用户名: 密码: 验证码:
CAN网络控制系统的智能调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合考虑控制性能和网络运行性能,对CAN网络控制系统进行智能调度,通过合理的分配网络资源来提高控制的有效性和传输的实时性,是解决CAN协议通过优先级仲裁竞争总线的机制所产生相关问题的有效手段。
     本文的主要研究内容包括:
     (1)针对传统CAN网络控制系统调度算法不能兼顾实时性和公平性的情况,提出了一种基于网络运行状态的动态调度策略,使用队列调度器来调度网络控制系统中的数据,用于确定网络中各节点发送数据的优先级、发送时刻和时间间隔。提出了融合DRR算法的DPQ机制和基于带宽占用比率的DRR改进算法,在对网络上的数据进行调度的时候,综合考虑到优先级、各级别队列的带宽占用比率、数据产生时间和最后截止期,在保证网络带宽资源公平分配的基础上,有效地减小了高优先级数据的传输延迟,提高了整个网络控制系统的实时性能。
     (2)为了优化CAN网络控制系统中网络带宽和系统控制性能的折中关系,设计了一种基于限制部分子控制系统的带宽占用比率的带宽优化管理器,在网络带宽资源受限的情况下,通过选择由控制性能和网络传输性能共同决定的综合性能较好的子控制系统,采用自回归模型确定不影响其待发数据帧实时传输的前提条件,通过降低该系统待发数据帧的优先级来限制其带宽占用量。这种带宽优化管理器能够根据当前网络运行状态,动态优化网络资源的分配和管理,以提高网络控制系统的控制性能和网络传输性能。
     (3)在开源仿真软件NS2的内核中加入CAN网络协议模块,能够针对CAN协议进行网络控制系统的建模,并能够进行网络传输的模拟试验。
With the gradually improved of the industrial application request, making an intelligent control on CAN networked control system for improving the real-time performance, the fairness and the control performance of the CAN network is one hot spot of the scientific research currently.
     From the view of the resource scheduling, the paper has put forward an intelligent scheduling algorithm based on network’s priority scheduling and also a different solution on the optimization of network resource and the control performance. The main content of the research is described followed.
     (1)Study on the problem of the collaborative design on the CAN networked control system’s real-time and fairness.
     A dynamic scheduling strategy has been proposed because the traditional CAN networked control system scheduling algorithm do not give consideration to both the real-time and the fairness. It uses the queue scheduler to schedule the data form the network conttrol system, and the priority, transmit time and the time interval of the transmitting data of the node in the network system can be confirmed. The queue scheduling device is composed of data received module, queue storage module, scheduling algorithm execution module and output scheduling mudule. The data received module detects the network status of each node in the network and stores the basic information of the data frames which set up a transmit request into four different priority queues, which are in the queue storage module, by using the algorithm idea of DPQ. The queue storage module is a storage mechanism to keep four queues with the same length. The four queues are used for storing the related information of the data frames with different priorities, such as emergency, strong real-time, soft real-time and non-real-time. The scheduling algorithm execution module executes the improved Modified Deficit Round Robin scheduling algorithm(MDRR), and distributes different dequeue quantity for different queues by the requirement of the network resource of the waiting data in the queue. The network status analysis algorithm calculates the network throughput currently and the network ratio occupied by the data stream with different priorities. The dequeue frames confirme algorithm calculates the number of the transmit data frames for each queue at the next operation moment. The output scheduling mudule uses the output of the dequeue frames confirmed algorithm, extracts the corresponding quantity of the data frames from each queue, puts the extracted data frames to the intrenal waiting queue, carries the dequeue schedule by the EDF algorithm, and transmits the data frames with the most recent deadline. The DPQ mechanism merged DRR algorithm and the improved DRR algorithm baesd on the bandwidth occupied ratio comprehensively consider the priority, the bandwidth occupied ratio of different priority queues, the data generated time and the dealine when it schedules the data in the network. After comparing with common CAN scheduling strategy, DPQ scheduling strategy and PP scheduling strategy, we can see that the queue scheduling device can reduce the delay of transmitting the high prioriy data effectively and improve the real-time performance of the whole network system on the basis of distributing the network bandwidth resource equally.
     (2)Research on the bandwidth optimization management of CAN networked control system.
     In order to compromise the relationship between network bandwidth optimization and control performance, designed a bandwidth optimization manager based on the limit of some sub-control system bandwidth occupancy rate, in the case of network bandwidth resource-constrained, dynamic allocation of bandwidth resources for the network control system, optimizing the overall performance of network control system, at the same time to save the limited network resources. Bandwidth optimization manager is composed by network status monitoring module, network status analysis module and network status adjustment module. Network status monitoring module is used for obtaining network status, receives running status information of each sub-control system sysi periodically, useing network data transmission delay brought by number i sub-control system at previous monitoring time, calculates integral of absolute value of each sub-control system error at the current monitoring time, and sends necessary parameters of network status analysis module and network status adjustment module. According to AIEi (t ){ AIEi (t ),i∈Sysj} of all sub-control system sysi in each sub-network system Sys j, network status analysis module calculates control performance indication QoC j(t ) of each Sys j at current time. Then according to the network transmission delay and current time sampling period of at previous time, calculates bandwidth requirement of sysiSys j at current time, which is used for network transmission performance indication RoB j( t ). And then calculates weight sum of the two as the general performance indication. Selects the sub-network system Sys j with the maximal IV j( t ), send j to network status adjustment module. In the Sys j with the best general performance, network status adjustment module selects the sub-control system of which control performance is higher than the average, deferring the first time bus competition of its waitting for sending data, that is, lowering the priority of the data frame. network status adjustment module node is constitutes by restrictions node selection algorithm and defer time calculation algorithm. Restrictions node selection algorithm selects which control performance is higher than the average from sysisysi Sys j, defer time calculation algorithm utilizes data frame transmission delay of previous monitoring cycle which have known in the memory, constructs the transmission delay auto-regressive model, pre-estimates data frame transmission delay of at current monitoring time, according to the deadline , calculates the latest bus competition time of this data frame, and return to as adjustment parameters which need to adjust priorities. Without affecting real-time transmission of sub-control system which has good general performance, this method reduces the priority of wait for sending data frame to limit their bandwidth usage. Simulation and comparison this method with fixed bandwidth allocation method, the results show that, The method can effectively allocation bandwidth, improve system performance, as the same time also be able to reduce the bandwidth requirement, and save network resources.
     (3)Adding CAN network protocol to the kernel of open-source simulation software NS2, can model network control system for the CAN protocol, and be able to carry out the simulation experimentation of network transmission.
     At present, CAN networks simulation software is relatively expensive and the code does not open, the function of scheduling algorithm simulation is weak. To facilitate the simulation of scheduling algorithms, improving the speed of development, and reducing development costs, this paper modifies the Ethernet protocol in the NS2. Change the Ethernet transmission frame to two different frame format defined in CAN metwork protocol version CAN2.0B, there are standard frame contained 11 identifier and expansion frame contained 29 identifier. Change Ethernet Carrier Sense Multiple Access/Collision Detection (CSMA/CD) method to the CSMA/CA in the CAN bus, and process conflict detection before sending the data. Through adding priority code in the identifier field, to avoid conflicts using arbitration priority. If there are more than one node need to use the bus, and the bus is free at this time, then process arbitration according to priority of each node. Priority value smaller its priority will be higher. The node that arbitration success will obtain the bus, and be able to send a message. The node that arbitration failed will be receive status, and wait for arbitration when the next bus free.
引文
[1] Chow M Y, Tipsuwan Y. Network-based Control Systems[C]. IECON’01 on Industrial Electronics Society[C]. Denver, USA. 2001, 10(3): 1593-1602.
    [2] Antsaklis P, Baillieul J. Special Issue on Network Control Systems [J]. IEEE Transaction Automatic Control, 2004, 49(9): 1421-1432.
    [3] Eberle S. Adaptive Internet Integration of Field Bus Systems[J]. IEEE Transaction Industrial Informatics, 2007, 1(3): 12-21.
    [4] Cena G.. Valenzano A. An Improved CAN Field Bus for Industrial Application[J]. IEEE Trans. Ind. Electron., 1997, 44(4): 553-564.
    [5] Hespanha J P. Naghshtabrizi P, Xu Y. A Survey of Results in Networked Control Systems[J]. Proceedings of the IEEE, 2007, 95(1): 138-162.
    [6] Feng Li Lian, James Moyne, Dawn Tibury. Performance Evaluation of Control Networks: Ethernet, Controlnet, and Devicenet[J]. IEEE Control Systems Magazine, 2001, 21(1): 66-83.
    [7] Luis A M, Panos A. Stability of Model-based Networked Control Systems with Time-varying Transmission Times[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1562-1572.
    [8] Baillieul J, Antsaklis P J. Control and Communication Challenges in Networked Real-Time Systems[J]. Proceedings of IEEE. 2007, 1(95): 9-28.
    [9] Ray A, Halevi Y. Integrated Communication and Control Systems: Part I-Analysis[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1988, 110(4): 367-373.
    [10] Halevi Y, Ray A. Integrated Communication and Control Systems: Part II-Design Considerations[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1988, 110(4): 374-381.
    [11] Feng Li Lian, James M, Dawn T. Network Design Consideration for Distributed Control Systems[J]. IEEE Trans on Control System Technology, 2002, 10(2): 297-307.
    [12] Michael S B, Stephen M P, Wei Zhang. Stability of Networked Control Systems: Explicit Analysis of Delay[C]. Proceedings of the Control Conference, 2000, 3: 2352-2357.
    [13] Thomas N, Mikael N, Hans A H. Real-Time Server-Based Communication with CAN. IEEE Trans. on Industrial Informatics, 2005, 1(3): 192-201.
    [14] Luis M P, Francisco V. Reliable Real-Time Communication in CAN Networks. IEEE Trans. on Computers, 2003, 52(12): 1594-1607
    [15] Salvatore C. Meeting Real-time Constraints in CAN[J] Industrial Informatics. 2005, 9(1): 124-130.
    [16] Cavalieri S, Di S A, Lo B L, Mirabella, O. Jitter-based Policies to Improve Asynchronous Bandwidth Exploitation in Fieldbus Communication Systems[C], Proceedings of the 1996 IEEE IECON 22nd International Conference on, 1996, 13(2): 916–921.
    [17]黎善斌,王智,张卫东.网络控制系统的研究现状与展望[J].信息与控制, 2003, 32(3): 239-244.
    [18]白涛.网络控制系统的性能分析与调度优化[D].上海:上海交通大学, 2005.
    [19] Liu G. P, Chai S C, Rees D. Networked Predictive Control of Internet/Intranet Based Systems[C]. CCC 2006, Harbin, 2006: 2024-2029.
    [20]白涛,吴智铭,杨根科.网络化的控制系统[J].控制理论与应用, 2004, 21(4): 584~590.
    [21]康冰,赵宏伟,任丽莉,闫冬梅.网络控制系统的建模方法综述[J].吉林大学学报(信息科学版), 2006, 24(1): 42-49.
    [22] Pfeifer T. Internet-Intranet-Infranet: A Modular Integrating Architecture[C]. Proceedings of the 7th Distributed Computing Systems, Dec. 20-22, 1999.
    [23] Pfeifer T, Micklei A, Hartenthaler H. Internet-integrated Building Control: Leaving the Lab-robust, Scalable and Secure[C]. Proceedings Local Computer Networks, Nov. 14-16, 2001.
    [24] Seung H H, Yu C K. Implementation of Bandwidth Allocation Scheme in the Cyclic-service Fieldbus Networks[C]. Instrumentation and Measurement TechnologyConference, 2000.
    [25] Feng Li Lian, Moyne J R, Tilbury D M. Performance Evaluation of Control Networks: Ethernet, ControlNet, and DeviceNet[J]. Control Systems Magazine, IEEE. 2001, 21(2): 66-83.
    [26] Kaiser J, Mock M. Implementing the Real-time Publisher/Subscriber Model on the Controller Area Network[C]. Proceedings of Object-Oriented Real-Time Distributed Computing, 1999.
    [27] Irnoto M. Global Standardization Activities of DeviceNet[C]. Proceedings of the 41st SICE Annual Conference, Aug. 5-7, 2002.
    [28] Ruppel C P, Harrinqton S J. Sharing Knowledge through Intranets: a Study of Organizational Culture and Intranet Implementation[C]. IEEE Transactions on Professional Communication, 2001.
    [29] Li Zheng, Nakagawa H. OPC (OLE for Process Control) Specification and its Developments[C]. Proceedings of the 41st SICE Annual Conference, Aug. 5-7, 2002.
    [30] Koutelakis G V, Lymperopoulos D K. PACS through Web Compatible with DICOM Standard and WADO Service: Advantages and Implementation. 28th Annual International Conference of the IEEE, 2006.
    [31] Li S B, Wang Z, Sun Y X. Fundamental Problem of Networked Control Systems From the View of Control and Scheduling[C]. Proceeding of 28th Annual Conference of IEEE Industrial Electronics Society, 2002.
    [32]黎善斌.网络控制系统的鲁棒控制算法研究工作[D].杭州:浙江大学, 2004.
    [33]朱其新.网络控制系统的建模、分析与控制[D].南京:南京航空航天大学, 2003.
    [34]黄四牛,陈宗基,魏晨.网络控制中传输延迟的接口延迟模型[J].北京航空航天大学学报, 2004, 30(5): 414-418.
    [35] Walsh G C, Beldiman O. Bushnell Linda G. Asymptotic Behavior of Nonlinear Networked Control Systems[J]. IEEE Translations of Automatic Control, 2001, 46(7): 1093-1097.
    [36]樊卫华.网络控制系统的建模与控制[D].南京:南京理工大学, 2004.
    [37] Wittenmark B, et al. Timing Problems in Real-time Control Systems[C]. Proceedingsof the American Control Conference, Seattle, WA, 1995, 3: 2000-2004.
    [38]顾洪军,张佐,吴秋峰.网络控制系统的实时特性分析及数据传输技术[J].计算机工程与应用, 2001, 37(6): 38-43.
    [39] Zhang Wei. Stability Analysis of Networked Control Systems[D]. Ohio: Case Western Reserve University, 2001.
    [40] Qiang Ling, Michael D L. Robust Performance of Soft Real-time Networded Control Systems with Data Dropouts [C]. Proceeding of the 41st IEEE conference on decision and control, Las Vegas, Mevada USA, 2002.
    [41] Qiang Ling, Michael D L. Optimal Dropout Compensation in Networded Control Systems[C]. Proceeding of the 42nd IEEE conference on decision and control, Hawaii, USA, 2003.
    [42]樊卫华,蔡弊,陈庆伟,胡维礼.基于异步动态系统的网络控制系统建模[J].东南大学学报(自然科学学报), 2003,33(2): 194-196.
    [43] Feng Li Lian. Analysis, Design, Modeling and Control of Networded Control Systems. USA: University of Michigan, 2001.
    [44] Gregory C W, Octavian B, Linda G B. Asymptotic Behavior of Networded Control Systems[C]. Proceeding of the IEEE Conference on Control Applications, Hawaii, 1999.
    [45] TipsuwanY, Chow M Y. Network-based Controller Adaptation for Network QoS Negotiation and Deterioration[C]. Proceedings of the 27th annual conference, 2001.
    [46] Gaid M B, Cela A, Hamam Y. Optimal Integrated Control and Scheduling of Networked Control Systems with Communication Constraints: Application to a Car Suspension System[J]. IEEE Transactions on Control Systems Technology, 2006, 14(4): 776-787.
    [47] Lankes S, Jabs A, Peke M A. Time-triggered Ethernet Protocol for Real-time CORBA[C]. Proc. of the 5th IEEE International Symposium on Object-Oriented Real-time Distributed Computing, USA, 2002: 215-222.
    [48] Tanenbaum A S. Computer Networks[M]. Englewood Cliffs, NJ: Prentice Hall, 2003.
    [49] Karl H, Willing A. Protocols and Architectures for Wireless Sensor Networks[M]. Chichester, England: John Wiley & Sons, 2005.
    [50]王凌,杨新照,张凤登.CAN协议状态分析[J].仪器仪表学报, 2004, 8(23): 464-470.
    [51]杨慧田,亮田敏. CAN总线协议分析.中国仪器仪表, 2002, 2(4): 1-4.
    [52]邬宽明.总线原理和应用系统设计[M].北京:北京航空航天大学出版社, 1996.
    [53]史久根,张培仁.总线在实时系统中应用研究[J].中国科学技术大学学报, 2005, 24(2): 195-200.
    [54]蒋建文,林勇,韩江洪. CAN总线通信协议的分析和实现.计算机工程, 2002, 28(6): 219-221.
    [55] Tindell K W, Hansson H, Wellings A J, Analysing Real-time Communications: Controller Area Network (CAN)[C]. Proceedings of the 15th IEEE Real-Time Systems Symp. San Juan, PR: IEEE Computer Society, 1994, 259-263.
    [56] Marco D N. Scheduling Message with Earliest Deadline Techniques[J] Real-Time Systems, 2001, 20(3): 255-285.
    [57]涂刚,阳富民,卢炎生.基于动态优先级策略的最优软非周期任务调度算法[J].计算机研究与发展, 2004,41(11): 95-101.
    [58] Hasnaoui S. Bouallegue A. A proposal Modification of CAN Protocol to Support a Dynamic Priority Policy being Able to be Implemented on CAN Fieldbus Controller Components[C], Industry Applications Conference, 2000.
    [59] Roman O. Reuse of CAN-Based Legacy Applications in Time-Triggered Architectures[C]. IEEE Transactions On Industrial Informatics, 2006, 2(4): 255-268.
    [60] Schmidt K, Schimidt E G.. Systematic Message Schedule Construction for Time-Triggered CAN[C]. IEEE Transactions on Vehicular, 2007.
    [61] Krishna C M, Shin K G, Real-time Systems[M]. Chcago : McGraw-Hill, 2001.9
    [62] Walsh G C,Hong Ye. Scheduling of Networked Control Systems[J]. IEEE Control System Magazine.2001, 21 (1): 57– 65.
    [63] Zhang W, Branickym S, Philips S M. Stability of Networked Control Systems[J]. IEEE Control Magazine, 2001, 21(1): 84-99.
    [64] Hong S H. Scheduling Algorithm of Data Sampling Times in the Integrated Communication and Control Systems[J]. IEEE Transactions on Control SystemsTechnology, 1995, 3 (2): 225-230.
    [65] Eker J. Hagander P. Arzen K E. A Feedback Scheduler for Real-time Controller Tasks[J]. Control Engineering Practice, 2000, 8(12): 1369 -1378.
    [66] Branickym S, Phililips S M, Zhan G W. Scheduling and Feedback Codesign for Networked Control Systems[C]. Proceedings of IEEE Conference on Decision and Coutrol, Las Vegas. 2002.
    [67]兰少华.基于网络QoS的队列调度算法研究[D].南京:南京理工大学, 2007.
    [68]王宏宇,顾冠群.集成服务网络中的分组调度算法研究综述[J].计算机学报, 1999, 22(10): .
    [69] Stiliadis D, Varma A. Rate-proportional Servers: A Design Methodology for Fair Queueing Algorithms[C]. IEEE ACM Trans on Networking, 1998, 6(2): 164-174.
    [70]王重钢,隆克平,龚向阳,程时端.分组交换网络中队列调度算法的研究及其展望[J].电子学报, 2001, 29(4): 553-558.
    [71] Goyal P, Start H V. Time Fair Queuing: A Scheduling Algorithm for Integrated Services Packet Switching Networks[J]. IEEE/ACM Trans on Networking, 1997, 5(5): 690-703.
    [72] Golestani S J. A Self Clocked Fair Queuing Scheme for Broadband Applications[C]. Proceedings of IEEE INFOCOMM’94. 1994.
    [73] Tse N, Stoica I, Zhang H. Packet Fair Queuing Algorithms for Wireless Networks with Location Dependent Errors[C]. Proceedings of IEEE INFOCOM, 1998.
    [74] Shreedhar M, Varghese G.. Efficient Fair Queuing Using Deficit Round Robin[A]. SIGCOMM[C], Boston, 1995.
    [75] Ramabhadran S,Pasquale J. The Stratified Round Robin Scheduler: Design, Analysis and Implementation[C]. IEEE/ACM Transactions on Networking, 2006, 14(6): 1362-1373.
    [76] Guo Chuan-Xiong. SRR: An O( 1) Time Complexity Packet Scheduler for Flows in Multi Service Packet Networks[J]. IEEE/ACM Trans on Networking, 2004, 12(6): 1144-1155.
    [77] Cheung S, Pencea C. BSFQ: Bin Sort Fair Queuing[C]. Proceedings In IEEEINFOCOM, 2002.
    [78] Haitao W, Shiduan C, Jian M. An Efficient Packet Fair Queueing (PFQ) Architecture for Latency Rate server[C]. IEEE Trasaction on Global Telecommunications Conference, 2002.
    [79] Parekb A K, Gallager R G.. A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: the Multiple Node Case[C]. Proceedings of IEEE INFOCOM, 1993.
    [80] Valente P. Exact GPS Simulation with Logarithmic Complexity and its Application to An Optimally Fair Scheduler[C]. Proceedings of SIGCOMM, 2004.
    [81] Parekb A K, Gallager R G.. A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: the Single Node Case[J]. IEEE / ACM Trans on Networking, 1993.
    [82] Bennett J, Zhang H. Hierarchical Packet Fair Queuing Algorithms[J]. IEEE/ACM Trans on Networking, 1997.
    [83] Bennet J, Zhang H. WF2Q: Worst Case Fair Weighted Fair Queuing[J]. In IEEE INFOCOM, 1996.
    [84] Wang C G, Long K P, Gong X Y, Cheng S D. SWFQ: A Simple Weighted Fair Queueing Scheduling Algorithm for High-speed Packet Switched Network[C]. IEEE International Conference on Communications, 2001.
    [85] Chiussi F M,Francini A. Minimum-Delay Self-clocked Fair Queueing Algorithm for Packet-switched Networks. Conference of the IEEE Computer and Communications Societies, 1998.
    [86] Goyal P, Vin H M, Chen H C. Start-time Fair Queueing: A Scheduling Algorithm for Integrated Services Packet Switching Networks[C]. IEEE/ACM Transactions on Networking, 1997.
    [87] Agharebparast F, Leung C. Efficient Fair Queuing with Decoupled Delay-bandwidth Guarantees[C]. IEEE Global Telecommunications Conference, 2001.
    [88] Lu C, Stankovic J A, Tao G.. Design and Evaluation of A Feedback Control EDF Scheduling Algorithm[J], Real-Time Systems Symposium, 1999.
    [89] Tong S, Yang O W. Improving Resource Utilization for the Rate-controlled Trafficflows in High Speed Networks[C]. IEEE International Conference on Communications, 1999.
    [90] Azarov M. Aggregate Rate-Controlled Service Discipline Enabling Packet Switched Networks with Deterministic Delay Bound[J]. 4th IEEE Consumer Communications and Networking Conference, 2007.
    [91] Sariowan H, Cruz R L, Polyzos G C. SCED: A Generalized Scheduling Policy for Guaranteeing Quality-of-service[C]. IEEE/ACM Transactions on Networking, 1999.
    [92] Stoica I, Zhang H. A hierarchical Fair Service Curve Algorithm for Link-sharing, Real-time, and Priority Services[J]. IEEE/ACM Transactions on Networking, 2000.
    [93] Chaskar H M, Madhow U. Fair Scheduling with Tunable Latency: A Round-robin Approach[C]. IEEE/ACM Transactions on Networking, 2003.
    [94] Garg R, Chen X Q. RRR: Recursive Round Robin Scheduler[J]. IEEEE Global Telecommunications Conference, 1998.
    [95] Kortebi A, Oueslati S, Roberts J. Implicit Service Di?erentiation using Deficit Round Robin[C]. Proceedings of ITC, 2005.
    [96] Zhou Y, Hosaagrahara M,Sethu H. Opportunity-based Deficit Round Robin: A Novel Packet Scheduling Strategy for Wireless Networks[J]. Workshop on High Performance Switching and Routing, 2002.
    [97] Shiravi A, Kim Y G, Min P S. Proportional Nested Deficit Round Robin with Credit Adjusting[C]. Second International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks,2005.
    [98] Soranun J, George K. A Class of Shaped Deficit Round-Robin (SDRR) Schedulers[J]. Telecommunication Systems, 2004, 25(3): 173-191.
    [99] Jiwasurat S, Kesidis G., Miller D J, Hierarchical Shaped Deficit Round-robin Scheduling[C]. Global Telecommunications Conference, 2005
    [100]Zhang C, Gregor M H. Scheduling Latency-Critical Traffic:A Measurement Study of DRR+ and DRR++[J]. Workshop on High Performance Switching and Routing, 2002.
    [101]Seung H H. Scheduling Algorithm of Data Sampling Times in the IntegratedCommunication and Control Systems[J]. Control Systems Technology, 1995, 3(2): 225–230.
    [102]Seung H H. Bandwidth Allocation Scheme for Cyclic-service Fieldbus Networks[J]. Mechatronics, 2001, 6(2): 197-204.
    [103]Yong H K, Wook H K, Hong S P. Stability and A Scheduling Method for Network-based Control Systems[J], IEEE Tran. On Industrial Electronics, Control, and Instrumentation, 1996.
    [104]Cavalieri S, Di S A, Mirabella O.Pre-run-time Scheduling to Reduce Schedule Length in the FieldBus Environment[J]. Software Engineering, 2004, 21(11): 865–880.
    [105]Leen G., Heffernan D. TTCAN: A New Time-triggered Controller Area Network[J]. Microprocessors and Microsystems, 2002, 26(2): 77-94.
    [106]刘鲁源,万仁君,李斌.基于TTCAN协议调度算法及其在汽车控制系统中的应用[J].汽车工程, 2005, 27(1): 60-63.
    [107]万仁君.电动汽车分布式控制系统的总线调度与整车控制策略的研究[D].天津:天津大学, 2004.
    [108]刘鲁源,万仁君,李斌.基于TTCAN协议的网络控制系统静态调度算法的研究[J].控制与决策, 2004, 19(7): 814-816.
    [109]Almeida L, Fonseca J, Fonseca P. Flexible Time-triggered Communication on A Controller Area Network[C]. 19th IEEE Real-Time Systems Symp. 1998.
    [110]Almeida L, Paulo P. .The FTT-CAN Protocol:Why and How[J].IEEE Transactions on Industrial Electronics, 2002, 4(96): 1189-1201.
    [111]Lehoczky J S, DING Y. The Rate Monotonic Scheduling Algorithm: Exact Characterization and Average Case Behavior[A]. Proceedings of IEEE Real-time Systems Symposium, 1989.
    [112]Tindell K, Bums A. Analysis of Hard Real-time Communication[J]. Real-Time System, 1995, 9(2): 147-173.
    [113]叶明,罗克露,陈慧.单调比率(RM)调度算法及应用[J].计算机应用, 2005, 25(4): 889-891.
    [114]文远保,张炫.单调比率调度算法研究及改进[J].计算机工程与科学, 2006, 28(10): 68-70.
    [115]Tindell K W, Burns A. Guaranteeing message latencies on controller area network (CAN)[EB/OL].http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/ 2347/ftp:zSzzSzftp.cs.york.ac.ukzSz-pubzSzrealtimezSzpaper-szSzICCTBSept94.pdf/guaranteeing-message-latencies-on.pdf,2007-09-03.
    [116]Tindell K W, Hansson H, Wellings A J. Analysing real-time communications: controller area network(CAN)[EB/OL].http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/ papers/c/2347/ftp:zSzzSzftp.cs.york.ac.ukzSzpubzSzkenzSzkenzSzcan8.pdf/tinde1194analysing.pdf,2007-09-03.
    [117]Davis R I, Alan B, Bril R J. Controller area network (CAN) schedulability analysis:refuted, revisited and revised[EB/OL].www.cs.york.ac.uk/ftpdir/reports/ YCS-2006 408.pdf,2007-09-03.
    [118]王艳,纪志成,谢林柏.基于动态调度的网络控制系统设计方法[J].信息与控制, 2008, 37(1): 73-86.
    [119]Livani M, Kaiser J, Jia W J. Scheduling Hard and Soft Real-time Communication in the Controller Area Network[C]. Workshop on Real-time Programming,1998.
    [120]Natale M D.Scheduling the CAN Buswith Earliest Deadline Techniques[C]. 21st IEEE Real-Time Systems,2000.
    [121]Zuberi K M, Shin K G. Non-preemptive Scheduling of Messages on Controller Area Network for Real-time Control Applications[C]. 1st IEEE Real-Time Technology and Applications,1995.
    [122]Santiago F, Francisco R, Alberto B. Software Based EDF Message Scheduing on CAN Networks[C]. Proceedings of the Second International Conference on Embedded Software and Systems, 2005.
    [123]Mohammad A L, Jorg K. EDF Consensus on CAN Bus Access for Dynamic Real-Time Applications[J]. Lecture Notes in Computer Science, 1998, 14(3): 1346-1468.
    [124]Mittal A, Manimaran G. Murthy C S. Dynamic Real-time Channel Establishment in Multiple Access Bus Networks[J], Computer Communications, 2003, 26(4): 113-127.
    [125]Broster I, Burns A. Timely Use of the CAN Protocol in Critical Hard Real-timeSystems with Faults[C], 13th Euromicro Conference on Real-Time Systems, 2001.
    [126]Sivaraman V, Chiussi F M, Gerla M. Traffic Shaping for End-to-end Delay Guarantees with EDF Scheduling, Quality of Service[C], IWQOS, 2000.
    [127]Mohammad A L, Jorg K, Wei J. Scheduling Hard and Soft Real-time Communication in A Controller Area Network[J], Control Engineering Practice, 1999, 7(6): 1515-1523.
    [128]Sahoo D R, Swaminathan S. Feed-backcontrol for Real-time Scheduling[A]. Proceedings of the American Control Conference, 2002.
    [129]Stankovic J A, Lu C Y, Son S H. The Case for Feedback Control Real-time Scheduling[A]. Proceedings of the Euromicro Conference on Real-Time Systems, Piscataway, NJ, USA, 1999.
    [130]Lu C Y, Stankovic J A, Son S H.Feedback Control Real-time Scheduling: Framework,Modeling and Algorithms[J]. Real-Time Systems, 2002, 23(122): 85-126.
    [131]Kaiser J, Mock M. Implementing the Real-time Publisher/Subscriber Model on the Controller Area Network ( CAN ) [C]. Proceedings. 2nd IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, 1999.
    [132]Zuberi K M, Shin K G. Scheduling Messages on Controller Area Network for Real-time CIM Applications[J], Robotics and Automation, 1997, 13(2): 310-316.
    [133]吕伟杰,刘鲁源,王毅新. CAN总线混合调度方法在电动汽车控制系统中的应用[J].计算机工程, 2006, 32(9): 216-218.
    [134]Navet N, Song Y Q.Realiability Improverment of the Dual-priority Protocol under unreliable Transmission[J]. Control Engineering Practice, 1999, 34(2): 975-981.
    [135]Davis R I, Alan B, Bril R J. Controll Area Network (CAN) Schedul Ability Analysis: refuted revisited and revised[EB/OL].www.cs.york.ac.ukftpdir/reports/YCS2200 6408.pdf,2007209203.
    [136]刘宇,张义民,宋桂秋,郭晨.基于瞬时负载率的CAN总线系统调度分析[J].机械与电子, 2008, 23(10): 3-6.
    [137]Walsh G. C, Beldiman O, Bushnell L. An Equivalence between Control Network and a Switched Hybrid System[R]. Lecture Notes in Computer Science, Duke University,1998.
    [138]Walsh G. C, Hong Y. Error Encoding Algorithms for Networked Control Systems[C]. Proceedings of the 38st Conference on Decision & Control, Phoenix, USA, 1999: 4933-4938.
    [139]Raja P, Ulloa G, Lausanne E P. Priority Polling and Dynamic Time Window Mechanismsina Multicycle Field-bus[A]. Proceedings IEEE Computer Society Press of the Computers in Design, LosAlamitos, CA, USA, 1993.
    [140]Bertozzi F. Di N M, Almeida L. Admission Control and Overload Handling in FTT-CAN[C]. Factory Communication Systems, 2004.
    [141]Nolte T, Nolin M H. Server-based Real-time Scheduling of the CAN Bus[C]. Proc. 11th Information Control Problems In Manufacturing, 2004.
    [142]Nolte T.Server-based Scheduling of the CAN Bus[C]. Proc. 9th IEEE Conf. Emerging Technologies and Factory Automation, 2003.
    [143]Nolte T, Nolin M, Hansson H. Real-time Server-based Communicaion with CAN[J]. IEEE Transactions on Industrial Electronics, 2002.
    [144]Cena G., Valenzano A. An Improved CAN Fieldbus for Industrial Applications[J], Industrial Electronics, 1997, 44(4): 553–564.
    [145]Coutinho F, Fonseca J, Barreiros J. Using Genetic Algorithms to Reduce Jitter in Control Varialbes Transmitted Over CAN[EB/OL].http://ieeta.pt/jaf/papers/Ano2000 /icecoutin.pdf.
    [146]Hong S H. Bandwidth Allocation Scheme for Cyclic-service Fieldbus Networks[J], Mechatronics, 2001, 6(2): 197–204.
    [147]白涛,吴智铭,杨根科.网络化控制系统中的抖动调度优化算法[J].控制与决策, 2004, 19(4): 397-401.
    [148]白涛,吴智铭,杨根科.基于CAN网的模糊优先级配置策略[J].控制与决策, 2005, 20(3): 285-288.
    [149]Marti P, Yepez J, Velasco M, Villa R, Fuertes J M. Managing Quality-of-control in Network-based Control Systems by Controller and Message Scheduling Co-design[J]. IEEE Transactions on Industrial Electronics, 2004, 51(6): 1159-1167.
    [150]Yepez J, Marti P, Fuertes J M. Control Loop Scheduling Paradigm in Distributed Control Systems[C]. Proceedings of the 29th Annual Conference of the IEEE Industrial Electronics Society. Roanoke, USA, 2003.
    [151]Xia F, Dai X H, Wang Z, Sun Y X. Feedback based Network Scheduling of Networked Control Systems[C]. Proceedings of the Intemational Conference on Control and Automation, 2005.
    [152]Wang Z M, Zhu X M. EI Based Scheduling for Thermal Process Control[C]. Proceedings of the Intemational Conference on Control and Automation, 2005.
    [153]彭晨,岳冬.网络控制系统中基于时延辨识的模糊控制器研究[J].信息与控制, 2004, 33(5): 584-589.
    [154]李祖欣,王万良,雷必成,陈惠英.网络控制系统中基于模糊反馈的消息调度[J].自动化学报, 2007, 33(11): 1229-1232.
    [155]Zuberi K M, Shin K G. Design and Implementation of Efficient Message Scheduling for Controller Area Network[J], Computers, 2000, 49(2): 182-188.
    [156]Natale M D. Scheduling the CAN Bus with Earliest Deadline Techniques[C]. Proceedings on Real-time Systems Symposium. Orlando, 2000: 259—268.
    [157]Michael S, Branicky V L, Stephen M P. Networked Control Systems Cosimulation for Co-design[C]. Proceedings of the American Control Conference, Denver, USA, 2003.
    [158]Otanez P, Moyne J, Tilbury D. Using Deadbands to Reduce Communication in Networked Control Systems[C]. Proceedings of the American control conference, 2002.
    [159]Hirche S, Buss M. Towards Deadband Control in Networked Teleoperation Systems[EB/OL].http://www.Ikn.ei.tum.de/~steinb/PUBLIVACATIONS/IFACTowards.pdf, 2005.
    [160]王家栋,汤贤铭,俞金寿.一种网络资源受限情况下的NCS反馈调度方法[J].信息与控制, 2008, 37(3): 339-345.
    [161]Branicky M S, Phillips S M, Zhang W. Scheduling and Feedback Co-design for Networked Control Systems[C]. Proceedings of the IEEE Conference on Decision and Control. Piscataway, NJ, USA, 2002..
    [162]何坚强,张焕春,经亚枝.网络控制系统中采样周期的优化选取方法[J].吉林大学学报(工学版), 2004, 34(3): 479-482.
    [163]Velasco M, Fuertes J M, Lin C. A Control Approach to Bandwidth Management in Networked Control Systems[C]. Proceedings of the 30th Annual Conference of the IEEE Industrial Electronics Society. Piscataway, NJ, USA, 2004.
    [164]Cena G, Valenzano A. Delay Analysis of Priority Promotion Systems[J]. Computer Communication, 2000, 23(2): 1252-1262.
    [165]Almeida L, Pasadas R, Fonseca JA. Using a Planning Scheduler to Improve the Flexibility of Real-time Fieldbus Networks[J]. Control Engineering Practice, 1999, 7(23): 101-108.
    [166]Pedreiras P, Almeida L. Combining Event-triggered and Time-triggered Traffic in FTT-CAN: Analysis of the Asynchronous Messaging System[C]. Proceedings.2000 IEEE International Workshop on Factory Communication Systems, 2000.
    [167]Baillieul J, Antsaklis P. Control and Communication Challenges in Networked Real-time Systems[J]. Proceedings of the IEEE, 2007.
    [168]Lin Hai, Zhai Gui-sheng, Panos Jantasalis. Robust Stability and Sisturbance Analysis of a Class of Networked Control System[C]. Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii, USA, 2003: 1182-1187.
    [169]邱占芝,张庆灵,刘明.有时延和数据包丢失的网络控制系统控制器设计[J].控制与决策, 2006, 21(6): 625-630.
    [170]Xia Yuan qing, Liu G. P, Rees D. Predictive Control of Networked Systems with Random Delay and Data Dropout[C]. Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, 2006, 23(25): 643-648.
    [171]Hasnaoui S, Bouallegue A.A Proposal Modification of CAN protocol to Support A Dynamic Priority Policy Being Able to Be Implemented on CAN Fieldbus Controller Components[C], Industry Applications Conference, 2000.
    [172]Shreedhar M, Varghese G. Efficient Fair Queueing Using Dedicit Round Robin[C]. IEEE/ACM Trans. On Networking, 1996.
    [173]Stiliadis D, Varma A. Latency-rate Servers: A General Model for Analysis of Traffic 126Scheduling Algorithms[C]. Proceedings of IEEE INFOCOM, Asn Francisco, USA, 1996.
    [174]Gaid M M. Optimal Scheduling and Control for Distributed Real-time Systems[D]. Paris: Evry Uninersity, 2006.
    [175]王耀青,刘维奇.带正则变化尾误差的函数系数自回归模型的概率性质[J].山西大学学报(自然科学版), 2008, 31(3): 318-322.
    [176]Hong S H, Kim Y C. Implementation of A Bandwidth Allocation Scheme in A Token-passing Field-bus Network[J]. Instrumentation and Measurement, 2002, 51(2): 246-251.
    [177]Hong S H, Kim W H. Bandwidth Allocation Scheme in CAN Protocol[J]. IEE Proceedings Control Theory and Applications, 2000, 147(1): 37-44.
    [178]闫冬梅.网络控制系统的延时补偿方法[J].长春工业大学学报(自然科学版), 2006, 27(2): 153-156.
    [179]Tipsuwan Y, Chow M Y. Control Methodologies in Networked Control Systems[J]. Control Engineering Practice, 2003, 11(10): 1099-1111.
    [180]Li Y Q, Fang H J. Control Methodologies of Large Delays in Networked Control Systems[C]. International Conference on Control and Automation, 2005.
    [181]Hong S H. Scheduling Algorithm of Data Sampling Times in the Integrated Communication and Control Systems[J]. IEEE Transactions on Control Systems Technology, 1995, 3(2): 225-230.
    [182]Park H S, Kim Y H, Kwon W H. A Scheduling Method for Network-based Control Systems[J]. IEEE Transactions on Control Systems Technology, 2001, 10(3): 318-330.
    [183]Velasco M, Fuertes J M, Lin C, Marti P. A Control Approach to Bandwidth Mnagement in Networked Control Systems[C]. The 30th Annual Conference of the IEEE Industrial Electronics Society, 2004.
    [184]Velasco M, Marti P, Fuertes J M. Bandwodth Management for Distributed Control of Highly Articulated Robots[C]. Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005.
    [185]Xia F, Li S B, Sun Y X. Neural Network Based Feedback Scheduler for NetworkedControl System with Flexible Workload[C]. Proceedings of ICNC,2005.
    [186]Xia F, Liu L P, Li S B. Integrated Feedback Scheduling of Networked Control Systems[C]. Proceedings of ICSCA, 2006.
    [187]Marti P, Yepez J, Velasco M. Managing Quality-of-control in Networked-based Control Systems by Controller and Message Scheduling Co-desigh[J]. IEEE Trans. On Industrial Electronics, 2004, 51(6): 1159-1167.
    [188]费万春,白伦.自协方差非平稳时间序列的时变参数自回归模型[J].中国科学(A辑:数学), 2009, 29(1): 71-78.
    [189]金阳,安鸿志.带有重尾扰动项的非线性自回归模型[J].中国科学(A辑:数学), 2005, 25(01): 145-151.
    [190] Zhou S Y, Qin G H, Jin Y B. A New Electronic Communication Technology——VT Position Code Communication Technology and Its Implementation, The 1st International Conference on Information Security and Assurance, Busan, Korea, April. 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700