]黄四牛,陈宗基,魏晨.网络控制中传输延迟的接口延迟模型[J].北京航空航天大学学报, 2004, 30(5): 414-418.
    [35] Walsh Gregory C, Beldiman O, Bushnell Linda G. Asymptotic Behavior of Nonlinear Networked Control Systems[J]. IEEE Translations of Automatic Control, 2001, 46(7): 1093-1097.
    [36] P. Heinonen, Y. Neuvo Jarno. FIR-median Hybrid Filters with Predictive FIR Substructure[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1988, 36: 892-899.
    [37] Sami V?liviita, Seppo J. Ovaska, Olli Vainio. Polyomial Predictive Filtering on Control Instrumentation: A Review[J]. IEEE Transaction on Industrial Electronics, 1999, 46(5): 876-888.
    [38] Jarno M. A. Tanskanen, Olli Vainio, Seppo J. Ovaska. Adaptive General ParameterExtension for Tuning FIR Predictors[C]. Proc. IFAC Workshop on Linear Time Delay Systems, Ancona, Italia, 2000: 42-47.
    [39] Jarno M. A. Tanskanen, V. S. Dimitrov. Probabilistic Design of Long Quantization Error Free Fixed-point Polynomial Predictors[C]. Proc. 5th Nordic Signal Processing Symposium, Norway, 2002.
    [40] Jarno M. A. Tanskanen. Polynomial-predictive FIR Design-A Review[C]. 2001 Finnish Signal Processing Symposium, 2001: 13-16.
    [41] P. S. R. Diniz. Adaptive Filtering: Algorithms and Practical Implementation[M]. Norwell, MA: Kluwer, 1997.
    [42] S. Haykin. Neural Networks: A Comprehensive Foundation[M]. New York: Macmillan, 1994.
    [43] B. Kosko. Fuzzy Engineering[M]. Upper Saddle River, NJ: Prentice-Hall, 1997.
    [44] Peter Handel. Predictive Digital Filtering of Sinusoidal Signals[J]. IEEE Transactions on Signal Processing, 1998, 46(2): 364-374.
    [45] L. A. Zadeh. Information Granulation and Its Centrality in Human and Machine Intelligence[C]. In Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, Orlando, FL. 1997: 486-487.
    [46] S. V?liviita, X. Z. Gao, and S. J. Ovaska. Polynomial Predictive Filters: Complementing Technique to Fuzzy Filtering[C]. In Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, San Diego, CA, Oct. 1998: 4648-4652.
    [47] S. J. Ovaska. Improving the Velocity Sensing Resolution of Pulse Encoders by FIR Prediction[J]. IEEE Trans. Instrum. Meas., 1991, 40: 657-658.
    [48] Y. Dote, K. Saijo and S. Nishizuka. Adaptive Digital Filter with Variable Structure Applied to Processing Signals from Tachometer and Torque Meter[C]. In Proc. Int. Power Electronics Conf., Tokyo, Japan, 1983: 1698–1704.
    [49] J. Pasanen, O. Vainio and S. J. Ovaska. Predictive Synchronization and Restoration of Corrupted Velocity Samples[J]. Measurement, 1994, 13: 315-324.
    [50] I. Godler, A. Akahane, K. Ohnishi and T. Yamashita. A novel Rotary Acceleration Sensor[J]. IEEE Contr. Syst. Mag., 1995, 15: 56-60.
    [51] C. S. Williams. Designing Digital Filters[M]. Englewood Cliffs, NJ: Prentice-Hall, 1986.
    [52] S. J. Ovaska. Newton-type Predictors—A Signal Processing Oriented Algorithm Viewpoint[J]. Signal Process, vol. 1991, 25: 251-257.
    [53] Ovaska Seppo J. FIR Prediction Using Newton’s Backward Interpolation Algorithm with Smoothed Successive Differences[J]. IEEE Transactions on Instrumentation and Measurement, 1991, 40(5): 811-815.
    [54] J. P. Ranta, S. J. Ovaska. Adaptive Polynomial Predictor for Velocity Signal Processing[J]. Appl. Signal Process., 1994, 1: 94-106.
    [55] S. K. Mitra and J. F. Kaiser, Eds.. Handbook of Digital Signal Processing[M]. NewYork, NY, USA: John Wiley & Sons, 1993.
    [56] P. T. Harju, S. J. Ovaska. Optimization of IIR Polynomial Predictive Filter Magnitude Response[J]. Signal Processing, 1997, 56: 219-232.
    [57] Ovaska, Seppo J, Olli Vainio, Laakso Timo I. Design of Predictive IIR Filters Via Feedback Extension of FIR Forward Predictors[J]. IEEE Transactions on Instrumentation and Measurement, 1997, 46(5): 1196-1201.
    [58] S. S. Rao. Optimization Theory and Applications[M]. 2nd ed. New Delhi, India: Wiley, 1984.
    [59] P. T. Harju, S. J. Ovaska. Optimization of Polynomial Predictive Filter Using Genetic Algorithms[C]. In Proc. 3rd Int. Conf. Signal Processing, Beijing, China, 1996: 68-71.
    [60] S. Valiviita, S. J. Ovaska. Delayless Recursive Differentiator with Efficient Noise Attenuation for Control Instrumentation[J]. Signal Process, 1998, 69: 267-280.
    [61] Vijayan R and Poor H V. Nonlinear Technique for Interference Suppression in Spread Spectrum Systems[J]. IEEE Trans. On Commun., 1990, 38(7): 1060-1065.
    [62]黄高勇,张家树.一种抑制直扩通信窄带干扰的新型非线性自适应预测滤波器[J],电子与信息学报, 2007, 29(6): 1328-1331.
    [63] P. H?ndel, P. Tichavsky. Asymptotic Noise Gain of Polynomial Predictors[J]. Signal Processing. 1997, 62: 247-250.
    [64] Laakso Timo I, Ovaska, Seppo J. Prefiltering Approach for Optimal Polynomial Prediction[J]. IEEE Transactions on Signal Processing, 1996, 44(3): 701-705.
    [65] J. A. Honkanen, T. I. Laakso, S. J. Ovaska. Lowpass IIR Predictor for Discrete-time Signal Processing[J]. Digital Signal Process, 1995, 5: 133-139.
    [66] Sami Valiviita, Ovaska, Seppo J. Delayless Recursive Differentiator with Efficient Noise Attenuation for Motion Control Applications[C]. IECON Proceedings (Industrial Electronics Conference), 1998, 3: 1481-1486.
    [67] L. B. Jackson, Digital Filters and Signal Processing: with MATLAB Exercises[M]. Norwel, MA, USA: Kluwer Academic Publishers, 1997.
    [68] P. T. Harju. Roundoff Noise Properties of IIR Polynomial Predictive Filters[C]. In Proc. 1997 IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada, 1997: 66–71.
    [69] J. M. A. Tanskanen and V. S. Dimitrov. Round-off Error Free Fixed-Point Design of Polynomial FIR Predictors and Predictive FIR Differentiators[R]. Digital Signal Processing, A Review Journal, 2000.
    [70] A. A. Ashimov and D. J. Syzdykov. Identification of High Dimensional System by the General Parameter Method[C]. In Proc. 8th Triennial World Congress of IFAC, Kyoto, Japan, 1981, 4: 32-37.
    [71] J. G. Proakis, D. G. Manolakis. Digital Signal Processing: Principles, Algorithms, and Applications[M]. New York, NY, USA: Macmillan Publishing Company, 1992
    [72] E. C. Ifeachor and B. W. Fervis. Digital Signal Processing: A Practical Approach[M]. Wokingham, UK: Addison-Wesley, 1995.
    [73]刘清.考虑测量噪声的传感器动态测量误差补偿[J].江苏大学学报(自然科学版), 2006, 27(2): 160-163.
    [74] Sami Valiviita, Ovaska, Seppo J. Delayless Acceleration Measurement Method for Elevator Control[J]. IEEE Transactions on Industrial Electronics, 1998, 45(2): 364-366.
    [75] O. Vainio, S. J. Ovaska. Tachometer Signal Smoothing with Analog Discrete-time Polynomial Estimator[J]. IEEE Trans. Ind. Electron., 1994, 41: 147-154.
    [76] P. B. Schmidt and R. D. Lorenz. Design Principles and Implementation of Acceleration Feedback to Improve Performance of DC Drivers[J]. IEEE Trans. Ind. Applicat., 1992, 28: 594-599.
    [77] G. P. Hancke and C. F. T. Viljoen. The Microprocessor Measurement of Low Values of Rotational Speed and Acceleration[J]. IEEE Trans. Instrum. Meas., 1990, 39: 1014-1017.
    [78] A. H. Kadhim, T. K. M. Babu and D. O’Kelly. Measurement of Steadystate and Transient Load-angle, Angular Velocity, and Acceleration Using an Optical Encoder[J]. IEEE Trans. Instrum. Meas., 1992, 41: 486-489.
    [79] Olli Vainio, Markku Renfors, Tapio Saramaki. Recursive Implementation of FIR Differentiators with Optimum Noise Attenuation[C]. IEEE Instrumentation and Measurement Technology Conference, 1996, 1: 344-349.
    [80] S. J. Ovaska and O. Vainio. Predictive Compensation of Time-varying ComputingDelay on Real-time Control Systems[J]. IEEE Trans. Contr. Syst. Technol., 1997, 5: 523-526.
    [81] T. Lipping, P. Loula, V. Jantti, and A. Yli-Hankala. DC-level Detection of Burst-suppression EEG[J]. Methods Inf. Med., 1994, 33: 35-38.
    [82]刘清.用多项式预测滤波消噪的传感器动态特性辨识[J].控制理论与应用, 2007, 24(4): 679-682.
    [83] Zhuang Zhe-min, Zhang Jing, Huang Wei-yi. Adaptive Volterra Series Model for Nonlinear Sensor Compensation[J], Journal of Southeast University (English Edition), 2004, 20(3): 286-288.
    [84] Appadwedula S, D. Jones, K. Ramchandran, and I. Kozintsev. Joint Source-channel Matching for a Wireless Communications Link Communications[C]. IEEE International Conference, 1998, 6(1): 482-486.
    [85] Qian L, D. Jones, K. Ramchandran and Appadwedula S. A General Joint Source-channel Matching Method for Wireless Video Transmission[C]. DCC’99, 1999: 414-423.
    [86] Jian-fei Cai, Chang-wen Chen. Robust Joint Source-channel Coding for Image Transmission over Wireless Channels[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 9(10): 962-966.
    [87]李勃,卓力,沈兰荪. IP网络信源信道联合编码策略[J].电子学报, 2003, 21(12A): 2079-2082.
    [88] ZHOU Jun-pan, DING Xiao-ming. The Theory of Source Coding[M]. Beijing: People’s Mail Press, 1996, China.
    [89]李淑君,陈新,季宝杰. UDP协议在现场实时通信中的应用[J].自动化与仪表, 2004,19(4): 35-38.
    [90]杨慧,田亮,田敏. CAN总线协议分析[J].中国仪器仪表, 2002,4: 1-4.
    [91] Y. W. Chang, T. K. Truong, J. H. Jeng. VLSI Architecture of Modified Euclidean Algorithm for Reed–Solomon Code[J]. Information Sciences, 2003, 155: 139-150.
    [92]马啸. RS码和Turbo码的研究[D].西安电子科技大学博士论文, 1999.
    [93] Tipsuwan Y, Chow M-Y. Control Methodologies in Networked Control Systems[J]. Control Engineering Practice, 2003, 11: 1099-1111.
    [94] Zhang L, Liu Z, Xia H C. Clock Synchronization Algorithms for Network Measurements[C]. Proc. of 21st Annual Joint Conference of the IEEE Computer and Communications Societies, 2002: 160-169.
    [95] Moon S B, Skelly P, Towsley D. Estimation and Removal of Clock Skew from Network Delay Measurements[C]. Proc. of 18th Annual Joint Conference of the IEEE Computer and Communications Societies, 1999: 227-234.
    [96]马科. IP网络性能度量方法的研究与实现[M].北京:北京理工大学出版社, 2004.
    [97] Lin Y, Kuo G, Wang H, et al. A Fuzzy-based Algorithm to Remove Clock Skew and Reset from One-way Delay Measurement[C]. Proc. of IEEE Global Telecommunications Conference, 2004: 1425-1430.
    [98] Wu Q, Bi J, Li Z. Reliable Clock Skew Estimation Algorithm for On One-way Measurements[C]. Proc. of IEEE International Conference on Communications, 2004: 1846-1850.
    [99] Cristian F. A Probabilistic Approach to Distributed Clock Synchronization[C]. Proc. of the International Conf. on Distributed Computing Systems, USA, 1989: 288-296.
    [100] Lankes S, Jabs A, Peke M. A Time-triggered Ethernet Protocol for Real-time CORBA[C]. Proc. of the 5th IEEE International Symposium on Object-Oriented Real-time Distributed Computing, USA, 2002: 215-222.
    [101]Lemmon M D, Ganguly J, Xia L. Model-based Clock Synchronization in Networks with Drifting Clocks[C]. Proc. of the 2000 Pacific Rim International Symposium on Dependable Computing, USA, 2000: 18-20.
    [102]Kim K H, Kim C, Athreya P. Realization of a Distributed OS Component for Internal Clock Synchronization in a LAN Environment[C]. Proc. of the 5th IEEE International Symposium on Object-Oriented Real-time Distributed Computing, USA, 2002: 263-270.
    [103]C. J. Bovy. Analysis of End-to-end Delay Measurements in Internet[C]. Proc. of PAM’02, 2002.
    [104]Kang K C, Nam K. Delay Characteristics of High-speed Internet Access Network: One Case Study[C]. Proceedings of APNOMS’03, 2003.
    [105]Edwin Van Der Ouderaa and Jean Rennedboog. Some Formulas and Applications of Nonuniform Sampling of Bandwidth-limited Signals[J]. IEEE Trans. Instrum. Meas., 1988, 37(3): 353-357.
    [106]康冰,赵宏伟,任丽莉,闫冬梅.网络控制系统的建模方法综述[J].吉林大学学报(信息科学版), 2006, 24(1): 42-49.
    [107]阳宪惠.现场总线技术及应用[M].北京:清华大学出版社, 1999.
    [108]Jo?o P. Hespanha, Payam Naghshtabrizi and Yonggang Xu. A Survey of Recent Resultsin Networked Control Systems[J]. Proceedings of the IEEE, 2007, 95(1): 138-162.
    [109]P. Ogren, E. Fiorelli and N. E. Leonard. Cooperative Control of Mobile Sensor Networks: Adaptive Gradient Climbing in a Distributed Environment[J]. IEEE Trans. Automat. Contr., 2004, 49(8): 1292-1302.
    [110]C. Meng, T. Wang, W. Chou, S. Luan, Y. Zhang and Z. Tian. Remote Surgery Case: Robot-assisted Teleneurosurgery[C]. In IEEE Int.Conf. Robot and Auto. (ICRA’04), 2004, 1: 819-823.
    [111]J. P. Hespanha, M. L. McLaughlin and G. Sukhatme. Haptic Collaboration over the Internet[C]. In Proc. 5th Phantom Users Group Workshop. 2000.
    [112]K. Hikichi, H. Morino, I. Arimoto, K. Sezaki and Y. Yasuda. The Evaluation of Delay Jitter for Haptics Collaboration over the Internet[C]. In Proc. IEEE Global Telecomm. Conf. (GLOBECOM), 2002, 2: 1492-1496.
    [113]S. Shirmohammadi and N. H. Woo. Evaluating Decorators for Haptic Collaboration over the Internet[C]. In Proc. IEEE Int. Workshop Haptic, Audio and Visual Env. Applic., 2004: 105-109.
    [114]P. Seiler and R. Sengupta. Analysis of Communication Losses in Vehicle Control Problems[C]. In Proc. 2001 Amer. Contr. Conf., 2001, 2: 1491–1496.
    [115]SEILER Pete, SENGUPTA Raja. An H∞Approach to Networked Control[J]. IEEE Trans. Automat. Contr., 2005, 50(3): 356-364.
    [116]H. A. Thompson. Wireless and Internet Communications Technologies for Monitoring and Control[J]. Control Eng. Pract., 2004, 12(6): 781-791.
    [117]A. Willig, K. Matheus and A. Wolisz.Wireless Technology in Industrial Networks[J]. Proc. IEEE, 2005, 93(6): 1130-1151.
    [118]L. Xiao, M. Johannsson, H. Hindi, S. Boyd and A. Goldsmith. Joint Optimization of Wireless Communication and Networked Control Systems[J]. Lecture Notes Comput. Sci., 2005, 3355: 248-272.
    [119]傅磊,戴冠中.网络化控制系统的研究综述[J].计算机工程与应用, 2005, 41(25): 221-225.
    [120]黎善斌,王智,张卫东,孙优贤.网络控制系统的研究现状与展望[J].信息与控制, 2003, 32(3): 239-244.
    [121]Wittenmark B, et al. Timing Problems in Real-time Control Systems[C]. Proceedings of the American Control Conference, Seattle, WA, 1995, 3: 2000-2004.
    [122]T?rngren M. Fundamentals of Implementing Real-time Control Applications inDistributed Computer Systems[J]. Real-time Systems, 1998, 14: 219-250.
    [123]顾洪军,张佐,吴秋峰.网络控制系统的实时特性分析及数据传输技术[J].计算机工程与应用, 2001, 37(6): 38-43.
    [124]V. Casanova and J. Salt. Multirate. Control Implementation for an Integrated Communication and Control System[J]. Control Engineering Practice, 2003, 11(11): 1335-1348.
    [125]H. Fujimoto and Y. Hori. High-performance Servo Systems Based on Multirate Sampling Control[J]. Control Engineering Practice, 2002, 10(7): 773-781
    [126]J. Salt, P. Albertos and J. Tornero. Digital Controller Improvement by Multirate Control[C]. In Proceedings of the Third IEEE Conference on Control Applications, 1994: 1459-1464.
    [127]T?rngren M, Wikander J. A Decentralization Methodology for Real-time Control Applications[J]. Contr. Eng. Practice, 1996, 4(2): 219-228.
    [128]Ray A. Introduction to Networking for Integrated Control Systems[J]. IEEE Control System Magazine, 1989, 9(1): 76-79.
    [129]Nilsson, J. Real-time Control Systems with Delays[D]. Lund Institute of Technology, 1998.
    [130]Gregory C Walsh, Ye H, Linda G B. Stability Analysis of Networked Control Systems[C], Proceedings of the American Control Conference. San Diego, California, 1999: 2876-2880.
    [131]Gregory C Walsh, Ye H, Linda G B. Stability Analysis of Networked Control Systems[J]. IEEE Transactions on Control Systems Technology, 2002, 10(3): 438-446.
    [132]Wei Zhang, Michael S.Branicky, Stephen M. Phillips. Stability of Networked Control Systems[J]. IEEE Control Systems Magazine. 2001, 21(1): 84-99.
    [133]Wei Zhang. Stability Analysis of Networked Control System[D]. Case Western Reserve University, USA, 2001.
    [134]J. Nillson, B. bernhardsson and B. Wittenmark. Stochastic Analysis and Control of Real-time Systems with Random Time Delays[J]. Automatica, 1998, 34(1): 57-64.
    [135]于之训,陈辉堂,王月娟.基于H∞和μ综合的闭环网络控制系统的设计[J].同济大学学报, 2001, 29(3): 307-311.
    [136]Lian F L, Moyne J, Tilbury D. Optimal Controller Design and Evaluation for a Class of Networked Control Systems with Distributed Constant Delays[C]. Proc of the American Control Conf., Piscataway, 2002: 3009-3014.
    [137]姜培刚,姜偕富,李春文等.基于LMI方法的网络化控制系统的H∞鲁棒控制[J].控制与决策, 2004, 19(1): 17-21.
    [138]Bengea S C, Hokayem P P, Decarlo R A , et al. Suboptimal Control Techniques for Networked Hybrid Systems[C]. Proc of the IEEE Conf on Decision and Control, Piscataway, 2004: 491-496.
    [139]Luck R, Ray A. An Observer-based Compensator for Distributed Delays[J]. Automatica, 1990, 26(5): 903-908.
    [140]Luck R, Ray A. Experimental Verification of a Delay Compensation Algorithm for Integrated Communication and Control Systems[J]. International Journal of Control, 1994, 59(6): 1357-1372.
    [141]朱其新,胡寿松,侯霞.长时滞网络控制系统的随机稳定性研究[J].东南大学学报(自然科学版), 2003, 33(3): 368-371.
    [142]Hu S S, Zhu Q X. Stochastic Optimal Control and Analysis of Stability of Networked Control Systems with Long Delay[J]. Automatica, 2003, 39(11): 1877-1884.
    [143]朱其新,胡寿松.网络控制系统的能控性和能观性[J].控制与决策, 2004, 19(2): 157-161.
    [144]樊卫华,谢蓉华,陈庆伟,胡维礼.长时延网络控制系统的建模与分析[J].兵工学报, 2006, 27(2): 278-283.
    [145]关守平,孙兰香.长延时网络控制系统的建模与控制[J].控制与决策, 2006, 21(3): 311-314.
    [146]于之训,陈辉堂,王月娟.基于Markov延迟特性的闭环网络控制系统研究[J].控制理论与应用, 2002, 19(2): 263-267
    [147]R. Krtolica,ü. ?zgüner, H. Chan, H. G?ktas, J. Winkelman, & M. Liubakka. Stability of Linear Feedback Systems with Random Communication Delays[J]. International Journal of Control, 1994, 59(4): 925-953.
    [148]Lin Xiao, Arashhassibi, Jonathan Phow. Control with Random Communication Relays via a Discrete-Time Jump System Approach[C]. Proceedings of the American Control Conference, Chicago: Illinois, 2000: 2199-2204.
    [149]Wang Chang-hong, Wang Yu-feng, Ma Guang-cheng. Compensation Time-Varying Delays in Networked Control Systems via Jump Linear System Approach[C]. Proceedings of the 5th World Congress on Intelligent Control and Automation, China, Hangzhou, 2004: 1345-1347.
    [150]Mei Yu, Long Wang, Tiangguang Chu, et al. Stabilization of Networked Control Systems in the Presence of Packet Losses[J]. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms, 2006, 13: 237-247.
    [151]A. Rabello, A. Bhaya. Stability of Asynchronous Dynamical Systems with Rate Constraints and Application[C]. IEEE Proceeding on Control Theory Application, 2003, 150(5): 546-550.
    [152]Qiang Ling, Micheal D. Lemmon. Robust Performance of Soft Real-time Networked Control Systems with Data Dropouts[C]. Proceeding of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, 2002: 1255-1230.
    [153]B. Azimi-Sadjadi. Stability of Networked Control Systems in the Presence of Packet Losses[C]. In Proceeding of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, 2003, 1: 676-681.
    [154]C. N. Hadjicostis and R. Touri. Feedback Control Utilizing Packet Dropping Network Links[C]. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, 2002, 2: 1205-1210.
    [155]Shawn Hu and Wei-Yong Yan. Stability of Networked Control Systems: Analysis of Packet Dropping[C]. In International Conference on Control, Automation, Robotics and Vision, Kunming, China, 2004: 304-309.
    [156]Ya Zhang, Yu-Ping Tian, Jun Cai. Stability Analysis of Networked Control Systems with Packet Loss[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006: 4556-4560.
    [157]G. C. Walsh, O.Beldiman, L. Bushnell. An Equivalence between Control Network and a Switched Hybrid System[R]. Lecture Notes in Computer Science, Duke University, 1998.
    [158]俞立.鲁棒控制理论—线性矩阵不等式处理方法[M].北京:清华大学出版社, 2002.
    [159]Yue Dong, Hand Qing-long, Chen Peng. State Feedback Controller Design of Networked Control Systems[J]. IEEE Transaction on Circuit and Systems-Ⅱ: Express Briefs, 2004, 51(11): 640-644.
    [160]Yue Dong, Hand Qing-long, James Lan. Network-Based Robust H∞Control of Systems with Uncertainty[J]. Automatica, 2005, 41: 999-1007.
    [161]Yu Mei, Wang Long, Chu Tian-guang, Hao Fei. An LMI Approach to Networked Control Systems with Data Packet Dropout and Transmission Delays[C]. Proceedingsof 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island: Bahamas, 2004: 3545-3550.
    [162]Wang Chang-hong, Wang Yu-feng. Design Networked Control Systems via Time-Varying Delay Compensation Approach[C]. Proceedings of the 5thWorld Congerss on Intelligent Control and Automation, China, Hangzhou, 2004: 1371-1375.
    [163]邱占芝,张庆灵,刘明.有时延和数据包丢失的网络控制系统控制器设计[J].控制与决策, 2006, 21(6): 625-630.
    [164]Xia Yuan-qing, G. P. Liu, D. Rees. Predictive Control of Networked Systems with Random Delay and Data Dropout[C]. Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, 2006, 23(25): 643-648.
    [165]Lin Hai, Zhai Gui-sheng, Panos Jantasalis. Robust Stability and Sisturbance Analysis of a Class of Networked Control System[C]. Proceedings of the 42ndIEEE Conference on Decision and Control, Hawaii, USA, 2003: 1182-1187.
    [166]邱占芝,张庆灵,杨春雨.基于广义系统的网络控制系统的分析与建模[J].东北大学学报(自然科学版), 2005, 26(5): 409-412.
    [167]马丹,赵军.基于混杂系统技术的网络控制系统的建模与稳定性分析[J].东北大学学报(自然科学版), 2005, 26(9): 817-820.
    [168]M. S. Branicky. Hybrid Systems: Modeling, Analysis, and Control[D]. Electrical Engineering and Computer Science, Massachusetts Institute of Technol., Cambridge, MA, 1995.
    [169]L. A. Montestruque, P. J. Antsaklis. Stochastic Stability for Model-based Networked Control Systems[C]. Proceedings of the American Control Conference, 2003, 1(5): 4119-4124.
    [170]K. J. Astrom, & B. Wittenmark. Computer-controlled Systems: Theory and Design[M]. Englewood Cliffs, NJ: Prentice-Hall, 1990.
    [171]G. C. Walsh, O. Beldiman, & L. Bushnell. Asymptotic Behavior of Networked Control Systems[C]. Proceedings of the 1999 IEEE international conference on control applications, Kohala Coast, HI, 1999a, l(2): 1448-1453.
    [172]F. G?ktas. Distributed Control of Systems over Communication Networks[D]. University of Pennsylvania, 2000.
    [173]S. H. Hong. Scheduling Algorithm of Data Sampling Times in the Integrated Communication and Control Systems[J]. IEEE Transactions on Control SystemsTechnology, 1995, 3(2): 225-230.
    [174]Gregory C. Walsh, Hong Ye. Error Encoding Algorithms for Networked Control Systems[C]. Proceedings of the 38st Conference on Decision & Control, Phoenix, USA, 1999: 4933-4938.
    [175]Wong W S, Brockett R W. Systems with Finite Communication Band-width Constraints - Part II: Stabilization with Limited Information Feedback[J]. IEEE Transactions on Automatic Control, 1999, 44(5): 1049-1053.
    [176]Wittenmark B, Bastian B, Nilsson J. Analysis of Time Delay in Synchronous and Asynchronous Control Loops[C]. In Proceedings of 37th Conference of Decision and Control, Tampa, Florida, 1998: 283-288.
    [177]Chan H, ?zgüner U. Closed-loop Control of Systems over a Communications Network with Queues[J]. International Journal of Control, 1995, 62(3): 493-510.
    [178]闫冬梅.网络控制系统的延时补偿方法[J].长春工业大学学报(自然科学版), 2006, 27(2): 153-156.
    [179]Octavian B, Gregory W C, Bushnell L G. Predictors for Networked Control Systems[C]. In Proc. Amer. Control Conf., Chicago: Illinois, 2000: 2347-2351.
    [180]Zhivoglyadov P V, Middleton R H. Networked Control Design for Linear Systems[J]. Automatica, 2003, 39(4): 743-750.
    [181]于之训,陈堂辉,王月娟.时延网络控制系统均方指数稳定的研究[J].控制与决策, 2000, 15(3): 278-281.
    [182]于之训,陈堂辉,王月娟.具有随即通讯延迟和噪声干扰的网络控制系统[J].控制与决策, 2000, 15(5): 518-521.
    [183]于之训,蒋平,陈堂辉,等.具有传输延迟的网络控制系统中状态观测器的设计[J].信息与控制, 2000, 29(2): 125-130.
    [184]龙承念,代双凤,关新平.网络控制系统的补偿策略[J].吉林大学学报(信息科学版), 2004, 22(4): 438-443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700